Abstract

We present new vibrational (infrared) planar laser-induced fluorescence (PLIF) imaging techniques for CO2 that use a simple, inexpensive, high-pulse-energy transversely excited atmospheric CO2 laser to saturate a CO2 absorption transition at 10.6 µm. Strong excitation by use of a CO2 laser provides increased signal levels at flame temperatures and simplifies image interpretation. Because rotational energy transfer and intramodal vibrational energy transfer are fast, vibrational distributions can be approximated by use of a simple three-temperature model. Imaging results from a 425 K unsteady transverse CO2 jet and a laminar coflowing CO/H2 diffusion flame with temperatures near 1500 K are presented. If needed, temperature-insensitive signal levels can be generated with a two-laser technique. These results illustrate the potential for saturated infrared PLIF in a variety of flows.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. J. Kirby, R. K. Hanson, “Planar laser-induced fluorescence imaging of carbon monoxide using vibrational (infrared) transitions,” Appl. Phys. B 69, 505–507 (1999).
    [CrossRef]
  2. B. J. Kirby, R. K. Hanson, “Imaging of CO and CO2 using infrared planar laser-induced fluorescence,” Proc. Combust. Inst. 28, 253–259 (2000).
    [CrossRef]
  3. B. J. Kirby, R. K. Hanson, “Linear excitation schemes for infrared planar laser-induced fluorescence imaging of CO and CO2,” Appl. Opt. (2001) (to be published).
    [CrossRef]
  4. M. B. Long, D. C. Fourguette, M. C. Escoda, “Instantaneous Ramanography of a turbulent diffusion flame,” Opt. Lett. 8, 244–246 (1983).
    [CrossRef] [PubMed]
  5. J. M. Seitzman, J. Haumann, R. K. Hanson, “Quantitative two-photon LIF imaging of carbon monoxide in combustion gases,” Appl. Opt. 26, 2892–2899 (1987).
    [CrossRef] [PubMed]
  6. N. Georgiev, M. Aldén, “Two-dimensional imaging of flame species using two-photon laser-induced fluorescence,” Appl. Spectrosc. 51, 1229–1237 (1997).
    [CrossRef]
  7. G. Juhlin, H. Neij, M. Versluis, B. Johansson, M. Alden, “Planar laser-induced fluorescence of H2O to study the influence of residual gases on cycle-to-cycle variations in SI engines,” Combust. Sci. Technol. 132, 75–97 (1998).
    [CrossRef]
  8. L. S. Rothman, L. D. G. Young, “Infrared energy levels and intensities of carbon dioxide—II,” J. Quant. Spectrosc. Radiat. Transfer 25, 505–524 (1981).
    [CrossRef]
  9. G. Herzberg, Molecular Spectra and Molecular Structure II. Infrared and Raman Spectra of Polyatomic Molecules (Krieger, Malabar, Fla., 1945).
  10. W. G. Vincenti, C. H. Kruger, Introduction to Physical Gas Dynamics (Krieger, Malabar, Fla., 1965).
  11. F. Rachet, M. Margottin-Maclou, A. Henry, A. Valentin, Q-branch line mixing effects in the (2000)I ← 0110 and (1220)I ← 0110 bands of carbon dioxide perturbed by N2, O2, and Ar and in the 1310 ← 0000 and 1310 ← 0110 bands of pure nitrous oxide,” J. Mol. Spectrosc. 175, 315–326 (1996).
    [CrossRef]
  12. M. Margottin-Maclou, F. Rachet, C. Boulet, A. Henry, A. Valentin, Q-branch line mixing effects in the (2000)I ← 0110 and (1220)I ← 0110 bands of carbon dioxide,” J. Mol. Spectrosc. 172, 1–15 (1995).
  13. R. Rodrigues, Gh. Blanquet, J. Walrand, B. Khalil, R. Le Doucen, F. Thibault, J.-M. Hartmann, “Line-mixing effects in Q branches of CO2. I: Influence of parity in Δ ↔ Π bands,” J. Mol. Spectrosc. 186, 256–268 (1997).
    [CrossRef]
  14. B. Lavorel, G. Millot, R. Saint-Loup, H. Berger, L. Bonamy, J. Bonamy, D. Robert, “Study of collisional effects on band shapes of the ν1/2ν2 Fermi dyad in CO2 gas with stimulated Raman spectroscopy. I. Rotational and vibrational relaxation in the 2ν2 band,” J. Chem. Phys. 93, 2176–2184 (1990).
    [CrossRef]
  15. L. L. Strow, B. M. Gentry, “Rotational collisional narrowing in an infrared CO2Q-branch studied with a tunable diode laser,” J. Chem. Phys. 84, 1149–1156 (1986).
    [CrossRef]
  16. M. Margottin-Maclou, A. Henry, A. Valentin, “Line mixing in the Q-branches of the ν1 + ν2 band of nitrous oxide and of the (1110)I ← (0220) band of carbon dioxide,” J. Chem. Phys. 96, 1715–1723 (1992).
    [CrossRef]
  17. T. Huet, N. Lacome, A. Lévy, “Line mixing effects in the Q branch of the 1000 ← 0110 transition of CO2,” J. Mol. Spectrosc. 138, 141–161 (1989).
    [CrossRef]
  18. R. Berman, P. Duggan, P. M. Sinclair, A. D. May, J. R. Drummond, “Direct measurements of line-mixing coefficients in the ν1 + ν2Q branch of CO2,” J. Mol. Spectrosc. 182, 350–363 (1997).
    [CrossRef] [PubMed]
  19. J.-M. Hartmann, C. Boulet, “Line mixing and finite duration of collision effects in pure CO2 infrared spectra: fitting and scaling analysis,” J. Chem. Phys. 94, 6406–6419 (1991).
    [CrossRef]
  20. C. P. Rinsland, L. L. Strow, “Line mixing effects in solar occultation spectra of the lower stratosphere: measurements and comparisons with calculations for the 1932-cm-1 CO2Q branch,” Appl. Opt. 28, 457–464 (1989).
    [CrossRef] [PubMed]
  21. B. Gentry, L. L. Strow, “Line mixing in a N2-broadened CO2Q branch observed with a tunable diode laser,” J. Chem. Phys. 86, 5722–5730 (1987).
    [CrossRef]
  22. G. Millot, C. Roche, “State-to-state vibrational and rotational energy transfer in CO2 gas from time-resolved Raman-infrared double-resonance experiments,” J. Raman Spectrosc. 29, 313–320 (1998).
    [CrossRef]
  23. G. D. Billing, “Semiclassical calculation of energy transfer in polyatomic molecules. VII. Intra- and inter-molecular energy transfer in N2 + CO2,” Chem. Phys. 67, 35–47 (1982).
    [CrossRef]
  24. G. D. Billing, “Semiclassical calculation of energy transfer in polyatomic molecules. XI. Cross sections and rate constants for Ar + CO2,” Chem. Phys. 91, 327–339 (1984).
    [CrossRef]
  25. B. K. McMillin, J. L. Palmer, R. K. Hanson, “Temporally resolved, two-line fluorescence imaging of NO temperature in a transverse jet in a supersonic cross flow,” Appl. Opt. 32, 7532–7545 (1993).
    [CrossRef] [PubMed]

