Abstract

The basic behavior of a tunnel diode when it is used as an optoelectronic device is presented. It is shown that a tunnel diode can be used as an electro-optic modulator, as a device that exhibits self-induced transparency, or as a wavelength converter (for both upconversion and downconversion). The tunnel diode has optical bistability even if it is not placed inside a Fabry–Perot resonator. Numerical estimations are made for some of the parameters of interest for an optoelectronic device and are compared with those of other existing semiconductor-based optoelectronic devices. As the numerical estimates show, a tunnel diode can be a highly efficient optoelectronic device with an extremely wide area of application.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. D. Wheeler, “Photonic switches: fast, but functional?” Photon. Spectra 35(3), 140–150 (2001).
  2. J. M. Arnold, “Optical fibre: soliton communication,” Photon. Spectra 35(4), 155–158 (2001).
  3. D. C. McCarthy, “Crystal could improve optical communications,” Photon. Spectra 35, (3)27–27 (2001).
  4. D. Dragoman, M. Dragoman, Advanced Optoelectronic Devices, Vol. 1 of Springer Series in Photonics (Springer-Verlag, Berlin, 1999).
    [CrossRef]
  5. L. Esaki, “New phenomenon in narrow germanium p–n junctions,” Phys. Rev. 109, 603–604 (1958).
    [CrossRef]
  6. P. S. Kireev, Fizika Poluprovodnikov (V̂işsaia ̧Skola, Moscow, 1975).
  7. S. M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1969).
  8. T. S. Moss, G. J. Burrell, B. Ellis, Semiconductor Optoelectronics (Butterworth, London, 1973).
  9. A. N. Matveev, Electricity and Magnetism (Mir, Moscow, 1986).
  10. J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, New York, 1974).
  11. N. M. Garmire, N. M. Jokerst, A. Kost, A. Damner, P. D. Dapkus, “Optical nonlinearities due to carrier transport in semiconductors,” J. Opt. Soc. Am. B 6, 579–587 (1989).
    [CrossRef]
  12. D. K. Roy, Quantum Mechanical Tunneling and Its Applications (World Scientific, Singapore, 1986).
    [CrossRef]
  13. D. K. Roy, Tunneling and Negative Resistance Phenomena in Semiconductors, Vol. 11 of International Series in the Science of Solid State, B. R. Pamplin, ed. (Pergamon, London, 1977).
  14. T. A. Demassa, D. P. Knott, “The prediction of tunnel diode voltage-current characteristics,” Solid State Electron. 13, 131–139 (1970).
    [CrossRef]
  15. K. H. Hellvege, ed., Numerical Data and Functional Relationships in Science and Technology, Vol. 17a of Landolt–Böurnstein New Series (Springer-Verlag, Berlin, 1982), Group III.
  16. M. Levin, M. Rosenbluh, S. Sandomirsky, “Electro-optical structure with high speed and high reflectivity modulation,” Appl. Phys. Lett. 68, 882–884 (1996).
    [CrossRef]

2001 (3)

M. D. Wheeler, “Photonic switches: fast, but functional?” Photon. Spectra 35(3), 140–150 (2001).

J. M. Arnold, “Optical fibre: soliton communication,” Photon. Spectra 35(4), 155–158 (2001).

D. C. McCarthy, “Crystal could improve optical communications,” Photon. Spectra 35, (3)27–27 (2001).

1996 (1)

M. Levin, M. Rosenbluh, S. Sandomirsky, “Electro-optical structure with high speed and high reflectivity modulation,” Appl. Phys. Lett. 68, 882–884 (1996).
[CrossRef]

1989 (1)

1970 (1)

T. A. Demassa, D. P. Knott, “The prediction of tunnel diode voltage-current characteristics,” Solid State Electron. 13, 131–139 (1970).
[CrossRef]

1958 (1)

L. Esaki, “New phenomenon in narrow germanium p–n junctions,” Phys. Rev. 109, 603–604 (1958).
[CrossRef]

Arnold, J. M.

J. M. Arnold, “Optical fibre: soliton communication,” Photon. Spectra 35(4), 155–158 (2001).

Burrell, G. J.

