Abstract

The periodic domain inversion by direct electron-beam (EB) bombardment on Ti:LiNbO3 is presented. Gratings with a 6.6-µm period are achieved. The inverted patterns are observed after chemical etching by use of a scanning electron microscope, and they exhibit a high resolution, as expected. Next, the influence of the EB parameters on the inversion phenomenon is developed for both LiNbO3 and Ti:LiNbO3. In this way we can provide an explanation of the phenomenon of domain inversion with an EB, which is not completely understood. Finally, quasi-phase-matched second-harmonic generation is presented in bulk LiNbO3 by use of a Nd:YAG laser light. These experiments allowed us to achieve the characteristics of the inverted domains along the crystal in particular.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. M. Fejer, G. A. Magel, D. H. Jundt, R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
    [CrossRef]
  2. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, J. W. Pierce, “Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3,” J. Opt. Soc. Am. B 12, 2102–2116 (1995).
    [CrossRef]
  3. G. D. Miller, R. G. Batchko, M. M. Fejer, R. L. Byer, “Visible quasi-phase-matched harmonic generation by electric-field-poled lithium niobate,” in Nonlinear Frequency Generation and Conversion, M. C. Gupta, W. J. Kozlovsky, D. C. MacPherson, eds., Proc. SPIE2700, 34–45 (1996).
    [CrossRef]
  4. G. Rosenman, Kh. Garb, A. Skliar, M. Oron, D. Eger, M. Katz, “Domain broadening in quasi-phase-matched nonlinear optical devices,” Appl. Phys. Lett. 73, 865–867 (1998).
    [CrossRef]
  5. C. J. Van Der Poel, J. D. Bierlen, J. B. Brown, S. Colak, “Efficient type i blue second-harmonic generation in periodically segmented KTiOPO4 waveguides,” Appl. Phys. Lett. 57, 2074–2076 (1990).
    [CrossRef]
  6. K. Yamamoto, K. Mizuuchi, K. Takeshige, Y. Sasai, T. Taniuchi, “Characteristics of periodically domain-inverted LiNbO3 and LiTaO3 waveguides for second harmonic generation,” J. Appl. Phys. 70, 1947–1951 (1991).
    [CrossRef]
  7. S. Miyazawa, “Ferroelectric domain inversion in Ti-indiffused LiNbO3 optical waveguide,” J. Appl. Phys. 50, 4599–4603 (1979).
    [CrossRef]
  8. S. Thaniyavarn, T. Findakly, D. Boeher, J. Moen, “Domain inversion effects in Ti:LiNbO3 integrated optical devices,” Appl. Phys. Lett. 46, 933–935 (1985).
    [CrossRef]
  9. V. Bermudez, F. Caccavale, E. Dieguez, “Domain walls of the opposite domain lithium niobate structures,” J. Cryst. Growth 219, 413–418 (2000).
    [CrossRef]
  10. H. Itoh, C. Takyu, H. Inaba, “Fabrication of periodic domain grating in LiNbO3 by electron beam writing for application of nonlinear optical processes,” Electron. Lett. 27, 1221–1222 (1991).
    [CrossRef]
  11. R. W. Keys, A. Loni, R. M. de La Rue, C. N. Ironside, J. M. Marsh, B. J. Luff, P. D. Townsend, “Fabrication of domain reversed gratings for SHG in LiNbO3 by electron beam bombardment,” Electron. Lett. 26, 188–190 (1990).
    [CrossRef]
  12. C. Restoin, C. Darraud-Taupiac, J. L. Decossas, J. C. Vareille, J. Hauden, J. Martinez, “Ferroelectric domain inversion by electron beam on LiNbO3 and Ti:LiNbO3,” J. Appl. Phys. 88, 6665–6668 (2000).
    [CrossRef]
  13. H. Kanbara, H. Itoh, M. Asobe, K. Noguchi, H. Miyazawa, T. Yanagawa, I. Yokohama, “All-optical switching based on cascading of second-order nonlinearities in a periodically poled titanium-diffused lithium niobate waveguide,” Photon. Technol. Lett. 11, 328–330 (1999).
    [CrossRef]
  14. M. Fujimura, T. Suhara, “LiNbO3 waveguide quasi-phase-matching second harmonic generation devices with ferroelectric-domain-inverted gratings formed by electron-beam scanning,” J. Lightwave Technol. 11, 1360–1368 (1993).
    [CrossRef]
  15. M. Fujimura, T. Suhara, H. Nishihara, “LiNbO3 waveguide SHG device with ferroelectric-domain inverted grating formed by electron beam scanning,” Electron. Lett. 28, 721–722 (1992).
    [CrossRef]
  16. M. Yamada, K. Kishima, “Fabrication of periodically reversed domain structure for SHG in LiNbO3 by direct electron beam lithography at room temperature,” Electron. Lett. 27, 828–829 (1991).
    [CrossRef]
  17. A. C. G. Nutt, V. Gopalan, M. C. Gupta, “Domain inversion in LiNbO3 using direct electron-beam writing,” Appl. Phys. Lett. 60, 2828–2830 (1992).
    [CrossRef]
  18. A. F. Bielajew, D. W. O. Rogers, “PRESTA: the parameter reduced electron-step transport algorithm for electron Monte-Carlo transport,” Nucl. Instrum. Methods Phys. Rev. B 18, 165–181 (1987).
    [CrossRef]
  19. G. Edwards, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron. 16, 373–375 (1984).
    [CrossRef]

