Abstract

We describe a broadly tunable, cw optical parametric oscillator (OPO) based on periodically poled lithium niobate. The OPO can be tuned over a broad region in the mid IR (2900–3100 cm-1) covering the important C–H stretch region while a high spectral resolution (<0.1 cm-1) is maintained. The OPO is the light source for a field-portable photoacoustic spectrometer for gas-phase monitoring of volatile organic compounds.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. W. Aniolek, T. J. Kulp, B. A. Richman, S. E. Bisson, “Cavity ringdown laser absorption spectroscopy with a 1-kHz mid-infrared periodically poled lithium niobate optical parametric generator/amplifier,” Chem. Phys. Lett. 302, 555–562 (1999).
    [CrossRef]
  2. K. W. Aniolek, T. J. Kulp, B. A. Richman, S. E. Bisson, P. E. Powers, R. L. Schmitt, “Trace gas detection in the mid-IR with a compact PPLN-based cavity ringdown spectrometer,” in Applications of Tunable Diode and Other Infrared Sources, A. Fried, ed. Proc. SPIE3758, 62–73 (1999).
  3. A. Balakrishnan, S. Sanders, S. DeMars, J. Webjorn, D. W. Nam, R. J. Lang, D. G. Meyhuys, R. G. Waarts, D. F. Welch, “Broadly tunable laser-diode-based mid-infrared source with up to 31 µW of power at 4.3-µm wavelength,” Opt. Lett. 21, 952–954 (1996).
    [CrossRef] [PubMed]
  4. L. Goldberg, W. K. Burns, R. W. McElhanon, “Difference-frequency generation of tunable mid-infrared radiation in bulk periodically poled lithium niobate,” Opt. Lett. 20, 1280–1282 (1995).
    [CrossRef] [PubMed]
  5. K. P. Petrov, R. F. Curl, F. K. Tittel, “Compact laser difference-frequency spectrometer for multicomponent trace gas detection,” Appl. Phys. B 66, 531–538 (1998).
    [CrossRef]
  6. F. Kuhnemann, K. Schneider, A. Hecker, A. A. E. Martis, W. Urban, S. Schiller, J. Mlynek, “Photoacoustic trace-gas detection using a cw single-frequency parametric oscillator,” Appl. Phys. B 66, 741–745 (1998).
    [CrossRef]
  7. M. E. Klein, C. K. Laue, D.-H. Lee, K.-J. Boller, R. Wallenstein, “Diode-pumped singly resonant continuous-wave optical parametric oscillator with wide continuous tuning of the near-infrared idler wave,” Opt. Lett. 25, 490–492 (2000).
    [CrossRef]
  8. F. Harren, J. Reuss, Encyclopedia of Applied Physics 19 (VCH, Cambridge, UK, 1997), pp. 413–435.
  9. W. R. Bosenburg, A. Drobshoff, J. I. Alexander, L. E. Myers, R. L. Byer, “93% pump depletion, 3.5-W continuous-wave, singly resonant optical parametric oscillator,” Opt. Lett. 21, 1336–1338 (1996).
    [CrossRef]
  10. W. R. Bosenburg, A. Drobshoff, J. I. Alexander, L. E. Myers, R. L. Byer, “Continuous-wave, singly resonant optical parametric oscillator based on periodically poled LiNbO3,” Opt. Lett. 21, 713–715 (1996).
    [CrossRef]
  11. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenburg, J. W. Pierce, “Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3,” J. Opt. Soc. Am. B 12, 2102–2116 (1995).
    [CrossRef]
  12. P. E. Powers, T. J. Kulp, S. E. Bisson, “Continuous tuning of a cw periodically poled lithium niobate optical parametric oscillator by use of a fan-out design,” Opt. Lett. 23, 159–161 (1998).
    [CrossRef]
  13. L. Huang, D. Hui, D. Bamford, S. J. Field, I. Mnushkina, L. E. Myers, J. V. Kayser, “Periodic poling of magnesium-oxide-doped stoichiometric lithium niobate grown by the top-seeded solution method,” Appl. Phys. B 72, 301–306 (2001).
    [CrossRef]
  14. USF HITRAN PC available from Ontar Corporation, 9 Village Way, North Andover, MA 01845-2000, telephone 978-689-9622, www.ontar.com .
  15. S. T. Yang, R. C. Eckardt, R. L. Byer, “Power and spectral characteristics of continuous-wave parametric oscillators: the doubly to singly resonant transition,” J. Opt. Soc. B 10, 1684–1695 (1993).
    [CrossRef]
  16. A. V. Smith, M. S. Bowers, “Phase distortions in sum- and difference-frequency mixing in crystals,” J. Opt. Soc. Am. B 12, 49–57 (1995).
    [CrossRef]
  17. SNLO code available at www.sandia.gov/imrl/XWEB1128/XP1128.htm .
  18. M. Arbore, T. McHugh, “0.5 Watt, single-frequency, 1510–1630 nm, pump-and signal-resonant optical parametric oscillator,” in Conference on Lasers and Electro-Optics, in 2000 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2000), pp. 520–521.

2001 (1)

L. Huang, D. Hui, D. Bamford, S. J. Field, I. Mnushkina, L. E. Myers, J. V. Kayser, “Periodic poling of magnesium-oxide-doped stoichiometric lithium niobate grown by the top-seeded solution method,” Appl. Phys. B 72, 301–306 (2001).
[CrossRef]

2000 (1)

1999 (1)

K. W. Aniolek, T. J. Kulp, B. A. Richman, S. E. Bisson, “Cavity ringdown laser absorption spectroscopy with a 1-kHz mid-infrared periodically poled lithium niobate optical parametric generator/amplifier,” Chem. Phys. Lett. 302, 555–562 (1999).
[CrossRef]

1998 (3)

K. P. Petrov, R. F. Curl, F. K. Tittel, “Compact laser difference-frequency spectrometer for multicomponent trace gas detection,” Appl. Phys. B 66, 531–538 (1998).
[CrossRef]

F. Kuhnemann, K. Schneider, A. Hecker, A. A. E. Martis, W. Urban, S. Schiller, J. Mlynek, “Photoacoustic trace-gas detection using a cw single-frequency parametric oscillator,” Appl. Phys. B 66, 741–745 (1998).
[CrossRef]

P. E. Powers, T. J. Kulp, S. E. Bisson, “Continuous tuning of a cw periodically poled lithium niobate optical parametric oscillator by use of a fan-out design,” Opt. Lett. 23, 159–161 (1998).
[CrossRef]

1996 (3)

1995 (3)

1993 (1)

S. T. Yang, R. C. Eckardt, R. L. Byer, “Power and spectral characteristics of continuous-wave parametric oscillators: the doubly to singly resonant transition,” J. Opt. Soc. B 10, 1684–1695 (1993).
[CrossRef]

Alexander, J. I.

Aniolek, K. W.

K. W. Aniolek, T. J. Kulp, B. A. Richman, S. E. Bisson, “Cavity ringdown laser absorption spectroscopy with a 1-kHz mid-infrared periodically poled lithium niobate optical parametric generator/amplifier,” Chem. Phys. Lett. 302, 555–562 (1999).
[CrossRef]

K. W. Aniolek, T. J. Kulp, B. A. Richman, S. E. Bisson, P. E. Powers, R. L. Schmitt, “Trace gas detection in the mid-IR with a compact PPLN-based cavity ringdown spectrometer,” in Applications of Tunable Diode and Other Infrared Sources, A. Fried, ed. Proc. SPIE3758, 62–73 (1999).

Arbore, M.

M. Arbore, T. McHugh, “0.5 Watt, single-frequency, 1510–1630 nm, pump-and signal-resonant optical parametric oscillator,” in Conference on Lasers and Electro-Optics, in 2000 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2000), pp. 520–521.

Balakrishnan, A.

Bamford, D.

L. Huang, D. Hui, D. Bamford, S. J. Field, I. Mnushkina, L. E. Myers, J. V. Kayser, “Periodic poling of magnesium-oxide-doped stoichiometric lithium niobate grown by the top-seeded solution method,” Appl. Phys. B 72, 301–306 (2001).
[CrossRef]

Bisson, S. E.

K. W. Aniolek, T. J. Kulp, B. A. Richman, S. E. Bisson, “Cavity ringdown laser absorption spectroscopy with a 1-kHz mid-infrared periodically poled lithium niobate optical parametric generator/amplifier,” Chem. Phys. Lett. 302, 555–562 (1999).
[CrossRef]

P. E. Powers, T. J. Kulp, S. E. Bisson, “Continuous tuning of a cw periodically poled lithium niobate optical parametric oscillator by use of a fan-out design,” Opt. Lett. 23, 159–161 (1998).
[CrossRef]

K. W. Aniolek, T. J. Kulp, B. A. Richman, S. E. Bisson, P. E. Powers, R. L. Schmitt, “Trace gas detection in the mid-IR with a compact PPLN-based cavity ringdown spectrometer,” in Applications of Tunable Diode and Other Infrared Sources, A. Fried, ed. Proc. SPIE3758, 62–73 (1999).

Boller, K.-J.

Bosenburg, W. R.

Bowers, M. S.

Burns, W. K.

Byer, R. L.

Curl, R. F.

K. P. Petrov, R. F. Curl, F. K. Tittel, “Compact laser difference-frequency spectrometer for multicomponent trace gas detection,” Appl. Phys. B 66, 531–538 (1998).
[CrossRef]

DeMars, S.

Drobshoff, A.

Eckardt, R. C.

L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenburg, J. W. Pierce, “Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3,” J. Opt. Soc. Am. B 12, 2102–2116 (1995).
[CrossRef]

S. T. Yang, R. C. Eckardt, R. L. Byer, “Power and spectral characteristics of continuous-wave parametric oscillators: the doubly to singly resonant transition,” J. Opt. Soc. B 10, 1684–1695 (1993).
[CrossRef]

Fejer, M. M.

Field, S. J.

L. Huang, D. Hui, D. Bamford, S. J. Field, I. Mnushkina, L. E. Myers, J. V. Kayser, “Periodic poling of magnesium-oxide-doped stoichiometric lithium niobate grown by the top-seeded solution method,” Appl. Phys. B 72, 301–306 (2001).
[CrossRef]

Goldberg, L.

Harren, F.

F. Harren, J. Reuss, Encyclopedia of Applied Physics 19 (VCH, Cambridge, UK, 1997), pp. 413–435.

Hecker, A.

F. Kuhnemann, K. Schneider, A. Hecker, A. A. E. Martis, W. Urban, S. Schiller, J. Mlynek, “Photoacoustic trace-gas detection using a cw single-frequency parametric oscillator,” Appl. Phys. B 66, 741–745 (1998).
[CrossRef]

Huang, L.

L. Huang, D. Hui, D. Bamford, S. J. Field, I. Mnushkina, L. E. Myers, J. V. Kayser, “Periodic poling of magnesium-oxide-doped stoichiometric lithium niobate grown by the top-seeded solution method,” Appl. Phys. B 72, 301–306 (2001).
[CrossRef]

Hui, D.

L. Huang, D. Hui, D. Bamford, S. J. Field, I. Mnushkina, L. E. Myers, J. V. Kayser, “Periodic poling of magnesium-oxide-doped stoichiometric lithium niobate grown by the top-seeded solution method,” Appl. Phys. B 72, 301–306 (2001).
[CrossRef]

Kayser, J. V.

L. Huang, D. Hui, D. Bamford, S. J. Field, I. Mnushkina, L. E. Myers, J. V. Kayser, “Periodic poling of magnesium-oxide-doped stoichiometric lithium niobate grown by the top-seeded solution method,” Appl. Phys. B 72, 301–306 (2001).
[CrossRef]

Klein, M. E.

Kuhnemann, F.

F. Kuhnemann, K. Schneider, A. Hecker, A. A. E. Martis, W. Urban, S. Schiller, J. Mlynek, “Photoacoustic trace-gas detection using a cw single-frequency parametric oscillator,” Appl. Phys. B 66, 741–745 (1998).
[CrossRef]

Kulp, T. J.