T. S. Moss, G. J. Burrell, B. Ellis, Semiconductor Optoelectronics (Butterworth, London, 1973).

Damner, A.

Dapkus, P. D.

Demassa, T. A.

T. A. Demassa, D. P. Knott, “The prediction of tunnel diode voltage-current characteristics,” Solid State Electron. 13, 131–139 (1970).
[CrossRef]

Dragoman, D.

D. Dragoman, M. Dragoman, Advanced Optoelectronic Devices, Vol. 1 of Springer Series in Photonics (Springer-Verlag, Berlin, 1999).
[CrossRef]

Dragoman, M.

D. Dragoman, M. Dragoman, Advanced Optoelectronic Devices, Vol. 1 of Springer Series in Photonics (Springer-Verlag, Berlin, 1999).
[CrossRef]

Ellis, B.

T. S. Moss, G. J. Burrell, B. Ellis, Semiconductor Optoelectronics (Butterworth, London, 1973).

Esaki, L.

L. Esaki, “New phenomenon in narrow germanium p–n junctions,” Phys. Rev. 109, 603–604 (1958).
[CrossRef]

Garmire, N. M.

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, New York, 1974).

Jokerst, N. M.

Kireev, P. S.

P. S. Kireev, Fizika Poluprovodnikov (V̂işsaia ̧Skola, Moscow, 1975).

Knott, D. P.

T. A. Demassa, D. P. Knott, “The prediction of tunnel diode voltage-current characteristics,” Solid State Electron. 13, 131–139 (1970).
[CrossRef]

Kost, A.

Levin, M.

M. Levin, M. Rosenbluh, S. Sandomirsky, “Electro-optical structure with high speed and high reflectivity modulation,” Appl. Phys. Lett. 68, 882–884 (1996).
[CrossRef]

Matveev, A. N.

A. N. Matveev, Electricity and Magnetism (Mir, Moscow, 1986).

McCarthy, D. C.

D. C. McCarthy, “Crystal could improve optical communications,” Photon. Spectra 35, (3)27–27 (2001).

Moss, T. S.

T. S. Moss, G. J. Burrell, B. Ellis, Semiconductor Optoelectronics (Butterworth, London, 1973).

Rosenbluh, M.

M. Levin, M. Rosenbluh, S. Sandomirsky, “Electro-optical structure with high speed and high reflectivity modulation,” Appl. Phys. Lett. 68, 882–884 (1996).
[CrossRef]

Roy, D. K.

D. K. Roy, Quantum Mechanical Tunneling and Its Applications (World Scientific, Singapore, 1986).
[CrossRef]

D. K. Roy, Tunneling and Negative Resistance Phenomena in Semiconductors, Vol. 11 of International Series in the Science of Solid State, B. R. Pamplin, ed. (Pergamon, London, 1977).

Sandomirsky, S.

M. Levin, M. Rosenbluh, S. Sandomirsky, “Electro-optical structure with high speed and high reflectivity modulation,” Appl. Phys. Lett. 68, 882–884 (1996).
[CrossRef]

Sze, S. M.

S. M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1969).

Wheeler, M. D.

M. D. Wheeler, “Photonic switches: fast, but functional?” Photon. Spectra 35(3), 140–150 (2001).

Appl. Phys. Lett. (1)

M. Levin, M. Rosenbluh, S. Sandomirsky, “Electro-optical structure with high speed and high reflectivity modulation,” Appl. Phys. Lett. 68, 882–884 (1996).
[CrossRef]

J. Opt. Soc. Am. B (1)

Photon. Spectra (3)

M. D. Wheeler, “Photonic switches: fast, but functional?” Photon. Spectra 35(3), 140–150 (2001).

J. M. Arnold, “Optical fibre: soliton communication,” Photon. Spectra 35(4), 155–158 (2001).

D. C. McCarthy, “Crystal could improve optical communications,” Photon. Spectra 35, (3)27–27 (2001).

Phys. Rev. (1)

L. Esaki, “New phenomenon in narrow germanium p–n junctions,” Phys. Rev. 109, 603–604 (1958).
[CrossRef]

Solid State Electron. (1)

T. A. Demassa, D. P. Knott, “The prediction of tunnel diode voltage-current characteristics,” Solid State Electron. 13, 131–139 (1970).
[CrossRef]

Other (9)

K. H. Hellvege, ed., Numerical Data and Functional Relationships in Science and Technology, Vol. 17a of Landolt–Böurnstein New Series (Springer-Verlag, Berlin, 1982), Group III.

