Abstract

We examine backscattering by analyzing large nonspherical particles with flat surfaces for which where the size is much larger than the wavelength, using ray optics and diffraction theory. We show that the backscattering cross section for rectangles can be 1 order of magnitude larger than that for spheres with same geometrical cross sections, depending on the orientation of the particles. Then we show that there is a difficulty in estimating the backscattering cross section for hexagonal columns with the available solutions but that it is possible to estimate the integration of the differential scattering cross section over small solid angles in backward directions. The integral values for hexagonal columns are found to be more than 1 order of magnitude larger than that for spheres with the same volume. As an application, the use of power from hexagonal columns for lidar observations is analyzed. Unlike for spherical particles with their dependence on Z-2 (where Z is the distance between the particle and the detector), for nonspherical particles such dependence varies with the particles’ nonsphericity, such as shape and orientation: Z0 for a hexagonal plate randomly oriented in the horizontal plane; Z-1 for a hexagonal column randomly oriented in the horizontal plane.

© 2001 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Murayama, H. Okamoto, N. Kaneyasu, H. Kamataki, K. Miura, “Application of lidar depolarization measurement in the atmospheric boundary layer: effects of dust and sea-salt particles,” J. Geophys. Res. 104, 31,781–31,792 (1999).
    [CrossRef]
  2. K. Sassen, C. Hsueh, “Contrail properties derived from high-resolution polarization lidar studies during SUCCESS,” Geophys. Res. Lett. 25, 1165–1168 (1998).
    [CrossRef]
  3. J. D. Sphinhirne, S. Chudamani, J. F. Cavanaugh, J. L. Bufton, “Aerosol and cloud backscatter at 1.06, 1.54, and 0.53 µm by airborne hard-target-calibrated Nd:YAG/methane Raman lidar,” Appl. Opt. 36, 3475–3490 (1997).
    [CrossRef]
  4. F. G. Fernald, B. M. Herman, J. A. Reagan, “Determination of aerosol height distributions by lidar,” J. Appl. Meteorol. 11, 482–489 (1972).
    [CrossRef]
  5. J. D. Klett, “Stable analytical inversion solution for processing lidar returns,” Appl. Opt. 20, 211–220 (1981).
    [CrossRef] [PubMed]
  6. C. M. Platt, “Lidar backscatter from horizontal ice crystal plates,” J. Appl. Meteorol. 17, 482–488 (1978).
    [CrossRef]
  7. C. M. Platt, N. L. Abshire, G. T. McNice, “Some microphysical properties of an ice cloud from lidar observation of horizontally oriented crystals,” J. Appl. Meteorol. 17, 1220–1224 (1978).
    [CrossRef]
  8. M. I. Mishchenko, D. J. Wielaard, B. E. Calson, “T-matrix computations of zenith-enhanced lidar backscatter from horizontally oriented ice plates,” Geophys. Res. Lett. 24, 771–774 (1997).
    [CrossRef]
  9. D. M. Winker, R. H. Couch, M. P. McCormick, “An overview of LITE: NASA’s Lidar In-space Technology Experiment,” Proc. IEEE 84, 164–180 (1996).
    [CrossRef]
  10. Y. Takano, K. N. Liou, “Solar radiative transfer in cirrus clouds. I. Single-scattering and optical properties of hexagonal ice crystals,” J. Atmos. Sci. 46, 3–19 (1989).
    [CrossRef]
  11. A. Macke, J. Mueller, E. Raschke, “Single scattering properties of atmospheric ice crystals,” J. Atmos. Sci. 53, 2813–2825 (1996).
    [CrossRef]
  12. M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1975).
  13. J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1983).
  14. C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  15. A. Ono, “The shape and riming properties of ice crystals in natural clouds,” J. Atmos. Sci. 26, 138–147 (1969).
    [CrossRef]
  16. S. G. Warren, “Optical constants of ice from the ultraviolet to the microwave,” Appl. Opt. 23, 1206–1225 (1984).
    [CrossRef] [PubMed]
  17. F. G. Fernald, “Analysis of atmospheric lidar observations: some comments,” Appl. Opt. 23, 652–653 (1984).
    [CrossRef] [PubMed]
  18. G. L. Stephanes, Remote Sensing of the Lower Atmosphere (Oxford U. Press, New York, 1994), pp. 427–438.