2000

V. Bermudez, F. Caccavale, E. Dieguez, “Domain walls of the opposite domain lithium niobate structures,” J. Cryst. Growth 219, 413–418 (2000).
[CrossRef]

C. Restoin, C. Darraud-Taupiac, J. L. Decossas, J. C. Vareille, J. Hauden, J. Martinez, “Ferroelectric domain inversion by electron beam on LiNbO3 and Ti:LiNbO3,” J. Appl. Phys. 88, 6665–6668 (2000).
[CrossRef]

1999

H. Kanbara, H. Itoh, M. Asobe, K. Noguchi, H. Miyazawa, T. Yanagawa, I. Yokohama, “All-optical switching based on cascading of second-order nonlinearities in a periodically poled titanium-diffused lithium niobate waveguide,” Photon. Technol. Lett. 11, 328–330 (1999).
[CrossRef]

1998

G. Rosenman, Kh. Garb, A. Skliar, M. Oron, D. Eger, M. Katz, “Domain broadening in quasi-phase-matched nonlinear optical devices,” Appl. Phys. Lett. 73, 865–867 (1998).
[CrossRef]

1995

1993

M. Fujimura, T. Suhara, “LiNbO3 waveguide quasi-phase-matching second harmonic generation devices with ferroelectric-domain-inverted gratings formed by electron-beam scanning,” J. Lightwave Technol. 11, 1360–1368 (1993).
[CrossRef]

1992

M. Fujimura, T. Suhara, H. Nishihara, “LiNbO3 waveguide SHG device with ferroelectric-domain inverted grating formed by electron beam scanning,” Electron. Lett. 28, 721–722 (1992).
[CrossRef]

A. C. G. Nutt, V. Gopalan, M. C. Gupta, “Domain inversion in LiNbO3 using direct electron-beam writing,” Appl. Phys. Lett. 60, 2828–2830 (1992).
[CrossRef]

M. M. Fejer, G. A. Magel, D. H. Jundt, R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[CrossRef]

1991

H. Itoh, C. Takyu, H. Inaba, “Fabrication of periodic domain grating in LiNbO3 by electron beam writing for application of nonlinear optical processes,” Electron. Lett. 27, 1221–1222 (1991).
[CrossRef]

K. Yamamoto, K. Mizuuchi, K. Takeshige, Y. Sasai, T. Taniuchi, “Characteristics of periodically domain-inverted LiNbO3 and LiTaO3 waveguides for second harmonic generation,” J. Appl. Phys. 70, 1947–1951 (1991).
[CrossRef]

M. Yamada, K. Kishima, “Fabrication of periodically reversed domain structure for SHG in LiNbO3 by direct electron beam lithography at room temperature,” Electron. Lett. 27, 828–829 (1991).
[CrossRef]

1990

R. W. Keys, A. Loni, R. M. de La Rue, C. N. Ironside, J. M. Marsh, B. J. Luff, P. D. Townsend, “Fabrication of domain reversed gratings for SHG in LiNbO3 by electron beam bombardment,” Electron. Lett. 26, 188–190 (1990).
[CrossRef]

C. J. Van Der Poel, J. D. Bierlen, J. B. Brown, S. Colak, “Efficient type i blue second-harmonic generation in periodically segmented KTiOPO4 waveguides,” Appl. Phys. Lett. 57, 2074–2076 (1990).
[CrossRef]