2000

B. J. Kirby, R. K. Hanson, “Imaging of CO and CO2 using infrared planar laser-induced fluorescence,” Proc. Combust. Inst. 28, 253–259 (2000).
[CrossRef]

1999

B. J. Kirby, R. K. Hanson, “Planar laser-induced fluorescence imaging of carbon monoxide using vibrational (infrared) transitions,” Appl. Phys. B 69, 505–507 (1999).
[CrossRef]

1998

G. Millot, C. Roche, “State-to-state vibrational and rotational energy transfer in CO2 gas from time-resolved Raman-infrared double-resonance experiments,” J. Raman Spectrosc. 29, 313–320 (1998).
[CrossRef]

G. Juhlin, H. Neij, M. Versluis, B. Johansson, M. Alden, “Planar laser-induced fluorescence of H2O to study the influence of residual gases on cycle-to-cycle variations in SI engines,” Combust. Sci. Technol. 132, 75–97 (1998).
[CrossRef]

1997

R. Rodrigues, Gh. Blanquet, J. Walrand, B. Khalil, R. Le Doucen, F. Thibault, J.-M. Hartmann, “Line-mixing effects in Q branches of CO2. I: Influence of parity in Δ ↔ Π bands,” J. Mol. Spectrosc. 186, 256–268 (1997).
[CrossRef]

R. Berman, P. Duggan, P. M. Sinclair, A. D. May, J. R. Drummond, “Direct measurements of line-mixing coefficients in the ν1 + ν2Q branch of CO2,” J. Mol. Spectrosc. 182, 350–363 (1997).
[CrossRef] [PubMed]

N. Georgiev, M. Aldén, “Two-dimensional imaging of flame species using two-photon laser-induced fluorescence,” Appl. Spectrosc. 51, 1229–1237 (1997).
[CrossRef]

1996

F. Rachet, M. Margottin-Maclou, A. Henry, A. Valentin, Q-branch line mixing effects in the (2000)I ← 0110 and (1220)I ← 0110 bands of carbon dioxide perturbed by N2, O2, and Ar and in the 1310 ← 0000 and 1310 ← 0110 bands of pure nitrous oxide,” J. Mol. Spectrosc. 175, 315–326 (1996).
[CrossRef]

1995

M. Margottin-Maclou, F. Rachet, C. Boulet, A. Henry, A. Valentin, Q-branch line mixing effects in the (2000)I ← 0110 and (1220)I ← 0110 bands of carbon dioxide,” J. Mol. Spectrosc. 172, 1–15 (1995).

1993

1992

M. Margottin-Maclou, A. Henry, A. Valentin, “Line mixing in the Q-branches of the ν1 + ν2 band of nitrous oxide and of the (1110)I ← (0220) band of carbon dioxide,” J. Chem. Phys. 96, 1715–1723 (1992).
[CrossRef]

1991

J.-M. Hartmann, C. Boulet, “Line mixing and finite duration of collision effects in pure CO2 infrared spectra: fitting and scaling analysis,” J. Chem. Phys. 94, 6406–6419 (1991).
[CrossRef]

1990

B. Lavorel, G. Millot, R. Saint-Loup, H. Berger, L. Bonamy, J. Bonamy, D. Robert, “Study of collisional effects on band shapes of the ν1/2ν2 Fermi dyad in CO2 gas with stimulated Raman spectroscopy. I. Rotational and vibrational relaxation in the 2ν2 band,” J. Chem. Phys. 93, 2176–2184 (1990).
[CrossRef]

1989

1987

J. M. Seitzman, J. Haumann, R. K. Hanson, “Quantitative two-photon LIF imaging of carbon monoxide in combustion gases,” Appl. Opt. 26, 2892–2899 (1987).
[CrossRef] [PubMed]

B. Gentry, L. L. Strow, “Line mixing in a N2-broadened CO2Q branch observed with a tunable diode laser,” J. Chem. Phys. 86, 5722–5730 (1987).
[CrossRef]

1986

L. L. Strow, B. M. Gentry, “Rotational collisional narrowing in an infrared CO2Q-branch studied with a tunable diode laser,” J. Chem. Phys. 84, 1149–1156 (1986).
[CrossRef]

1984

G. D. Billing, “Semiclassical calculation of energy transfer in polyatomic molecules. XI. Cross sections and rate constants for Ar + CO2,” Chem. Phys. 91, 327–339 (1984).
[CrossRef]

1983

1982

G. D. Billing, “Semiclassical calculation of energy transfer in polyatomic molecules. VII. Intra- and inter-molecular energy transfer in N2 + CO2,” Chem. Phys. 67, 35–47 (1982).
[CrossRef]

1981

L. S. Rothman, L. D. G. Young, “Infrared energy levels and intensities of carbon dioxide—II,” J. Quant. Spectrosc. Radiat. Transfer 25, 505–524 (1981).
[CrossRef]

Alden, M.

G. Juhlin, H. Neij, M. Versluis, B. Johansson, M. Alden, “Planar laser-induced fluorescence of H2O to study the influence of residual gases on cycle-to-cycle variations in SI engines,” Combust. Sci. Technol. 132, 75–97 (1998).
[CrossRef]

Aldén, M.

Berger, H.

B. Lavorel, G. Millot, R. Saint-Loup, H. Berger, L. Bonamy, J. Bonamy, D. Robert, “Study of collisional effects on band shapes of the ν1/2ν2 Fermi dyad in CO2 gas with stimulated Raman spectroscopy. I. Rotational and vibrational relaxation in the 2ν2 band,” J. Chem. Phys. 93, 2176–2184 (1990).
[CrossRef]

Berman, R.

R. Berman, P. Duggan, P. M. Sinclair, A. D. May, J. R. Drummond, “Direct measurements of line-mixing coefficients in the ν1 + ν2Q branch of CO2,” J. Mol. Spectrosc. 182, 350–363 (1997).
[CrossRef] [PubMed]

Billing, G. D.

G. D. Billing, “Semiclassical calculation of energy transfer in polyatomic molecules. XI. Cross sections and rate constants for Ar + CO2,” Chem. Phys. 91, 327–339 (1984).
[CrossRef]

G. D. Billing, “Semiclassical calculation of energy transfer in polyatomic molecules. VII. Intra- and inter-molecular energy transfer in N2 + CO2,” Chem. Phys. 67, 35–47 (1982).
[CrossRef]

Blanquet, Gh.

R. Rodrigues, Gh. Blanquet, J. Walrand, B. Khalil, R. Le Doucen, F. Thibault, J.-M. Hartmann, “Line-mixing effects in Q branches of CO2. I: Influence of parity in Δ ↔ Π bands,” J. Mol. Spectrosc. 186, 256–268 (1997).
[CrossRef]

Bonamy, J.

B. Lavorel, G. Millot, R. Saint-Loup, H. Berger, L. Bonamy, J. Bonamy, D. Robert, “Study of collisional effects on band shapes of the ν1/2ν2 Fermi dyad in CO2 gas with stimulated Raman spectroscopy. I. Rotational and vibrational relaxation in the 2ν2 band,” J. Chem. Phys. 93, 2176–2184 (1990).
[CrossRef]

Bonamy, L.

B. Lavorel, G. Millot, R. Saint-Loup, H. Berger, L. Bonamy, J. Bonamy, D. Robert, “Study of collisional effects on band shapes of the ν1/2ν2 Fermi dyad in CO2 gas with stimulated Raman spectroscopy. I. Rotational and vibrational relaxation in the 2ν2 band,” J. Chem. Phys. 93, 2176–2184 (1990).
[CrossRef]

Boulet, C.

M. Margottin-Maclou, F. Rachet, C. Boulet, A. Henry, A. Valentin, Q-branch line mixing effects in the (2000)I ← 0110 and (1220)I ← 0110 bands of carbon dioxide,” J. Mol. Spectrosc. 172, 1–15 (1995).

J.-M. Hartmann, C. Boulet, “Line mixing and finite duration of collision effects in pure CO2 infrared spectra: fitting and scaling analysis,” J. Chem. Phys. 94, 6406–6419 (1991).
[CrossRef]

Drummond, J. R.