1999 (1)

T. Murayama, H. Okamoto, N. Kaneyasu, H. Kamataki, K. Miura, “Application of lidar depolarization measurement in the atmospheric boundary layer: effects of dust and sea-salt particles,” J. Geophys. Res. 104, 31,781–31,792 (1999).
[CrossRef]

1998 (1)

K. Sassen, C. Hsueh, “Contrail properties derived from high-resolution polarization lidar studies during SUCCESS,” Geophys. Res. Lett. 25, 1165–1168 (1998).
[CrossRef]

1997 (2)

M. I. Mishchenko, D. J. Wielaard, B. E. Calson, “T-matrix computations of zenith-enhanced lidar backscatter from horizontally oriented ice plates,” Geophys. Res. Lett. 24, 771–774 (1997).
[CrossRef]

J. D. Sphinhirne, S. Chudamani, J. F. Cavanaugh, J. L. Bufton, “Aerosol and cloud backscatter at 1.06, 1.54, and 0.53 µm by airborne hard-target-calibrated Nd:YAG/methane Raman lidar,” Appl. Opt. 36, 3475–3490 (1997).
[CrossRef]

1996 (2)

D. M. Winker, R. H. Couch, M. P. McCormick, “An overview of LITE: NASA’s Lidar In-space Technology Experiment,” Proc. IEEE 84, 164–180 (1996).
[CrossRef]

A. Macke, J. Mueller, E. Raschke, “Single scattering properties of atmospheric ice crystals,” J. Atmos. Sci. 53, 2813–2825 (1996).
[CrossRef]

1989 (1)

Y. Takano, K. N. Liou, “Solar radiative transfer in cirrus clouds. I. Single-scattering and optical properties of hexagonal ice crystals,” J. Atmos. Sci. 46, 3–19 (1989).
[CrossRef]

1984 (2)

1981 (1)

1978 (2)

C. M. Platt, “Lidar backscatter from horizontal ice crystal plates,” J. Appl. Meteorol. 17, 482–488 (1978).
[CrossRef]

C. M. Platt, N. L. Abshire, G. T. McNice, “Some microphysical properties of an ice cloud from lidar observation of horizontally oriented crystals,” J. Appl. Meteorol. 17, 1220–1224 (1978).
[CrossRef]

1972 (1)

F. G. Fernald, B. M. Herman, J. A. Reagan, “Determination of aerosol height distributions by lidar,” J. Appl. Meteorol. 11, 482–489 (1972).
[CrossRef]

1969 (1)

A. Ono, “The shape and riming properties of ice crystals in natural clouds,” J. Atmos. Sci. 26, 138–147 (1969).
[CrossRef]

Abshire, N. L.

C. M. Platt, N. L. Abshire, G. T. McNice, “Some microphysical properties of an ice cloud from lidar observation of horizontally oriented crystals,” J. Appl. Meteorol. 17, 1220–1224 (1978).
[CrossRef]

Bohren, C. F.

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1975).

Bufton, J. L.

Calson, B. E.

M. I. Mishchenko, D. J. Wielaard, B. E. Calson, “T-matrix computations of zenith-enhanced lidar backscatter from horizontally oriented ice plates,” Geophys. Res. Lett. 24, 771–774 (1997).
[CrossRef]

Cavanaugh, J. F.

Chudamani, S.

Couch, R. H.

D. M. Winker, R. H. Couch, M. P. McCormick, “An overview of LITE: NASA’s Lidar In-space Technology Experiment,” Proc. IEEE 84, 164–180 (1996).
[CrossRef]

Fernald, F. G.

F. G. Fernald, “Analysis of atmospheric lidar observations: some comments,” Appl. Opt. 23, 652–653 (1984).
[CrossRef] [PubMed]

F. G. Fernald, B. M. Herman, J. A. Reagan, “Determination of aerosol height distributions by lidar,” J. Appl. Meteorol. 11, 482–489 (1972).
[CrossRef]

Herman, B. M.