1987

A. F. Bielajew, D. W. O. Rogers, “PRESTA: the parameter reduced electron-step transport algorithm for electron Monte-Carlo transport,” Nucl. Instrum. Methods Phys. Rev. B 18, 165–181 (1987).
[CrossRef]

1985

S. Thaniyavarn, T. Findakly, D. Boeher, J. Moen, “Domain inversion effects in Ti:LiNbO3 integrated optical devices,” Appl. Phys. Lett. 46, 933–935 (1985).
[CrossRef]

1984

G. Edwards, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron. 16, 373–375 (1984).
[CrossRef]

1979

S. Miyazawa, “Ferroelectric domain inversion in Ti-indiffused LiNbO3 optical waveguide,” J. Appl. Phys. 50, 4599–4603 (1979).
[CrossRef]

Asobe, M.

H. Kanbara, H. Itoh, M. Asobe, K. Noguchi, H. Miyazawa, T. Yanagawa, I. Yokohama, “All-optical switching based on cascading of second-order nonlinearities in a periodically poled titanium-diffused lithium niobate waveguide,” Photon. Technol. Lett. 11, 328–330 (1999).
[CrossRef]

Batchko, R. G.

G. D. Miller, R. G. Batchko, M. M. Fejer, R. L. Byer, “Visible quasi-phase-matched harmonic generation by electric-field-poled lithium niobate,” in Nonlinear Frequency Generation and Conversion, M. C. Gupta, W. J. Kozlovsky, D. C. MacPherson, eds., Proc. SPIE2700, 34–45 (1996).
[CrossRef]

Bermudez, V.

V. Bermudez, F. Caccavale, E. Dieguez, “Domain walls of the opposite domain lithium niobate structures,” J. Cryst. Growth 219, 413–418 (2000).
[CrossRef]

Bielajew, A. F.

A. F. Bielajew, D. W. O. Rogers, “PRESTA: the parameter reduced electron-step transport algorithm for electron Monte-Carlo transport,” Nucl. Instrum. Methods Phys. Rev. B 18, 165–181 (1987).
[CrossRef]

Bierlen, J. D.

C. J. Van Der Poel, J. D. Bierlen, J. B. Brown, S. Colak, “Efficient type i blue second-harmonic generation in periodically segmented KTiOPO4 waveguides,” Appl. Phys. Lett. 57, 2074–2076 (1990).
[CrossRef]

Boeher, D.

S. Thaniyavarn, T. Findakly, D. Boeher, J. Moen, “Domain inversion effects in Ti:LiNbO3 integrated optical devices,” Appl. Phys. Lett. 46, 933–935 (1985).
[CrossRef]

Bosenberg, W. R.

Brown, J. B.

C. J. Van Der Poel, J. D. Bierlen, J. B. Brown, S. Colak, “Efficient type i blue second-harmonic generation in periodically segmented KTiOPO4 waveguides,” Appl. Phys. Lett. 57, 2074–2076 (1990).
[CrossRef]

Byer, R. L.

L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, J. W. Pierce, “Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3,” J. Opt. Soc. Am. B 12, 2102–2116 (1995).
[CrossRef]

M. M. Fejer, G. A. Magel, D. H. Jundt, R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[CrossRef]

G. D. Miller, R. G. Batchko, M. M. Fejer, R. L. Byer, “Visible quasi-phase-matched harmonic generation by electric-field-poled lithium niobate,” in Nonlinear Frequency Generation and Conversion, M. C. Gupta, W. J. Kozlovsky, D. C. MacPherson, eds., Proc. SPIE2700, 34–45 (1996).
[CrossRef]

Caccavale, F.

V. Bermudez, F. Caccavale, E. Dieguez, “Domain walls of the opposite domain lithium niobate structures,” J. Cryst. Growth 219, 413–418 (2000).
[CrossRef]

Colak, S.

C. J. Van Der Poel, J. D. Bierlen, J. B. Brown, S. Colak, “Efficient type i blue second-harmonic generation in periodically segmented KTiOPO4 waveguides,” Appl. Phys. Lett. 57, 2074–2076 (1990).
[CrossRef]

Darraud-Taupiac, C.

C. Restoin, C. Darraud-Taupiac, J. L. Decossas, J. C. Vareille, J. Hauden, J. Martinez, “Ferroelectric domain inversion by electron beam on LiNbO3 and Ti:LiNbO3,” J. Appl. Phys. 88, 6665–6668 (2000).
[CrossRef]

de La Rue, R. M.