R. Berman, P. Duggan, P. M. Sinclair, A. D. May, J. R. Drummond, “Direct measurements of line-mixing coefficients in the ν1 + ν2Q branch of CO2,” J. Mol. Spectrosc. 182, 350–363 (1997).
[CrossRef] [PubMed]

Duggan, P.

R. Berman, P. Duggan, P. M. Sinclair, A. D. May, J. R. Drummond, “Direct measurements of line-mixing coefficients in the ν1 + ν2Q branch of CO2,” J. Mol. Spectrosc. 182, 350–363 (1997).
[CrossRef] [PubMed]

Escoda, M. C.

Fourguette, D. C.

Gentry, B.

B. Gentry, L. L. Strow, “Line mixing in a N2-broadened CO2Q branch observed with a tunable diode laser,” J. Chem. Phys. 86, 5722–5730 (1987).
[CrossRef]

Gentry, B. M.

L. L. Strow, B. M. Gentry, “Rotational collisional narrowing in an infrared CO2Q-branch studied with a tunable diode laser,” J. Chem. Phys. 84, 1149–1156 (1986).
[CrossRef]

Georgiev, N.

Hanson, R. K.

B. J. Kirby, R. K. Hanson, “Imaging of CO and CO2 using infrared planar laser-induced fluorescence,” Proc. Combust. Inst. 28, 253–259 (2000).
[CrossRef]

B. J. Kirby, R. K. Hanson, “Planar laser-induced fluorescence imaging of carbon monoxide using vibrational (infrared) transitions,” Appl. Phys. B 69, 505–507 (1999).
[CrossRef]

B. K. McMillin, J. L. Palmer, R. K. Hanson, “Temporally resolved, two-line fluorescence imaging of NO temperature in a transverse jet in a supersonic cross flow,” Appl. Opt. 32, 7532–7545 (1993).
[CrossRef] [PubMed]

J. M. Seitzman, J. Haumann, R. K. Hanson, “Quantitative two-photon LIF imaging of carbon monoxide in combustion gases,” Appl. Opt. 26, 2892–2899 (1987).
[CrossRef] [PubMed]

B. J. Kirby, R. K. Hanson, “Linear excitation schemes for infrared planar laser-induced fluorescence imaging of CO and CO2,” Appl. Opt. (2001) (to be published).
[CrossRef]

Hartmann, J.-M.

R. Rodrigues, Gh. Blanquet, J. Walrand, B. Khalil, R. Le Doucen, F. Thibault, J.-M. Hartmann, “Line-mixing effects in Q branches of CO2. I: Influence of parity in Δ ↔ Π bands,” J. Mol. Spectrosc. 186, 256–268 (1997).
[CrossRef]

J.-M. Hartmann, C. Boulet, “Line mixing and finite duration of collision effects in pure CO2 infrared spectra: fitting and scaling analysis,” J. Chem. Phys. 94, 6406–6419 (1991).
[CrossRef]

Haumann, J.

Henry, A.

F. Rachet, M. Margottin-Maclou, A. Henry, A. Valentin, Q-branch line mixing effects in the (2000)I ← 0110 and (1220)I ← 0110 bands of carbon dioxide perturbed by N2, O2, and Ar and in the 1310 ← 0000 and 1310 ← 0110 bands of pure nitrous oxide,” J. Mol. Spectrosc. 175, 315–326 (1996).
[CrossRef]

M. Margottin-Maclou, F. Rachet, C. Boulet, A. Henry, A. Valentin, Q-branch line mixing effects in the (2000)I ← 0110 and (1220)I ← 0110 bands of carbon dioxide,” J. Mol. Spectrosc. 172, 1–15 (1995).

M. Margottin-Maclou, A. Henry, A. Valentin, “Line mixing in the Q-branches of the ν1 + ν2 band of nitrous oxide and of the (1110)I ← (0220) band of carbon dioxide,” J. Chem. Phys. 96, 1715–1723 (1992).
[CrossRef]

Herzberg, G.

G. Herzberg, Molecular Spectra and Molecular Structure II. Infrared and Raman Spectra of Polyatomic Molecules (Krieger, Malabar, Fla., 1945).

Huet, T.

T. Huet, N. Lacome, A. Lévy, “Line mixing effects in the Q branch of the 1000 ← 0110 transition of CO2,” J. Mol. Spectrosc. 138, 141–161 (1989).
[CrossRef]

Johansson, B.

G. Juhlin, H. Neij, M. Versluis, B. Johansson, M. Alden, “Planar laser-induced fluorescence of H2O to study the influence of residual gases on cycle-to-cycle variations in SI engines,” Combust. Sci. Technol. 132, 75–97 (1998).
[CrossRef]

Juhlin, G.

G. Juhlin, H. Neij, M. Versluis, B. Johansson, M. Alden, “Planar laser-induced fluorescence of H2O to study the influence of residual gases on cycle-to-cycle variations in SI engines,” Combust. Sci. Technol. 132, 75–97 (1998).
[CrossRef]

Khalil, B.

R. Rodrigues, Gh. Blanquet, J. Walrand, B. Khalil, R. Le Doucen, F. Thibault, J.-M. Hartmann, “Line-mixing effects in Q branches of CO2. I: Influence of parity in Δ ↔ Π bands,” J. Mol. Spectrosc. 186, 256–268 (1997).
[CrossRef]

Kirby, B. J.

B. J. Kirby, R. K. Hanson, “Imaging of CO and CO2 using infrared planar laser-induced fluorescence,” Proc. Combust. Inst. 28, 253–259 (2000).
[CrossRef]

B. J. Kirby, R. K. Hanson, “Planar laser-induced fluorescence imaging of carbon monoxide using vibrational (infrared) transitions,” Appl. Phys. B 69, 505–507 (1999).
[CrossRef]

B. J. Kirby, R. K. Hanson, “Linear excitation schemes for infrared planar laser-induced fluorescence imaging of CO and CO2,” Appl. Opt. (2001) (to be published).
[CrossRef]

Kruger, C. H.

W. G. Vincenti, C. H. Kruger, Introduction to Physical Gas Dynamics (Krieger, Malabar, Fla., 1965).

Lacome, N.

T. Huet, N. Lacome, A. Lévy, “Line mixing effects in the Q branch of the 1000 ← 0110 transition of CO2,” J. Mol. Spectrosc. 138, 141–161 (1989).
[CrossRef]

Lavorel, B.

B. Lavorel, G. Millot, R. Saint-Loup, H. Berger, L. Bonamy, J. Bonamy, D. Robert, “Study of collisional effects on band shapes of the ν1/2ν2 Fermi dyad in CO2 gas with stimulated Raman spectroscopy. I. Rotational and vibrational relaxation in the 2ν2 band,” J. Chem. Phys. 93, 2176–2184 (1990).
[CrossRef]

Le Doucen, R.

R. Rodrigues, Gh. Blanquet, J. Walrand, B. Khalil, R. Le Doucen, F. Thibault, J.-M. Hartmann, “Line-mixing effects in Q branches of CO2. I: Influence of parity in Δ ↔ Π bands,” J. Mol. Spectrosc. 186, 256–268 (1997).
[CrossRef]

Lévy, A.

T. Huet, N. Lacome, A. Lévy, “Line mixing effects in the Q branch of the 1000 ← 0110 transition of CO2,” J. Mol. Spectrosc. 138, 141–161 (1989).
[CrossRef]

Long, M. B.

Margottin-Maclou, M.

F. Rachet, M. Margottin-Maclou, A. Henry, A. Valentin, Q-branch line mixing effects in the (2000)I ← 0110 and (1220)I ← 0110 bands of carbon dioxide perturbed by N2, O2, and Ar and in the 1310 ← 0000 and 1310 ← 0110 bands of pure nitrous oxide,” J. Mol. Spectrosc. 175, 315–326 (1996).
[CrossRef]

M. Margottin-Maclou, F. Rachet, C. Boulet, A. Henry, A. Valentin, Q-branch line mixing effects in the (2000)I ← 0110 and (1220)I ← 0110 bands of carbon dioxide,” J. Mol. Spectrosc. 172, 1–15 (1995).

M. Margottin-Maclou, A. Henry, A. Valentin, “Line mixing in the Q-branches of the ν1 + ν2 band of nitrous oxide and of the (1110)I ← (0220) band of carbon dioxide,” J. Chem. Phys. 96, 1715–1723 (1992).
[CrossRef]

May, A. D.

R. Berman, P. Duggan, P. M. Sinclair, A. D. May, J. R. Drummond, “Direct measurements of line-mixing coefficients in the ν1 + ν2Q branch of CO2,” J. Mol. Spectrosc. 182, 350–363 (1997).
[CrossRef] [PubMed]

McMillin, B. K.

Millot, G.

G. Millot, C. Roche, “State-to-state vibrational and rotational energy transfer in CO2 gas from time-resolved Raman-infrared double-resonance experiments,” J. Raman Spectrosc. 29, 313–320 (1998).
[CrossRef]

B. Lavorel, G. Millot, R. Saint-Loup, H. Berger, L. Bonamy, J. Bonamy, D. Robert, “Study of collisional effects on band shapes of the ν1/2ν2 Fermi dyad in CO2 gas with stimulated Raman spectroscopy. I. Rotational and vibrational relaxation in the 2ν2 band,” J. Chem. Phys. 93, 2176–2184 (1990).
[CrossRef]

Neij, H.

G. Juhlin, H. Neij, M. Versluis, B. Johansson, M. Alden, “Planar laser-induced fluorescence of H2O to study the influence of residual gases on cycle-to-cycle variations in SI engines,” Combust. Sci. Technol. 132, 75–97 (1998).
[CrossRef]

Palmer, J. L.

Rachet, F.

F. Rachet, M. Margottin-Maclou, A. Henry, A. Valentin, Q-branch line mixing effects in the (2000)I ← 0110 and (1220)I ← 0110 bands of carbon dioxide perturbed by N2, O2, and Ar and in the 1310 ← 0000 and 1310 ← 0110 bands of pure nitrous oxide,” J. Mol. Spectrosc. 175, 315–326 (1996).
[CrossRef]

M. Margottin-Maclou, F. Rachet, C. Boulet, A. Henry, A. Valentin, Q-branch line mixing effects in the (2000)I ← 0110 and (1220)I ← 0110 bands of carbon dioxide,” J. Mol. Spectrosc. 172, 1–15 (1995).