F. G. Fernald, B. M. Herman, J. A. Reagan, “Determination of aerosol height distributions by lidar,” J. Appl. Meteorol. 11, 482–489 (1972).
[CrossRef]

Hsueh, C.

K. Sassen, C. Hsueh, “Contrail properties derived from high-resolution polarization lidar studies during SUCCESS,” Geophys. Res. Lett. 25, 1165–1168 (1998).
[CrossRef]

Huffman, D. R.

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1983).

Kamataki, H.

T. Murayama, H. Okamoto, N. Kaneyasu, H. Kamataki, K. Miura, “Application of lidar depolarization measurement in the atmospheric boundary layer: effects of dust and sea-salt particles,” J. Geophys. Res. 104, 31,781–31,792 (1999).
[CrossRef]

Kaneyasu, N.

T. Murayama, H. Okamoto, N. Kaneyasu, H. Kamataki, K. Miura, “Application of lidar depolarization measurement in the atmospheric boundary layer: effects of dust and sea-salt particles,” J. Geophys. Res. 104, 31,781–31,792 (1999).
[CrossRef]

Klett, J. D.

Liou, K. N.

Y. Takano, K. N. Liou, “Solar radiative transfer in cirrus clouds. I. Single-scattering and optical properties of hexagonal ice crystals,” J. Atmos. Sci. 46, 3–19 (1989).
[CrossRef]

Macke, A.

A. Macke, J. Mueller, E. Raschke, “Single scattering properties of atmospheric ice crystals,” J. Atmos. Sci. 53, 2813–2825 (1996).
[CrossRef]

McCormick, M. P.

D. M. Winker, R. H. Couch, M. P. McCormick, “An overview of LITE: NASA’s Lidar In-space Technology Experiment,” Proc. IEEE 84, 164–180 (1996).
[CrossRef]

McNice, G. T.

C. M. Platt, N. L. Abshire, G. T. McNice, “Some microphysical properties of an ice cloud from lidar observation of horizontally oriented crystals,” J. Appl. Meteorol. 17, 1220–1224 (1978).
[CrossRef]

Mishchenko, M. I.

M. I. Mishchenko, D. J. Wielaard, B. E. Calson, “T-matrix computations of zenith-enhanced lidar backscatter from horizontally oriented ice plates,” Geophys. Res. Lett. 24, 771–774 (1997).
[CrossRef]

Miura, K.

T. Murayama, H. Okamoto, N. Kaneyasu, H. Kamataki, K. Miura, “Application of lidar depolarization measurement in the atmospheric boundary layer: effects of dust and sea-salt particles,” J. Geophys. Res. 104, 31,781–31,792 (1999).
[CrossRef]

Mueller, J.

A. Macke, J. Mueller, E. Raschke, “Single scattering properties of atmospheric ice crystals,” J. Atmos. Sci. 53, 2813–2825 (1996).
[CrossRef]

Murayama, T.

T. Murayama, H. Okamoto, N. Kaneyasu, H. Kamataki, K. Miura, “Application of lidar depolarization measurement in the atmospheric boundary layer: effects of dust and sea-salt particles,” J. Geophys. Res. 104, 31,781–31,792 (1999).
[CrossRef]

Okamoto, H.

T. Murayama, H. Okamoto, N. Kaneyasu, H. Kamataki, K. Miura, “Application of lidar depolarization measurement in the atmospheric boundary layer: effects of dust and sea-salt particles,” J. Geophys. Res. 104, 31,781–31,792 (1999).
[CrossRef]

Ono, A.

A. Ono, “The shape and riming properties of ice crystals in natural clouds,” J. Atmos. Sci. 26, 138–147 (1969).
[CrossRef]

Platt, C. M.

C. M. Platt, “Lidar backscatter from horizontal ice crystal plates,” J. Appl. Meteorol. 17, 482–488 (1978).
[CrossRef]

C. M. Platt, N. L. Abshire, G. T. McNice, “Some microphysical properties of an ice cloud from lidar observation of horizontally oriented crystals,” J. Appl. Meteorol. 17, 1220–1224 (1978).
[CrossRef]

Raschke, E.