R. W. Keys, A. Loni, R. M. de La Rue, C. N. Ironside, J. M. Marsh, B. J. Luff, P. D. Townsend, “Fabrication of domain reversed gratings for SHG in LiNbO3 by electron beam bombardment,” Electron. Lett. 26, 188–190 (1990).
[CrossRef]

Decossas, J. L.

C. Restoin, C. Darraud-Taupiac, J. L. Decossas, J. C. Vareille, J. Hauden, J. Martinez, “Ferroelectric domain inversion by electron beam on LiNbO3 and Ti:LiNbO3,” J. Appl. Phys. 88, 6665–6668 (2000).
[CrossRef]

Dieguez, E.

V. Bermudez, F. Caccavale, E. Dieguez, “Domain walls of the opposite domain lithium niobate structures,” J. Cryst. Growth 219, 413–418 (2000).
[CrossRef]

Eckardt, R. C.

Edwards, G.

G. Edwards, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron. 16, 373–375 (1984).
[CrossRef]

Eger, D.

G. Rosenman, Kh. Garb, A. Skliar, M. Oron, D. Eger, M. Katz, “Domain broadening in quasi-phase-matched nonlinear optical devices,” Appl. Phys. Lett. 73, 865–867 (1998).
[CrossRef]

Fejer, M. M.

L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, J. W. Pierce, “Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3,” J. Opt. Soc. Am. B 12, 2102–2116 (1995).
[CrossRef]

M. M. Fejer, G. A. Magel, D. H. Jundt, R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[CrossRef]

G. D. Miller, R. G. Batchko, M. M. Fejer, R. L. Byer, “Visible quasi-phase-matched harmonic generation by electric-field-poled lithium niobate,” in Nonlinear Frequency Generation and Conversion, M. C. Gupta, W. J. Kozlovsky, D. C. MacPherson, eds., Proc. SPIE2700, 34–45 (1996).
[CrossRef]

Findakly, T.

S. Thaniyavarn, T. Findakly, D. Boeher, J. Moen, “Domain inversion effects in Ti:LiNbO3 integrated optical devices,” Appl. Phys. Lett. 46, 933–935 (1985).
[CrossRef]

Fujimura, M.

M. Fujimura, T. Suhara, “LiNbO3 waveguide quasi-phase-matching second harmonic generation devices with ferroelectric-domain-inverted gratings formed by electron-beam scanning,” J. Lightwave Technol. 11, 1360–1368 (1993).
[CrossRef]

M. Fujimura, T. Suhara, H. Nishihara, “LiNbO3 waveguide SHG device with ferroelectric-domain inverted grating formed by electron beam scanning,” Electron. Lett. 28, 721–722 (1992).
[CrossRef]

Garb, Kh.

G. Rosenman, Kh. Garb, A. Skliar, M. Oron, D. Eger, M. Katz, “Domain broadening in quasi-phase-matched nonlinear optical devices,” Appl. Phys. Lett. 73, 865–867 (1998).
[CrossRef]

Gopalan, V.

A. C. G. Nutt, V. Gopalan, M. C. Gupta, “Domain inversion in LiNbO3 using direct electron-beam writing,” Appl. Phys. Lett. 60, 2828–2830 (1992).
[CrossRef]

Gupta, M. C.

A. C. G. Nutt, V. Gopalan, M. C. Gupta, “Domain inversion in LiNbO3 using direct electron-beam writing,” Appl. Phys. Lett. 60, 2828–2830 (1992).
[CrossRef]

Hauden, J.

C. Restoin, C. Darraud-Taupiac, J. L. Decossas, J. C. Vareille, J. Hauden, J. Martinez, “Ferroelectric domain inversion by electron beam on LiNbO3 and Ti:LiNbO3,” J. Appl. Phys. 88, 6665–6668 (2000).
[CrossRef]

Inaba, H.

H. Itoh, C. Takyu, H. Inaba, “Fabrication of periodic domain grating in LiNbO3 by electron beam writing for application of nonlinear optical processes,” Electron. Lett. 27, 1221–1222 (1991).
[CrossRef]

Ironside, C. N.

R. W. Keys, A. Loni, R. M. de La Rue, C. N. Ironside, J. M. Marsh, B. J. Luff, P. D. Townsend, “Fabrication of domain reversed gratings for SHG in LiNbO3 by electron beam bombardment,” Electron. Lett. 26, 188–190 (1990).
[CrossRef]

Itoh, H.