Rinsland, C. P.

Robert, D.

B. Lavorel, G. Millot, R. Saint-Loup, H. Berger, L. Bonamy, J. Bonamy, D. Robert, “Study of collisional effects on band shapes of the ν1/2ν2 Fermi dyad in CO2 gas with stimulated Raman spectroscopy. I. Rotational and vibrational relaxation in the 2ν2 band,” J. Chem. Phys. 93, 2176–2184 (1990).
[CrossRef]

Roche, C.

G. Millot, C. Roche, “State-to-state vibrational and rotational energy transfer in CO2 gas from time-resolved Raman-infrared double-resonance experiments,” J. Raman Spectrosc. 29, 313–320 (1998).
[CrossRef]

Rodrigues, R.

R. Rodrigues, Gh. Blanquet, J. Walrand, B. Khalil, R. Le Doucen, F. Thibault, J.-M. Hartmann, “Line-mixing effects in Q branches of CO2. I: Influence of parity in Δ ↔ Π bands,” J. Mol. Spectrosc. 186, 256–268 (1997).
[CrossRef]

Rothman, L. S.

L. S. Rothman, L. D. G. Young, “Infrared energy levels and intensities of carbon dioxide—II,” J. Quant. Spectrosc. Radiat. Transfer 25, 505–524 (1981).
[CrossRef]

Saint-Loup, R.

B. Lavorel, G. Millot, R. Saint-Loup, H. Berger, L. Bonamy, J. Bonamy, D. Robert, “Study of collisional effects on band shapes of the ν1/2ν2 Fermi dyad in CO2 gas with stimulated Raman spectroscopy. I. Rotational and vibrational relaxation in the 2ν2 band,” J. Chem. Phys. 93, 2176–2184 (1990).
[CrossRef]

Seitzman, J. M.

Sinclair, P. M.

R. Berman, P. Duggan, P. M. Sinclair, A. D. May, J. R. Drummond, “Direct measurements of line-mixing coefficients in the ν1 + ν2Q branch of CO2,” J. Mol. Spectrosc. 182, 350–363 (1997).
[CrossRef] [PubMed]

Strow, L. L.

C. P. Rinsland, L. L. Strow, “Line mixing effects in solar occultation spectra of the lower stratosphere: measurements and comparisons with calculations for the 1932-cm-1 CO2Q branch,” Appl. Opt. 28, 457–464 (1989).
[CrossRef] [PubMed]

B. Gentry, L. L. Strow, “Line mixing in a N2-broadened CO2Q branch observed with a tunable diode laser,” J. Chem. Phys. 86, 5722–5730 (1987).
[CrossRef]

L. L. Strow, B. M. Gentry, “Rotational collisional narrowing in an infrared CO2Q-branch studied with a tunable diode laser,” J. Chem. Phys. 84, 1149–1156 (1986).
[CrossRef]

Thibault, F.

R. Rodrigues, Gh. Blanquet, J. Walrand, B. Khalil, R. Le Doucen, F. Thibault, J.-M. Hartmann, “Line-mixing effects in Q branches of CO2. I: Influence of parity in Δ ↔ Π bands,” J. Mol. Spectrosc. 186, 256–268 (1997).
[CrossRef]

Valentin, A.

F. Rachet, M. Margottin-Maclou, A. Henry, A. Valentin, Q-branch line mixing effects in the (2000)I ← 0110 and (1220)I ← 0110 bands of carbon dioxide perturbed by N2, O2, and Ar and in the 1310 ← 0000 and 1310 ← 0110 bands of pure nitrous oxide,” J. Mol. Spectrosc. 175, 315–326 (1996).
[CrossRef]

M. Margottin-Maclou, F. Rachet, C. Boulet, A. Henry, A. Valentin, Q-branch line mixing effects in the (2000)I ← 0110 and (1220)I ← 0110 bands of carbon dioxide,” J. Mol. Spectrosc. 172, 1–15 (1995).

M. Margottin-Maclou, A. Henry, A. Valentin, “Line mixing in the Q-branches of the ν1 + ν2 band of nitrous oxide and of the (1110)I ← (0220) band of carbon dioxide,” J. Chem. Phys. 96, 1715–1723 (1992).
[CrossRef]

Versluis, M.

G. Juhlin, H. Neij, M. Versluis, B. Johansson, M. Alden, “Planar laser-induced fluorescence of H2O to study the influence of residual gases on cycle-to-cycle variations in SI engines,” Combust. Sci. Technol. 132, 75–97 (1998).
[CrossRef]

Vincenti, W. G.

W. G. Vincenti, C. H. Kruger, Introduction to Physical Gas Dynamics (Krieger, Malabar, Fla., 1965).

Walrand, J.

R. Rodrigues, Gh. Blanquet, J. Walrand, B. Khalil, R. Le Doucen, F. Thibault, J.-M. Hartmann, “Line-mixing effects in Q branches of CO2. I: Influence of parity in Δ ↔ Π bands,” J. Mol. Spectrosc. 186, 256–268 (1997).
[CrossRef]

Young, L. D. G.

