Abstract

We are developing superconducting transition-edge bolometers for far-infrared and millimeter wavelengths. The bolometers described here are suspended by thin legs of silicon nitride for thermal isolation. At frequencies between 200 mHz and 10–50 Hz these devices show white noise at their thermal fluctuation limit (NEP ≈ 10-17 W/Hz). At higher frequencies a broad peak appears in the noise spectrum, which we attribute to a combination of thermal fluctuations in complex thermal circuits and electrothermal feedback. Detailed noise calculations fit the noise measured in three different devices that were specifically designed to test the model. We discuss how changes in bolometer materials can shift the noise peak above the frequency range of interest for most applications.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. T. Lee, P. L. Richards, S. W. Nam, B. Cabrera, K. D. Irwin, “A superconducting bolometer with strong electrothermal feedback,” Appl. Phys. Lett. 69, 1801–1803 (1996).
    [CrossRef]
  2. K. D. Irwin, “An application of electrothermal feedback for high resolution cryogenic particle detection,” Appl. Phys. Lett. 66, 1998–2000 (1995).
    [CrossRef]
  3. S.-F. Lee, J. M. Gildemeister, W. A. Holmes, A. T. Lee, P. L. Richards, “Voltage-biased superconducting transition-edge bolometer with strong electrothermal feedback operated at 370 mK,” Appl. Opt. 37, 3391–3397 (1998).
    [CrossRef]
  4. J. Yoon, J. Clarke, J. M. Gildemeister, A. T. Lee, M. Myers, P. L. Richards, J. Skidmore, “A single SQUID multiplexer for arrays of low temperature sensors,” Appl. Phys. Lett. 78, 371–372 (2001).
    [CrossRef]
  5. J. A. Chervenak, E. N. Grossman, K. D. Irwin, J. M. Martinis, C. D. Reintsema, C. A. Allen, D. I. Bergman, S. H. Moseley, R. Shafer, “Performance of multiplexed SQUID readout for cryogenic sensor arrays,” Nucl. Instrum. Methods A 444, 107–110 (2000).
    [CrossRef]
  6. J. M. Gildemeister, A. T. Lee, P. L. Richards, “A fully lithographed voltage-biased superconducting spiderweb bolometer,” Appl. Phys. Lett. 74, 868–870 (1999).
    [CrossRef]
  7. K. D. Irwin, National Institute of Standards and Technology, 325 Broadway, Boulder, Colo. 80303 (personal communication, 1999).
  8. J. M. Gildemeister, A. T. Lee, P. L. Richards, “Monolithic arrays of absorber-coupled voltage-biased superconducting bolometers,” Appl. Phys. Lett. 77, 4040–4042 (2000).
    [CrossRef]
  9. Quantum Design, 11578 Sorrento Valley Road, San Diego, Calif. 92121, Series 50 SQUID and Model 550 controller.
  10. Stanford Research Systems, 1290-D Reamwood Avenue, Sunnyvale, Calif. 94089, Model SR785.
  11. Hewlett-PackardModel HLMP-1000, distributed by Newark Electronics, 4801 N. Ravenswood, Chicago, Ill. 60640.
  12. P. L. Richards, “Bolometers for infrared and millimeter waves,” J. Appl. Phys. 76, 1–24 (1994).
    [CrossRef]
  13. D. V. Anghel, J. P. Pekola, M. M. Leivo, J. K. Suoknuuti, M. Manninen, “Properties of the phonon gas in ultrathin membranes at low temperature,” Phys. Rev. Lett. 81, 2958–2960 (1998).
    [CrossRef]
  14. J. J. Bock, Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, Calif. 91109 (personal communication, 1999).
  15. Electron Probe Microanalysis, Cameca SX-51 with high-resolution wavelength dispersive spectrometers.
  16. D. Miller, “Submillimeter residual losses in high-Tc superconductors,” Ph.D. dissertation (University of California, Berkeley, Berkeley, Calif., 1993).
  17. J. C. Mather, “Bolometer noise: nonequilibrium theory,” Appl. Opt. 21, 1125–1129 (1982).
    [CrossRef] [PubMed]