H. Kanbara, H. Itoh, M. Asobe, K. Noguchi, H. Miyazawa, T. Yanagawa, I. Yokohama, “All-optical switching based on cascading of second-order nonlinearities in a periodically poled titanium-diffused lithium niobate waveguide,” Photon. Technol. Lett. 11, 328–330 (1999).
[CrossRef]

H. Itoh, C. Takyu, H. Inaba, “Fabrication of periodic domain grating in LiNbO3 by electron beam writing for application of nonlinear optical processes,” Electron. Lett. 27, 1221–1222 (1991).
[CrossRef]

Jundt, D. H.

M. M. Fejer, G. A. Magel, D. H. Jundt, R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[CrossRef]

Kanbara, H.

H. Kanbara, H. Itoh, M. Asobe, K. Noguchi, H. Miyazawa, T. Yanagawa, I. Yokohama, “All-optical switching based on cascading of second-order nonlinearities in a periodically poled titanium-diffused lithium niobate waveguide,” Photon. Technol. Lett. 11, 328–330 (1999).
[CrossRef]

Katz, M.

G. Rosenman, Kh. Garb, A. Skliar, M. Oron, D. Eger, M. Katz, “Domain broadening in quasi-phase-matched nonlinear optical devices,” Appl. Phys. Lett. 73, 865–867 (1998).
[CrossRef]

Keys, R. W.

R. W. Keys, A. Loni, R. M. de La Rue, C. N. Ironside, J. M. Marsh, B. J. Luff, P. D. Townsend, “Fabrication of domain reversed gratings for SHG in LiNbO3 by electron beam bombardment,” Electron. Lett. 26, 188–190 (1990).
[CrossRef]

Kishima, K.

M. Yamada, K. Kishima, “Fabrication of periodically reversed domain structure for SHG in LiNbO3 by direct electron beam lithography at room temperature,” Electron. Lett. 27, 828–829 (1991).
[CrossRef]

Loni, A.

R. W. Keys, A. Loni, R. M. de La Rue, C. N. Ironside, J. M. Marsh, B. J. Luff, P. D. Townsend, “Fabrication of domain reversed gratings for SHG in LiNbO3 by electron beam bombardment,” Electron. Lett. 26, 188–190 (1990).
[CrossRef]

Luff, B. J.

R. W. Keys, A. Loni, R. M. de La Rue, C. N. Ironside, J. M. Marsh, B. J. Luff, P. D. Townsend, “Fabrication of domain reversed gratings for SHG in LiNbO3 by electron beam bombardment,” Electron. Lett. 26, 188–190 (1990).
[CrossRef]

Magel, G. A.

M. M. Fejer, G. A. Magel, D. H. Jundt, R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[CrossRef]

Marsh, J. M.

R. W. Keys, A. Loni, R. M. de La Rue, C. N. Ironside, J. M. Marsh, B. J. Luff, P. D. Townsend, “Fabrication of domain reversed gratings for SHG in LiNbO3 by electron beam bombardment,” Electron. Lett. 26, 188–190 (1990).
[CrossRef]

Martinez, J.

C. Restoin, C. Darraud-Taupiac, J. L. Decossas, J. C. Vareille, J. Hauden, J. Martinez, “Ferroelectric domain inversion by electron beam on LiNbO3 and Ti:LiNbO3,” J. Appl. Phys. 88, 6665–6668 (2000).
[CrossRef]

Miller, G. D.

G. D. Miller, R. G. Batchko, M. M. Fejer, R. L. Byer, “Visible quasi-phase-matched harmonic generation by electric-field-poled lithium niobate,” in Nonlinear Frequency Generation and Conversion, M. C. Gupta, W. J. Kozlovsky, D. C. MacPherson, eds., Proc. SPIE2700, 34–45 (1996).
[CrossRef]

Miyazawa, H.

H. Kanbara, H. Itoh, M. Asobe, K. Noguchi, H. Miyazawa, T. Yanagawa, I. Yokohama, “All-optical switching based on cascading of second-order nonlinearities in a periodically poled titanium-diffused lithium niobate waveguide,” Photon. Technol. Lett. 11, 328–330 (1999).
[CrossRef]

Miyazawa, S.

S. Miyazawa, “Ferroelectric domain inversion in Ti-indiffused LiNbO3 optical waveguide,” J. Appl. Phys. 50, 4599–4603 (1979).
[CrossRef]

Mizuuchi, K.

K. Yamamoto, K. Mizuuchi, K. Takeshige, Y. Sasai, T. Taniuchi, “Characteristics of periodically domain-inverted LiNbO3 and LiTaO3 waveguides for second harmonic generation,” J. Appl. Phys. 70, 1947–1951 (1991).
[CrossRef]

Moen, J.

S. Thaniyavarn, T. Findakly, D. Boeher, J. Moen, “Domain inversion effects in Ti:LiNbO3 integrated optical devices,” Appl. Phys. Lett. 46, 933–935 (1985).
[CrossRef]

Myers, L. E.

Nishihara, H.

M. Fujimura, T. Suhara, H. Nishihara, “LiNbO3 waveguide SHG device with ferroelectric-domain inverted grating formed by electron beam scanning,” Electron. Lett. 28, 721–722 (1992).
[CrossRef]

Noguchi, K.

H. Kanbara, H. Itoh, M. Asobe, K. Noguchi, H. Miyazawa, T. Yanagawa, I. Yokohama, “All-optical switching based on cascading of second-order nonlinearities in a periodically poled titanium-diffused lithium niobate waveguide,” Photon. Technol. Lett. 11, 328–330 (1999).
[CrossRef]

Nutt, A. C. G.

A. C. G. Nutt, V. Gopalan, M. C. Gupta, “Domain inversion in LiNbO3 using direct electron-beam writing,” Appl. Phys. Lett. 60, 2828–2830 (1992).
[CrossRef]

Oron, M.

G. Rosenman, Kh. Garb, A. Skliar, M. Oron, D. Eger, M. Katz, “Domain broadening in quasi-phase-matched nonlinear optical devices,” Appl. Phys. Lett. 73, 865–867 (1998).
[CrossRef]

Pierce, J. W.

Restoin, C.

C. Restoin, C. Darraud-Taupiac, J. L. Decossas, J. C. Vareille, J. Hauden, J. Martinez, “Ferroelectric domain inversion by electron beam on LiNbO3 and Ti:LiNbO3,” J. Appl. Phys. 88, 6665–6668 (2000).
[CrossRef]

Rogers, D. W. O.

A. F. Bielajew, D. W. O. Rogers, “PRESTA: the parameter reduced electron-step transport algorithm for electron Monte-Carlo transport,” Nucl. Instrum. Methods Phys. Rev. B 18, 165–181 (1987).
[CrossRef]

Rosenman, G.

G. Rosenman, Kh. Garb, A. Skliar, M. Oron, D. Eger, M. Katz, “Domain broadening in quasi-phase-matched nonlinear optical devices,” Appl. Phys. Lett. 73, 865–867 (1998).
[CrossRef]

Sasai, Y.

K. Yamamoto, K. Mizuuchi, K. Takeshige, Y. Sasai, T. Taniuchi, “Characteristics of periodically domain-inverted LiNbO3 and LiTaO3 waveguides for second harmonic generation,” J. Appl. Phys. 70, 1947–1951 (1991).
[CrossRef]

Skliar, A.

G. Rosenman, Kh. Garb, A. Skliar, M. Oron, D. Eger, M. Katz, “Domain broadening in quasi-phase-matched nonlinear optical devices,” Appl. Phys. Lett. 73, 865–867 (1998).
[CrossRef]

Suhara, T.

M. Fujimura, T. Suhara, “LiNbO3 waveguide quasi-phase-matching second harmonic generation devices with ferroelectric-domain-inverted gratings formed by electron-beam scanning,” J. Lightwave Technol. 11, 1360–1368 (1993).
[CrossRef]

M. Fujimura, T. Suhara, H. Nishihara, “LiNbO3 waveguide SHG device with ferroelectric-domain inverted grating formed by electron beam scanning,” Electron. Lett. 28, 721–722 (1992).
[CrossRef]

Takeshige, K.

K. Yamamoto, K. Mizuuchi, K. Takeshige, Y. Sasai, T. Taniuchi, “Characteristics of periodically domain-inverted LiNbO3 and LiTaO3 waveguides for second harmonic generation,” J. Appl. Phys. 70, 1947–1951 (1991).
[CrossRef]

Takyu, C.

H. Itoh, C. Takyu, H. Inaba, “Fabrication of periodic domain grating in LiNbO3 by electron beam writing for application of nonlinear optical processes,” Electron. Lett. 27, 1221–1222 (1991).
[CrossRef]

Taniuchi, T.

K. Yamamoto, K. Mizuuchi, K. Takeshige, Y. Sasai, T. Taniuchi, “Characteristics of periodically domain-inverted LiNbO3 and LiTaO3 waveguides for second harmonic generation,” J. Appl. Phys. 70, 1947–1951 (1991).
[CrossRef]

Thaniyavarn, S.