A. Macke, J. Mueller, E. Raschke, “Single scattering properties of atmospheric ice crystals,” J. Atmos. Sci. 53, 2813–2825 (1996).
[CrossRef]

Reagan, J. A.

F. G. Fernald, B. M. Herman, J. A. Reagan, “Determination of aerosol height distributions by lidar,” J. Appl. Meteorol. 11, 482–489 (1972).
[CrossRef]

Sassen, K.

K. Sassen, C. Hsueh, “Contrail properties derived from high-resolution polarization lidar studies during SUCCESS,” Geophys. Res. Lett. 25, 1165–1168 (1998).
[CrossRef]

Sphinhirne, J. D.

Stephanes, G. L.

G. L. Stephanes, Remote Sensing of the Lower Atmosphere (Oxford U. Press, New York, 1994), pp. 427–438.

Takano, Y.

Y. Takano, K. N. Liou, “Solar radiative transfer in cirrus clouds. I. Single-scattering and optical properties of hexagonal ice crystals,” J. Atmos. Sci. 46, 3–19 (1989).
[CrossRef]

Warren, S. G.

Wielaard, D. J.

M. I. Mishchenko, D. J. Wielaard, B. E. Calson, “T-matrix computations of zenith-enhanced lidar backscatter from horizontally oriented ice plates,” Geophys. Res. Lett. 24, 771–774 (1997).
[CrossRef]

Winker, D. M.

D. M. Winker, R. H. Couch, M. P. McCormick, “An overview of LITE: NASA’s Lidar In-space Technology Experiment,” Proc. IEEE 84, 164–180 (1996).
[CrossRef]

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1975).

Appl. Opt. (4)

Geophys. Res. Lett. (2)

K. Sassen, C. Hsueh, “Contrail properties derived from high-resolution polarization lidar studies during SUCCESS,” Geophys. Res. Lett. 25, 1165–1168 (1998).
[CrossRef]

M. I. Mishchenko, D. J. Wielaard, B. E. Calson, “T-matrix computations of zenith-enhanced lidar backscatter from horizontally oriented ice plates,” Geophys. Res. Lett. 24, 771–774 (1997).
[CrossRef]

J. Appl. Meteorol. (3)

C. M. Platt, “Lidar backscatter from horizontal ice crystal plates,” J. Appl. Meteorol. 17, 482–488 (1978).
[CrossRef]

C. M. Platt, N. L. Abshire, G. T. McNice, “Some microphysical properties of an ice cloud from lidar observation of horizontally oriented crystals,” J. Appl. Meteorol. 17, 1220–1224 (1978).
[CrossRef]

F. G. Fernald, B. M. Herman, J. A. Reagan, “Determination of aerosol height distributions by lidar,” J. Appl. Meteorol. 11, 482–489 (1972).
[CrossRef]

J. Atmos. Sci. (3)

A. Ono, “The shape and riming properties of ice crystals in natural clouds,” J. Atmos. Sci. 26, 138–147 (1969).
[CrossRef]

Y. Takano, K. N. Liou, “Solar radiative transfer in cirrus clouds. I. Single-scattering and optical properties of hexagonal ice crystals,” J. Atmos. Sci. 46, 3–19 (1989).
[CrossRef]

A. Macke, J. Mueller, E. Raschke, “Single scattering properties of atmospheric ice crystals,” J. Atmos. Sci. 53, 2813–2825 (1996).
[CrossRef]

J. Geophys. Res. (1)

T. Murayama, H. Okamoto, N. Kaneyasu, H. Kamataki, K. Miura, “Application of lidar depolarization measurement in the atmospheric boundary layer: effects of dust and sea-salt particles,” J. Geophys. Res. 104, 31,781–31,792 (1999).
[CrossRef]

Proc. IEEE (1)

D. M. Winker, R. H. Couch, M. P. McCormick, “An overview of LITE: NASA’s Lidar In-space Technology Experiment,” Proc. IEEE 84, 164–180 (1996).
[CrossRef]

Other (4)

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1975).

J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1983).

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

G. L. Stephanes, Remote Sensing of the Lower Atmosphere (Oxford U. Press, New York, 1994), pp. 427–438.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics