Abstract

We report on an amplitude-division-multiplexed interferometric sensor array for locating acoustic emission. Preliminary experiments were carried out with a modified Mach–Zehnder interferometer consisting of two sensing arms and a reference arm and demonstrated a one-dimensional location accuracy of a few centimeters. The system can be extended for two- and three-dimensional location of acoustic emissions by the addition of one or two more sensing arms, respectively, in the interferometer.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. Q. Zhao, J. M. K. MacAlpine, M. S. Demokan, “Directionality of an optical fiber high-frequency acoustic sensor for partial discharge detection and location,” J. Lightwave Technol. 18, 795–806 (2000).
    [CrossRef]
  2. J. Tabrikian, H. Messer, “Three-dimensional source localization in a waveguide,” IEEE Trans. Signal Process. 44, 1–13 (1996).
    [CrossRef]
  3. J. A. Bucaro, H. D. Dardy, “Fiber-optic hydrophone,” J. Acoust. Soc. Am. 62, 1302–1304 (1977).
    [CrossRef]
  4. R. Ulrich, “Polarization and birefringence effects,” in Optical Fiber Rotation Sensing, W. K. Burns, ed. (Academic, San Diego, Calif., 1994), pp. 31–80.
  5. B. Budiansky, D. C. Drucker, G. S. Kino, J. R. Rice, “Pressure sensitivity of a clad optical fiber,” Appl. Opt. 18, 4085–4088 (1979).
    [CrossRef] [PubMed]
  6. G. B. Hocker, “Fiber-optic sensing of pressure and temperature,” in Selected Papers on Single-Mode Optical Fibers, A. Brozeit, K. D. Hinsch, R. S. Sirohi, eds. (Society for Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1994), pp. 440–443.
  7. J. P. Cowan, Handbook of Environmental Acoustics (Van Nostrand, New York, 1994), p. 8.

2000

1996

J. Tabrikian, H. Messer, “Three-dimensional source localization in a waveguide,” IEEE Trans. Signal Process. 44, 1–13 (1996).
[CrossRef]

1979

1977

J. A. Bucaro, H. D. Dardy, “Fiber-optic hydrophone,” J. Acoust. Soc. Am. 62, 1302–1304 (1977).
[CrossRef]

Bucaro, J. A.

J. A. Bucaro, H. D. Dardy, “Fiber-optic hydrophone,” J. Acoust. Soc. Am. 62, 1302–1304 (1977).
[CrossRef]

Budiansky, B.

Cowan, J. P.

J. P. Cowan, Handbook of Environmental Acoustics (Van Nostrand, New York, 1994), p. 8.

Dardy, H. D.

J. A. Bucaro, H. D. Dardy, “Fiber-optic hydrophone,” J. Acoust. Soc. Am. 62, 1302–1304 (1977).
[CrossRef]

Demokan, M. S.

Drucker, D. C.

Hocker, G. B.

G. B. Hocker, “Fiber-optic sensing of pressure and temperature,” in Selected Papers on Single-Mode Optical Fibers, A. Brozeit, K. D. Hinsch, R. S. Sirohi, eds. (Society for Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1994), pp. 440–443.

Kino, G. S.

MacAlpine, J. M. K.

Messer, H.

J. Tabrikian, H. Messer, “Three-dimensional source localization in a waveguide,” IEEE Trans. Signal Process. 44, 1–13 (1996).
[CrossRef]

Rice, J. R.

Tabrikian, J.

J. Tabrikian, H. Messer, “Three-dimensional source localization in a waveguide,” IEEE Trans. Signal Process. 44, 1–13 (1996).
[CrossRef]

Ulrich, R.

R. Ulrich, “Polarization and birefringence effects,” in Optical Fiber Rotation Sensing, W. K. Burns, ed. (Academic, San Diego, Calif., 1994), pp. 31–80.

Zhao, Z. Q.

Appl. Opt.

IEEE Trans. Signal Process.

J. Tabrikian, H. Messer, “Three-dimensional source localization in a waveguide,” IEEE Trans. Signal Process. 44, 1–13 (1996).
[CrossRef]

J. Acoust. Soc. Am.

J. A. Bucaro, H. D. Dardy, “Fiber-optic hydrophone,” J. Acoust. Soc. Am. 62, 1302–1304 (1977).
[CrossRef]

J. Lightwave Technol.

Other

R. Ulrich, “Polarization and birefringence effects,” in Optical Fiber Rotation Sensing, W. K. Burns, ed. (Academic, San Diego, Calif., 1994), pp. 31–80.

G. B. Hocker, “Fiber-optic sensing of pressure and temperature,” in Selected Papers on Single-Mode Optical Fibers, A. Brozeit, K. D. Hinsch, R. S. Sirohi, eds. (Society for Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1994), pp. 440–443.

J. P. Cowan, Handbook of Environmental Acoustics (Van Nostrand, New York, 1994), p. 8.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Modified Mach–Zehnder interferometer. DFB, distributed feedback.

Fig. 2
Fig. 2

Relative locations of acoustic sensor and acoustic source.

Fig. 3
Fig. 3

Output signals for an acoustic source located at D 1 = 0.81 m and D 2 = 0.19 m.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

EtEr+i=1N Ei,
Ei=E0i exp-jϕi,
Er=E0r exp-jϕr,
Iir=2 i=1N EiEr cos θi cosϕi-ϕr,
Iij=2 i=1,j>iN EiEj cos θij cosϕi-ϕj.
Δϕi=nηkLiP,
η-1-2νE+n21-2ν2E2p12+p11,
P0t=Strectt, 0, T,
Pit=ξiSt-τirectt, τi, T+τi,

Metrics