L. S. Rothman, L. D. G. Young, “Infrared energy levels and intensities of carbon dioxide—II,” J. Quant. Spectrosc. Radiat. Transfer 25, 505–524 (1981).
[CrossRef]

Appl. Opt.

Appl. Phys. B

B. J. Kirby, R. K. Hanson, “Planar laser-induced fluorescence imaging of carbon monoxide using vibrational (infrared) transitions,” Appl. Phys. B 69, 505–507 (1999).
[CrossRef]

Appl. Spectrosc.

Chem. Phys.

G. D. Billing, “Semiclassical calculation of energy transfer in polyatomic molecules. VII. Intra- and inter-molecular energy transfer in N2 + CO2,” Chem. Phys. 67, 35–47 (1982).
[CrossRef]

G. D. Billing, “Semiclassical calculation of energy transfer in polyatomic molecules. XI. Cross sections and rate constants for Ar + CO2,” Chem. Phys. 91, 327–339 (1984).
[CrossRef]

Combust. Sci. Technol.

G. Juhlin, H. Neij, M. Versluis, B. Johansson, M. Alden, “Planar laser-induced fluorescence of H2O to study the influence of residual gases on cycle-to-cycle variations in SI engines,” Combust. Sci. Technol. 132, 75–97 (1998).
[CrossRef]

J. Chem. Phys.

B. Lavorel, G. Millot, R. Saint-Loup, H. Berger, L. Bonamy, J. Bonamy, D. Robert, “Study of collisional effects on band shapes of the ν1/2ν2 Fermi dyad in CO2 gas with stimulated Raman spectroscopy. I. Rotational and vibrational relaxation in the 2ν2 band,” J. Chem. Phys. 93, 2176–2184 (1990).
[CrossRef]

L. L. Strow, B. M. Gentry, “Rotational collisional narrowing in an infrared CO2Q-branch studied with a tunable diode laser,” J. Chem. Phys. 84, 1149–1156 (1986).
[CrossRef]

M. Margottin-Maclou, A. Henry, A. Valentin, “Line mixing in the Q-branches of the ν1 + ν2 band of nitrous oxide and of the (1110)I ← (0220) band of carbon dioxide,” J. Chem. Phys. 96, 1715–1723 (1992).
[CrossRef]

B. Gentry, L. L. Strow, “Line mixing in a N2-broadened CO2Q branch observed with a tunable diode laser,” J. Chem. Phys. 86, 5722–5730 (1987).
[CrossRef]

J.-M. Hartmann, C. Boulet, “Line mixing and finite duration of collision effects in pure CO2 infrared spectra: fitting and scaling analysis,” J. Chem. Phys. 94, 6406–6419 (1991).
[CrossRef]

J. Mol. Spectrosc.

F. Rachet, M. Margottin-Maclou, A. Henry, A. Valentin, Q-branch line mixing effects in the (2000)I ← 0110 and (1220)I ← 0110 bands of carbon dioxide perturbed by N2, O2, and Ar and in the 1310 ← 0000 and 1310 ← 0110 bands of pure nitrous oxide,” J. Mol. Spectrosc. 175, 315–326 (1996).
[CrossRef]

M. Margottin-Maclou, F. Rachet, C. Boulet, A. Henry, A. Valentin, Q-branch line mixing effects in the (2000)I ← 0110 and (1220)I ← 0110 bands of carbon dioxide,” J. Mol. Spectrosc. 172, 1–15 (1995).

R. Rodrigues, Gh. Blanquet, J. Walrand, B. Khalil, R. Le Doucen, F. Thibault, J.-M. Hartmann, “Line-mixing effects in Q branches of CO2. I: Influence of parity in Δ ↔ Π bands,” J. Mol. Spectrosc. 186, 256–268 (1997).
[CrossRef]

T. Huet, N. Lacome, A. Lévy, “Line mixing effects in the Q branch of the 1000 ← 0110 transition of CO2,” J. Mol. Spectrosc. 138, 141–161 (1989).
[CrossRef]

R. Berman, P. Duggan, P. M. Sinclair, A. D. May, J. R. Drummond, “Direct measurements of line-mixing coefficients in the ν1 + ν2Q branch of CO2,” J. Mol. Spectrosc. 182, 350–363 (1997).
[CrossRef] [PubMed]

J. Quant. Spectrosc. Radiat. Transfer

L. S. Rothman, L. D. G. Young, “Infrared energy levels and intensities of carbon dioxide—II,” J. Quant. Spectrosc. Radiat. Transfer 25, 505–524 (1981).
[CrossRef]

J. Raman Spectrosc.

G. Millot, C. Roche, “State-to-state vibrational and rotational energy transfer in CO2 gas from time-resolved Raman-infrared double-resonance experiments,” J. Raman Spectrosc. 29, 313–320 (1998).
[CrossRef]

Opt. Lett.

Proc. Combust. Inst.

B. J. Kirby, R. K. Hanson, “Imaging of CO and CO2 using infrared planar laser-induced fluorescence,” Proc. Combust. Inst. 28, 253–259 (2000).
[CrossRef]

Other

B. J. Kirby, R. K. Hanson, “Linear excitation schemes for infrared planar laser-induced fluorescence imaging of CO and CO2,” Appl. Opt. (2001) (to be published).
[CrossRef]

G. Herzberg, Molecular Spectra and Molecular Structure II. Infrared and Raman Spectra of Polyatomic Molecules (Krieger, Malabar, Fla., 1945).

W. G. Vincenti, C. H. Kruger, Introduction to Physical Gas Dynamics (Krieger, Malabar, Fla., 1965).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Vibrational manifold showing energy-transfer processes for CO2 during and after laser excitation at 10.6 µm on the P(20) line of the 0001 ← 1000I transition. Notation to the right of each state follows the convention of Ref. 8 and notation to the left of each state follows the convention of Ref. 9. k inter corresponds to the characteristic rate of intermodal energy-transfer processes that equilibrate ν 3 with the other modes; k intra corresponds to the characteristic rate of intramodal energy-transfer processes that equilibrate ν 1 and ν 2 alone. k RET is the rate at which the lower and upper rotational states of the laser transition equilibrate with the rotational bath.

Fig. 2
Fig. 2

Important energy-transfer rates as a function of temperature for CO2. We calculated k laser assuming dE/dt = 2.5 × 106 J/s and sheet dimensions of 500 µm × 4 cm. For the line-shape convolution integral, the laser was modeled as a 300-MHz Gaussian.

Fig. 3
Fig. 3

Predictions of the three-temperature model for the laser-pumped ν 3 mode temperature [T 3*, (K)] and the fluorescence yield [ψsat, (photons per million CO2 molecules)] as a function of initial temperature.

Fig. 4
Fig. 4

Comparison of LIF signal levels at a constant CO2 mole fraction as predicted by the three-temperature (3-T) model and a detailed rate equation model. For the detailed model, results are shown for both 1 J/cm2 (corresponding to typical PLIF experiments) and infinite fluences.

Fig. 5
Fig. 5

IR LIF signal normalized by CO2 mole fraction for saturated excitation of CO2. Effect of (a) CO2 and (b) H2O mole fractions.

Fig. 6
Fig. 6

Experimental setup for saturated IR PLIF measurements.

Fig. 7
Fig. 7

CO2 IR PLIF imaging of an unsteady transverse 425 K CO2 jet in an air coflow.

Fig. 8
Fig. 8

CO2 IR PLIF imaging in a CO/H2 flame. (a) Flame schematic, (b) single-shot image, (c) 36-frame average. Images are cropped horizontally.

Fig. 9
Fig. 9

Combined OPO–CO2 laser excitation scheme. (a) Excitation steps shown on an energy-level diagram, (b) excitation steps shown on a timing diagram.

Fig. 10
Fig. 10

LIF signal at constant CO2 mole fraction as a function of temperature for two excitation schemes. Comparison of calculations with measured results. CO2 laser excitation is employed in the saturated regime. OPO excitation uses fluence of 20 mJ/cm2 on the R(30) line of the 2001II ← 0000 transition. CO2 laser fluence of 10 J/cm2 is used, although excitation is insensitive to this value. Experimental results are relative, and a single normalization parameter is used to match both experimental sets to the calculation.

Equations (27)

Equations on this page are rendered with MathJax. Learn more.

Sf=0τ tdtηc.
Sf=j0τ ΔNjtAjdtηc.
Np,abs=Np,incnabsσl,
ϕlin=j0τΔNjtNp,abs Ajdt.
Sf,lin=Np,incnabsσlϕlinηc.
ψsat=j0τΔNjtnabsV Ajdt.
Sf,sat=ψsatnabsVηc.
Sf,sat=ψsatT χabsPVkB ηc.
klaser=dNdtσAL,
kRETj=1ji kij=2πcνci.
CO2v, i+MkijCO2v, j+M.
Avv-1=vA,
Aavg=vNvN Avv-1=vNvN vA.
e=kBvΘ,
evib=vNvN kBvΘ.
Aavg=AevibkBΘ.
evib=kBΘexpΘ/Tvib-1.
Aavg=A1expΘ/Tvib-1.
ψsat=Aavg,T3*-Aavg,Tτ.
ψsat=Aτ1expΘ3/T3*-1-1expΘ3/T-1.
f1000I=exp-Θ1/T1*Qvib,
f0001=exp-Θ3/T3*Qvib.
evib*=evib+Np,absN kBΘ3-Θ1,
Np,absN kBΘ3=kBΘ3expΘ3/T3*-1-kBΘ3expΘ3/T-1.
evib=kBΘ1expΘ1/T1-1+2kBΘ2expΘ2/T2-1+kBΘ3expΘ3/T3-1,
evib*=kBΘ1expΘ1/T1*-1+2kBΘ2expΘ2/T2*-1+kBΘ3expΘ3/T3*-1.
Θ1expΘ1/T-1+2Θ2expΘ2/T-1+Θ1expΘ3/T-1=Θ1expΘ3/T3*-1+2Θ2expΘ3Θ2/Θ1T3*-1+Θ1expΘ3/T3*-1.

Metrics