S. Thaniyavarn, T. Findakly, D. Boeher, J. Moen, “Domain inversion effects in Ti:LiNbO3 integrated optical devices,” Appl. Phys. Lett. 46, 933–935 (1985).
[CrossRef]

Townsend, P. D.

R. W. Keys, A. Loni, R. M. de La Rue, C. N. Ironside, J. M. Marsh, B. J. Luff, P. D. Townsend, “Fabrication of domain reversed gratings for SHG in LiNbO3 by electron beam bombardment,” Electron. Lett. 26, 188–190 (1990).
[CrossRef]

Van Der Poel, C. J.

C. J. Van Der Poel, J. D. Bierlen, J. B. Brown, S. Colak, “Efficient type i blue second-harmonic generation in periodically segmented KTiOPO4 waveguides,” Appl. Phys. Lett. 57, 2074–2076 (1990).
[CrossRef]

Vareille, J. C.

C. Restoin, C. Darraud-Taupiac, J. L. Decossas, J. C. Vareille, J. Hauden, J. Martinez, “Ferroelectric domain inversion by electron beam on LiNbO3 and Ti:LiNbO3,” J. Appl. Phys. 88, 6665–6668 (2000).
[CrossRef]

Yamada, M.

M. Yamada, K. Kishima, “Fabrication of periodically reversed domain structure for SHG in LiNbO3 by direct electron beam lithography at room temperature,” Electron. Lett. 27, 828–829 (1991).
[CrossRef]

Yamamoto, K.

K. Yamamoto, K. Mizuuchi, K. Takeshige, Y. Sasai, T. Taniuchi, “Characteristics of periodically domain-inverted LiNbO3 and LiTaO3 waveguides for second harmonic generation,” J. Appl. Phys. 70, 1947–1951 (1991).
[CrossRef]

Yanagawa, T.

H. Kanbara, H. Itoh, M. Asobe, K. Noguchi, H. Miyazawa, T. Yanagawa, I. Yokohama, “All-optical switching based on cascading of second-order nonlinearities in a periodically poled titanium-diffused lithium niobate waveguide,” Photon. Technol. Lett. 11, 328–330 (1999).
[CrossRef]

Yokohama, I.

H. Kanbara, H. Itoh, M. Asobe, K. Noguchi, H. Miyazawa, T. Yanagawa, I. Yokohama, “All-optical switching based on cascading of second-order nonlinearities in a periodically poled titanium-diffused lithium niobate waveguide,” Photon. Technol. Lett. 11, 328–330 (1999).
[CrossRef]

Appl. Phys. Lett.

G. Rosenman, Kh. Garb, A. Skliar, M. Oron, D. Eger, M. Katz, “Domain broadening in quasi-phase-matched nonlinear optical devices,” Appl. Phys. Lett. 73, 865–867 (1998).
[CrossRef]

C. J. Van Der Poel, J. D. Bierlen, J. B. Brown, S. Colak, “Efficient type i blue second-harmonic generation in periodically segmented KTiOPO4 waveguides,” Appl. Phys. Lett. 57, 2074–2076 (1990).
[CrossRef]

S. Thaniyavarn, T. Findakly, D. Boeher, J. Moen, “Domain inversion effects in Ti:LiNbO3 integrated optical devices,” Appl. Phys. Lett. 46, 933–935 (1985).
[CrossRef]

A. C. G. Nutt, V. Gopalan, M. C. Gupta, “Domain inversion in LiNbO3 using direct electron-beam writing,” Appl. Phys. Lett. 60, 2828–2830 (1992).
[CrossRef]

Electron. Lett.

M. Fujimura, T. Suhara, H. Nishihara, “LiNbO3 waveguide SHG device with ferroelectric-domain inverted grating formed by electron beam scanning,” Electron. Lett. 28, 721–722 (1992).
[CrossRef]

M. Yamada, K. Kishima, “Fabrication of periodically reversed domain structure for SHG in LiNbO3 by direct electron beam lithography at room temperature,” Electron. Lett. 27, 828–829 (1991).
[CrossRef]

H. Itoh, C. Takyu, H. Inaba, “Fabrication of periodic domain grating in LiNbO3 by electron beam writing for application of nonlinear optical processes,” Electron. Lett. 27, 1221–1222 (1991).
[CrossRef]

R. W. Keys, A. Loni, R. M. de La Rue, C. N. Ironside, J. M. Marsh, B. J. Luff, P. D. Townsend, “Fabrication of domain reversed gratings for SHG in LiNbO3 by electron beam bombardment,” Electron. Lett. 26, 188–190 (1990).
[CrossRef]

IEEE J. Quantum Electron.