2001

J. Yoon, J. Clarke, J. M. Gildemeister, A. T. Lee, M. Myers, P. L. Richards, J. Skidmore, “A single SQUID multiplexer for arrays of low temperature sensors,” Appl. Phys. Lett. 78, 371–372 (2001).
[CrossRef]

2000

J. A. Chervenak, E. N. Grossman, K. D. Irwin, J. M. Martinis, C. D. Reintsema, C. A. Allen, D. I. Bergman, S. H. Moseley, R. Shafer, “Performance of multiplexed SQUID readout for cryogenic sensor arrays,” Nucl. Instrum. Methods A 444, 107–110 (2000).
[CrossRef]

J. M. Gildemeister, A. T. Lee, P. L. Richards, “Monolithic arrays of absorber-coupled voltage-biased superconducting bolometers,” Appl. Phys. Lett. 77, 4040–4042 (2000).
[CrossRef]

1999

J. M. Gildemeister, A. T. Lee, P. L. Richards, “A fully lithographed voltage-biased superconducting spiderweb bolometer,” Appl. Phys. Lett. 74, 868–870 (1999).
[CrossRef]

1998

D. V. Anghel, J. P. Pekola, M. M. Leivo, J. K. Suoknuuti, M. Manninen, “Properties of the phonon gas in ultrathin membranes at low temperature,” Phys. Rev. Lett. 81, 2958–2960 (1998).
[CrossRef]

S.-F. Lee, J. M. Gildemeister, W. A. Holmes, A. T. Lee, P. L. Richards, “Voltage-biased superconducting transition-edge bolometer with strong electrothermal feedback operated at 370 mK,” Appl. Opt. 37, 3391–3397 (1998).
[CrossRef]

1996

A. T. Lee, P. L. Richards, S. W. Nam, B. Cabrera, K. D. Irwin, “A superconducting bolometer with strong electrothermal feedback,” Appl. Phys. Lett. 69, 1801–1803 (1996).
[CrossRef]

1995

K. D. Irwin, “An application of electrothermal feedback for high resolution cryogenic particle detection,” Appl. Phys. Lett. 66, 1998–2000 (1995).
[CrossRef]

1994

P. L. Richards, “Bolometers for infrared and millimeter waves,” J. Appl. Phys. 76, 1–24 (1994).
[CrossRef]

1982

Allen, C. A.

J. A. Chervenak, E. N. Grossman, K. D. Irwin, J. M. Martinis, C. D. Reintsema, C. A. Allen, D. I. Bergman, S. H. Moseley, R. Shafer, “Performance of multiplexed SQUID readout for cryogenic sensor arrays,” Nucl. Instrum. Methods A 444, 107–110 (2000).
[CrossRef]

Anghel, D. V.

D. V. Anghel, J. P. Pekola, M. M. Leivo, J. K. Suoknuuti, M. Manninen, “Properties of the phonon gas in ultrathin membranes at low temperature,” Phys. Rev. Lett. 81, 2958–2960 (1998).
[CrossRef]

Bergman, D. I.

J. A. Chervenak, E. N. Grossman, K. D. Irwin, J. M. Martinis, C. D. Reintsema, C. A. Allen, D. I. Bergman, S. H. Moseley, R. Shafer, “Performance of multiplexed SQUID readout for cryogenic sensor arrays,” Nucl. Instrum. Methods A 444, 107–110 (2000).
[CrossRef]

Bock, J. J.

J. J. Bock, Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, Calif. 91109 (personal communication, 1999).

Cabrera, B.