D. K. Roy, Quantum Mechanical Tunneling and Its Applications (World Scientific, Singapore, 1986).
[CrossRef]

D. K. Roy, Tunneling and Negative Resistance Phenomena in Semiconductors, Vol. 11 of International Series in the Science of Solid State, B. R. Pamplin, ed. (Pergamon, London, 1977).

P. S. Kireev, Fizika Poluprovodnikov (V̂işsaia ̧Skola, Moscow, 1975).

S. M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1969).

T. S. Moss, G. J. Burrell, B. Ellis, Semiconductor Optoelectronics (Butterworth, London, 1973).

A. N. Matveev, Electricity and Magnetism (Mir, Moscow, 1986).

J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, New York, 1974).

D. Dragoman, M. Dragoman, Advanced Optoelectronic Devices, Vol. 1 of Springer Series in Photonics (Springer-Verlag, Berlin, 1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic representation of the energy levels and optical transitions in degenerate semiconductors for an n-type (a) and a p-type (b) semiconductor. Processes numbered with 1–3 refer to electron interband transitions that are due to photon absorption.

Fig. 2
Fig. 2

Schematic representation of the energy band structure of a tunnel diode with no external electric polarization. The arrow indicates the direction of propagation of light.

Fig. 3
Fig. 3

Schematic representation of the way in which light travels in a tunnel diode placed between two mirrors (not a Fabry–Perot resonator).

Fig. 4
Fig. 4

Optical transmittance versus applied voltage for a tunnel diode used in the electro-optic modulator regime for several values of N.

Fig. 5
Fig. 5

(a) Specific shape of the current-versus-voltage characteristic of a tunnel diode. (b) Current-versus-voltage characteristic of a tunnel diode obtained with the model of Ref. 14.

Fig. 6
Fig. 6

Optical transmittance-versus-input-light power for a tunnel diode used in the self-modulator regime obtained by solution of Eq. (17) for various numbers N of times that the light passes through the diode: (a) N = 50, (b) N = 200, (c) N = 400, (d) true optical behavior of the device in the bistable regime.

Fig. 7
Fig. 7

Representation of the optical transmittance of the device (in the electro-optic modulator regime) as a function of incident photon energy for several dc applied voltages V. The photon energy is equal to the bandgap of the material (1.12 eV in this case) plus the energy shown on the horizontal axis. The material is silicon.

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

  αf=ωcω4ω2-ωp2+ωp4ν21/2ω3-ω2-ωp2ω2,
ωp=q2n/εm1/2,
ωωp,
EgωEg+minE1, E2.
ωpEg,
h2πq2nεmn1/2Eg, h2πq2pεmp1/2Eg,
d=2εqNa+NdNaNdVb-V1/2.
deff=d-E1+E2qE=qVb-qVqE-E1+E2qE=Eg-qVqE,
d=Vb-VE, qVb=Eg+E1+E2.
E=q2εNaNdNa+NdVb-V1/2.
deff=1q2εqNa+NdNaNd1/2Eg-qVVb-V1/2.
T=exp-αdeffN,
T=exp-αN 1q2εqNa+NdNaNd1/2Eg-qVVb-V1/2.
I=IpVVpexp1-VVp+I0expqV-VvkT0-1+Iv,
I=IpVVpexp1-VVp+I0expqV-VvkT0-exp-qVvkT0.
Δn=αητ/hν1-TΦ,
IL=qμn+μpΔnES,
IL=qμn+μpαητhν1-T×Pq2εNaNdNa+NdVb-VCD1/2,
I-IL=IpVCDVpexp1-VCDVp+I0expqVCD-VvkT0-exp-qVvkT0-q1-Tμn+μp×αητhν Pq2εNaNdNa+NdVb-VCD1/2=0.
  T=exp-αN 1q2εqNa+NdNaNd1/2Eg-VCDVb-VCD1/2.
M=ΔT/ΔV,
F=ΔfλV,

Metrics