M. M. Fejer, G. A. Magel, D. H. Jundt, R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[CrossRef]

J. Appl. Phys.

K. Yamamoto, K. Mizuuchi, K. Takeshige, Y. Sasai, T. Taniuchi, “Characteristics of periodically domain-inverted LiNbO3 and LiTaO3 waveguides for second harmonic generation,” J. Appl. Phys. 70, 1947–1951 (1991).
[CrossRef]

S. Miyazawa, “Ferroelectric domain inversion in Ti-indiffused LiNbO3 optical waveguide,” J. Appl. Phys. 50, 4599–4603 (1979).
[CrossRef]

C. Restoin, C. Darraud-Taupiac, J. L. Decossas, J. C. Vareille, J. Hauden, J. Martinez, “Ferroelectric domain inversion by electron beam on LiNbO3 and Ti:LiNbO3,” J. Appl. Phys. 88, 6665–6668 (2000).
[CrossRef]

J. Cryst. Growth

V. Bermudez, F. Caccavale, E. Dieguez, “Domain walls of the opposite domain lithium niobate structures,” J. Cryst. Growth 219, 413–418 (2000).
[CrossRef]

J. Lightwave Technol.

M. Fujimura, T. Suhara, “LiNbO3 waveguide quasi-phase-matching second harmonic generation devices with ferroelectric-domain-inverted gratings formed by electron-beam scanning,” J. Lightwave Technol. 11, 1360–1368 (1993).
[CrossRef]

J. Opt. Soc. Am. B

Nucl. Instrum. Methods Phys. Rev. B

A. F. Bielajew, D. W. O. Rogers, “PRESTA: the parameter reduced electron-step transport algorithm for electron Monte-Carlo transport,” Nucl. Instrum. Methods Phys. Rev. B 18, 165–181 (1987).
[CrossRef]

Opt. Quantum Electron.

G. Edwards, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron. 16, 373–375 (1984).
[CrossRef]

Photon. Technol. Lett.

H. Kanbara, H. Itoh, M. Asobe, K. Noguchi, H. Miyazawa, T. Yanagawa, I. Yokohama, “All-optical switching based on cascading of second-order nonlinearities in a periodically poled titanium-diffused lithium niobate waveguide,” Photon. Technol. Lett. 11, 328–330 (1999).
[CrossRef]

Other

G. D. Miller, R. G. Batchko, M. M. Fejer, R. L. Byer, “Visible quasi-phase-matched harmonic generation by electric-field-poled lithium niobate,” in Nonlinear Frequency Generation and Conversion, M. C. Gupta, W. J. Kozlovsky, D. C. MacPherson, eds., Proc. SPIE2700, 34–45 (1996).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic drawing of the SEM formation of ferroelectric inverted domain gratings on LiNbO3.

Fig. 2
Fig. 2

SEM photograph of the 6.6-µm inverted grating on Ti:LiNbO3 after chemical etching on the z - face. The inverted domain zone and the grating period are noted in the photograph.

Fig. 3
Fig. 3

SEM photograph of the 6.6-µm inverted grating on LiNbO3 after chemical etching on the z - face. The inverted domain zone and the grating period are noted in the photograph (the contrast is low because of the minimal amount of relief).

Fig. 4
Fig. 4

SEM photograph of the 6.6-µm inverted grating on LiNbO3 after chemical etching on the z + face.

Fig. 5
Fig. 5

SEM photograph of the 6.6-µm inverted grating on LiNbO3 after chemical etching on the z + face when a carbon electrode was used.

Fig. 6
Fig. 6

SEM photograph of the 6.6-µm inverted grating on LiNbO3 after chemical etching on the z + face when a titanium electrode was used.

Fig. 7
Fig. 7

Schematic setup that we used to determine the longitudinal uniformity of the inverted grating and the effective nonlinear coefficient.

Fig. 8
Fig. 8

Variation of the second-harmonic output power with crystal temperature.

Fig. 9
Fig. 9

Theoretical variation of the second-harmonic output power with the temperature calculated with the Sellmeier coefficients for bulk LiNbO3.

Tables (1)

Tables Icon

Table 1 Main Irradiation Parameters that Influence the Inversion Phenomenon

Metrics