A. T. Lee, P. L. Richards, S. W. Nam, B. Cabrera, K. D. Irwin, “A superconducting bolometer with strong electrothermal feedback,” Appl. Phys. Lett. 69, 1801–1803 (1996).
[CrossRef]

Chervenak, J. A.

J. A. Chervenak, E. N. Grossman, K. D. Irwin, J. M. Martinis, C. D. Reintsema, C. A. Allen, D. I. Bergman, S. H. Moseley, R. Shafer, “Performance of multiplexed SQUID readout for cryogenic sensor arrays,” Nucl. Instrum. Methods A 444, 107–110 (2000).
[CrossRef]

Clarke, J.

J. Yoon, J. Clarke, J. M. Gildemeister, A. T. Lee, M. Myers, P. L. Richards, J. Skidmore, “A single SQUID multiplexer for arrays of low temperature sensors,” Appl. Phys. Lett. 78, 371–372 (2001).
[CrossRef]

Gildemeister, J. M.

J. Yoon, J. Clarke, J. M. Gildemeister, A. T. Lee, M. Myers, P. L. Richards, J. Skidmore, “A single SQUID multiplexer for arrays of low temperature sensors,” Appl. Phys. Lett. 78, 371–372 (2001).
[CrossRef]

J. M. Gildemeister, A. T. Lee, P. L. Richards, “Monolithic arrays of absorber-coupled voltage-biased superconducting bolometers,” Appl. Phys. Lett. 77, 4040–4042 (2000).
[CrossRef]

J. M. Gildemeister, A. T. Lee, P. L. Richards, “A fully lithographed voltage-biased superconducting spiderweb bolometer,” Appl. Phys. Lett. 74, 868–870 (1999).
[CrossRef]

S.-F. Lee, J. M. Gildemeister, W. A. Holmes, A. T. Lee, P. L. Richards, “Voltage-biased superconducting transition-edge bolometer with strong electrothermal feedback operated at 370 mK,” Appl. Opt. 37, 3391–3397 (1998).
[CrossRef]

Grossman, E. N.

J. A. Chervenak, E. N. Grossman, K. D. Irwin, J. M. Martinis, C. D. Reintsema, C. A. Allen, D. I. Bergman, S. H. Moseley, R. Shafer, “Performance of multiplexed SQUID readout for cryogenic sensor arrays,” Nucl. Instrum. Methods A 444, 107–110 (2000).
[CrossRef]

Holmes, W. A.

Irwin, K. D.

J. A. Chervenak, E. N. Grossman, K. D. Irwin, J. M. Martinis, C. D. Reintsema, C. A. Allen, D. I. Bergman, S. H. Moseley, R. Shafer, “Performance of multiplexed SQUID readout for cryogenic sensor arrays,” Nucl. Instrum. Methods A 444, 107–110 (2000).
[CrossRef]

A. T. Lee, P. L. Richards, S. W. Nam, B. Cabrera, K. D. Irwin, “A superconducting bolometer with strong electrothermal feedback,” Appl. Phys. Lett. 69, 1801–1803 (1996).
[CrossRef]

K. D. Irwin, “An application of electrothermal feedback for high resolution cryogenic particle detection,” Appl. Phys. Lett. 66, 1998–2000 (1995).
[CrossRef]

K. D. Irwin, National Institute of Standards and Technology, 325 Broadway, Boulder, Colo. 80303 (personal communication, 1999).

Lee, A. T.

J. Yoon, J. Clarke, J. M. Gildemeister, A. T. Lee, M. Myers, P. L. Richards, J. Skidmore, “A single SQUID multiplexer for arrays of low temperature sensors,” Appl. Phys. Lett. 78, 371–372 (2001).
[CrossRef]

J. M. Gildemeister, A. T. Lee, P. L. Richards, “Monolithic arrays of absorber-coupled voltage-biased superconducting bolometers,” Appl. Phys. Lett. 77, 4040–4042 (2000).
[CrossRef]

J. M. Gildemeister, A. T. Lee, P. L. Richards, “A fully lithographed voltage-biased superconducting spiderweb bolometer,” Appl. Phys. Lett. 74, 868–870 (1999).
[CrossRef]

S.-F. Lee, J. M. Gildemeister, W. A. Holmes, A. T. Lee, P. L. Richards, “Voltage-biased superconducting transition-edge bolometer with strong electrothermal feedback operated at 370 mK,” Appl. Opt. 37, 3391–3397 (1998).
[CrossRef]

A. T. Lee, P. L. Richards, S. W. Nam, B. Cabrera, K. D. Irwin, “A superconducting bolometer with strong electrothermal feedback,” Appl. Phys. Lett. 69, 1801–1803 (1996).
[CrossRef]

Lee, S.-F.

Leivo, M. M.

D. V. Anghel, J. P. Pekola, M. M. Leivo, J. K. Suoknuuti, M. Manninen, “Properties of the phonon gas in ultrathin membranes at low temperature,” Phys. Rev. Lett. 81, 2958–2960 (1998).
[CrossRef]

Manninen, M.

D. V. Anghel, J. P. Pekola, M. M. Leivo, J. K. Suoknuuti, M. Manninen, “Properties of the phonon gas in ultrathin membranes at low temperature,” Phys. Rev. Lett. 81, 2958–2960 (1998).
[CrossRef]

Martinis, J. M.

J. A. Chervenak, E. N. Grossman, K. D. Irwin, J. M. Martinis, C. D. Reintsema, C. A. Allen, D. I. Bergman, S. H. Moseley, R. Shafer, “Performance of multiplexed SQUID readout for cryogenic sensor arrays,” Nucl. Instrum. Methods A 444, 107–110 (2000).
[CrossRef]

Mather, J. C.

Miller, D.

D. Miller, “Submillimeter residual losses in high-Tc superconductors,” Ph.D. dissertation (University of California, Berkeley, Berkeley, Calif., 1993).

Moseley, S. H.

J. A. Chervenak, E. N. Grossman, K. D. Irwin, J. M. Martinis, C. D. Reintsema, C. A. Allen, D. I. Bergman, S. H. Moseley, R. Shafer, “Performance of multiplexed SQUID readout for cryogenic sensor arrays,” Nucl. Instrum. Methods A 444, 107–110 (2000).
[CrossRef]

Myers, M.

J. Yoon, J. Clarke, J. M. Gildemeister, A. T. Lee, M. Myers, P. L. Richards, J. Skidmore, “A single SQUID multiplexer for arrays of low temperature sensors,” Appl. Phys. Lett. 78, 371–372 (2001).
[CrossRef]

Nam, S. W.

A. T. Lee, P. L. Richards, S. W. Nam, B. Cabrera, K. D. Irwin, “A superconducting bolometer with strong electrothermal feedback,” Appl. Phys. Lett. 69, 1801–1803 (1996).
[CrossRef]

Pekola, J. P.

D. V. Anghel, J. P. Pekola, M. M. Leivo, J. K. Suoknuuti, M. Manninen, “Properties of the phonon gas in ultrathin membranes at low temperature,” Phys. Rev. Lett. 81, 2958–2960 (1998).
[CrossRef]

Reintsema, C. D.

J. A. Chervenak, E. N. Grossman, K. D. Irwin, J. M. Martinis, C. D. Reintsema, C. A. Allen, D. I. Bergman, S. H. Moseley, R. Shafer, “Performance of multiplexed SQUID readout for cryogenic sensor arrays,” Nucl. Instrum. Methods A 444, 107–110 (2000).
[CrossRef]

Richards, P. L.

J. Yoon, J. Clarke, J. M. Gildemeister, A. T. Lee, M. Myers, P. L. Richards, J. Skidmore, “A single SQUID multiplexer for arrays of low temperature sensors,” Appl. Phys. Lett. 78, 371–372 (2001).
[CrossRef]

J. M. Gildemeister, A. T. Lee, P. L. Richards, “Monolithic arrays of absorber-coupled voltage-biased superconducting bolometers,” Appl. Phys. Lett. 77, 4040–4042 (2000).
[CrossRef]

J. M. Gildemeister, A. T. Lee, P. L. Richards, “A fully lithographed voltage-biased superconducting spiderweb bolometer,” Appl. Phys. Lett. 74, 868–870 (1999).
[CrossRef]

S.-F. Lee, J. M. Gildemeister, W. A. Holmes, A. T. Lee, P. L. Richards, “Voltage-biased superconducting transition-edge bolometer with strong electrothermal feedback operated at 370 mK,” Appl. Opt. 37, 3391–3397 (1998).
[CrossRef]

A. T. Lee, P. L. Richards, S. W. Nam, B. Cabrera, K. D. Irwin, “A superconducting bolometer with strong electrothermal feedback,” Appl. Phys. Lett. 69, 1801–1803 (1996).
[CrossRef]

P. L. Richards, “Bolometers for infrared and millimeter waves,” J. Appl. Phys. 76, 1–24 (1994).
[CrossRef]

Shafer, R.

J. A. Chervenak, E. N. Grossman, K. D. Irwin, J. M. Martinis, C. D. Reintsema, C. A. Allen, D. I. Bergman, S. H. Moseley, R. Shafer, “Performance of multiplexed SQUID readout for cryogenic sensor arrays,” Nucl. Instrum. Methods A 444, 107–110 (2000).
[CrossRef]

Skidmore, J.

J. Yoon, J. Clarke, J. M. Gildemeister, A. T. Lee, M. Myers, P. L. Richards, J. Skidmore, “A single SQUID multiplexer for arrays of low temperature sensors,” Appl. Phys. Lett. 78, 371–372 (2001).
[CrossRef]

Suoknuuti, J. K.

D. V. Anghel, J. P. Pekola, M. M. Leivo, J. K. Suoknuuti, M. Manninen, “Properties of the phonon gas in ultrathin membranes at low temperature,” Phys. Rev. Lett. 81, 2958–2960 (1998).
[CrossRef]

Yoon, J.

J. Yoon, J. Clarke, J. M. Gildemeister, A. T. Lee, M. Myers, P. L. Richards, J. Skidmore, “A single SQUID multiplexer for arrays of low temperature sensors,” Appl. Phys. Lett. 78, 371–372 (2001).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

A. T. Lee, P. L. Richards, S. W. Nam, B. Cabrera, K. D. Irwin, “A superconducting bolometer with strong electrothermal feedback,” Appl. Phys. Lett. 69, 1801–1803 (1996).
[CrossRef]

K. D. Irwin, “An application of electrothermal feedback for high resolution cryogenic particle detection,” Appl. Phys. Lett. 66, 1998–2000 (1995).
[CrossRef]

J. Yoon, J. Clarke, J. M. Gildemeister, A. T. Lee, M. Myers, P. L. Richards, J. Skidmore, “A single SQUID multiplexer for arrays of low temperature sensors,” Appl. Phys. Lett. 78, 371–372 (2001).
[CrossRef]

J. M. Gildemeister, A. T. Lee, P. L. Richards, “A fully lithographed voltage-biased superconducting spiderweb bolometer,” Appl. Phys. Lett. 74, 868–870 (1999).
[CrossRef]

J. M. Gildemeister, A. T. Lee, P. L. Richards, “Monolithic arrays of absorber-coupled voltage-biased superconducting bolometers,” Appl. Phys. Lett. 77, 4040–4042 (2000).
[CrossRef]

J. Appl. Phys.

P. L. Richards, “Bolometers for infrared and millimeter waves,” J. Appl. Phys. 76, 1–24 (1994).
[CrossRef]

Nucl. Instrum. Methods A

J. A. Chervenak, E. N. Grossman, K. D. Irwin, J. M. Martinis, C. D. Reintsema, C. A. Allen, D. I. Bergman, S. H. Moseley, R. Shafer, “Performance of multiplexed SQUID readout for cryogenic sensor arrays,” Nucl. Instrum. Methods A 444, 107–110 (2000).
[CrossRef]

Phys. Rev. Lett.

D. V. Anghel, J. P. Pekola, M. M. Leivo, J. K. Suoknuuti, M. Manninen, “Properties of the phonon gas in ultrathin membranes at low temperature,” Phys. Rev. Lett. 81, 2958–2960 (1998).
[CrossRef]

Other

J. J. Bock, Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, Calif. 91109 (personal communication, 1999).

Electron Probe Microanalysis, Cameca SX-51 with high-resolution wavelength dispersive spectrometers.

D. Miller, “Submillimeter residual losses in high-Tc superconductors,” Ph.D. dissertation (University of California, Berkeley, Berkeley, Calif., 1993).

K. D. Irwin, National Institute of Standards and Technology, 325 Broadway, Boulder, Colo. 80303 (personal communication, 1999).

Quantum Design, 11578 Sorrento Valley Road, San Diego, Calif. 92121, Series 50 SQUID and Model 550 controller.

Stanford Research Systems, 1290-D Reamwood Avenue, Sunnyvale, Calif. 94089, Model SR785.

Hewlett-PackardModel HLMP-1000, distributed by Newark Electronics, 4801 N. Ravenswood, Chicago, Ill. 60640.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Output current noise spectral density for devices 1, 2, and 3 biased at 136, 259, and 126 mΩ, respectively. Noise spectra measured at different frequencies were combined to cover the full range of frequencies. The onset of low-frequency (1/f) noise in these devices is generally below 300 mHz. Higher onsets seen for devices 2 and 3 are due to a malfunction of the bias circuit. The rise in noise observed above 20 kHz in all devices is due to a resonance in the SQUID system. The total noise (solid curve) is the quadrature sum of the thermal fluctuation noise predicted by our model (dashed curve), SQUID noise (dotted curve at the very bottom), and Johnson noise (dotted–dashed curve).

Fig. 2
Fig. 2

Upper photograph, one of the test devices. The thermistor is in the center. The support legs extend to the left and right. The suspension structure is made from a 1-µm-thick film of low-stress silicon nitride. The four legs are each 7 µm wide and 1640 µm long. Superconducting leads along the two legs on the left make contact to the sensor as is shown in the lower magnified image.

Fig. 3
Fig. 3

Output current noise spectral density at low frequencies for device 1 biased at 398 mΩ. The straight line shows the white-noise level expected from an ideal simple device.

Fig. 4
Fig. 4

Thermal circuit used for our noise calculations. Leads, thermistor, and absorber are modeled as a chain of many heat capacities connected by thermal links.

Tables (1)

Tables Icon

Table 1 Parameters of the Three Test Devicesa

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

dT1dTZ=M-1dP1dPZ.
M=iωC1+G1+G2-G200-G2iωC2+G2+G3-G300-G3iωC3+G3+G40000iωCN+1+GN+1.
dP1,1+dP1,2dPN,N+dPN,N+1dPb+dPN+1,N+1=MdT1dTNdTN+1.
Pb=Vb2RTN+1  dPbdTN+1=-Vb2R2dRdTN+1=-PbαTN+1.
M=M+000Pbα/TN+1.
dTN+1=i=1N qidPi,i+dPi,i+1+qN+1dPN+1,N+1,
STN+1=i=1N |qi|2SNi,i+SNi,i+1+|qN+1|2SNN+1,N+1+2 i=1N |qiqi+1|SCi.
SNi,i=SNi-1,i=4kBTi2Giγ,
SCi=-4kBTi2Giγ.

Metrics