K. W. Aniolek, T. J. Kulp, B. A. Richman, S. E. Bisson, “Cavity ringdown laser absorption spectroscopy with a 1-kHz mid-infrared periodically poled lithium niobate optical parametric generator/amplifier,” Chem. Phys. Lett. 302, 555–562 (1999).
[CrossRef]

P. E. Powers, T. J. Kulp, S. E. Bisson, “Continuous tuning of a cw periodically poled lithium niobate optical parametric oscillator by use of a fan-out design,” Opt. Lett. 23, 159–161 (1998).
[CrossRef]

K. W. Aniolek, T. J. Kulp, B. A. Richman, S. E. Bisson, P. E. Powers, R. L. Schmitt, “Trace gas detection in the mid-IR with a compact PPLN-based cavity ringdown spectrometer,” in Applications of Tunable Diode and Other Infrared Sources, A. Fried, ed. Proc. SPIE3758, 62–73 (1999).

Lang, R. J.

Laue, C. K.

Lee, D.-H.

Martis, A. A. E.

F. Kuhnemann, K. Schneider, A. Hecker, A. A. E. Martis, W. Urban, S. Schiller, J. Mlynek, “Photoacoustic trace-gas detection using a cw single-frequency parametric oscillator,” Appl. Phys. B 66, 741–745 (1998).
[CrossRef]

McElhanon, R. W.

McHugh, T.

M. Arbore, T. McHugh, “0.5 Watt, single-frequency, 1510–1630 nm, pump-and signal-resonant optical parametric oscillator,” in Conference on Lasers and Electro-Optics, in 2000 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2000), pp. 520–521.

Meyhuys, D. G.

Mlynek, J.

F. Kuhnemann, K. Schneider, A. Hecker, A. A. E. Martis, W. Urban, S. Schiller, J. Mlynek, “Photoacoustic trace-gas detection using a cw single-frequency parametric oscillator,” Appl. Phys. B 66, 741–745 (1998).
[CrossRef]

Mnushkina, I.

L. Huang, D. Hui, D. Bamford, S. J. Field, I. Mnushkina, L. E. Myers, J. V. Kayser, “Periodic poling of magnesium-oxide-doped stoichiometric lithium niobate grown by the top-seeded solution method,” Appl. Phys. B 72, 301–306 (2001).
[CrossRef]

Myers, L. E.

Nam, D. W.

Petrov, K. P.

K. P. Petrov, R. F. Curl, F. K. Tittel, “Compact laser difference-frequency spectrometer for multicomponent trace gas detection,” Appl. Phys. B 66, 531–538 (1998).
[CrossRef]

Pierce, J. W.

Powers, P. E.

P. E. Powers, T. J. Kulp, S. E. Bisson, “Continuous tuning of a cw periodically poled lithium niobate optical parametric oscillator by use of a fan-out design,” Opt. Lett. 23, 159–161 (1998).
[CrossRef]

K. W. Aniolek, T. J. Kulp, B. A. Richman, S. E. Bisson, P. E. Powers, R. L. Schmitt, “Trace gas detection in the mid-IR with a compact PPLN-based cavity ringdown spectrometer,” in Applications of Tunable Diode and Other Infrared Sources, A. Fried, ed. Proc. SPIE3758, 62–73 (1999).

Reuss, J.

F. Harren, J. Reuss, Encyclopedia of Applied Physics 19 (VCH, Cambridge, UK, 1997), pp. 413–435.

Richman, B. A.

K. W. Aniolek, T. J. Kulp, B. A. Richman, S. E. Bisson, “Cavity ringdown laser absorption spectroscopy with a 1-kHz mid-infrared periodically poled lithium niobate optical parametric generator/amplifier,” Chem. Phys. Lett. 302, 555–562 (1999).
[CrossRef]

K. W. Aniolek, T. J. Kulp, B. A. Richman, S. E. Bisson, P. E. Powers, R. L. Schmitt, “Trace gas detection in the mid-IR with a compact PPLN-based cavity ringdown spectrometer,” in Applications of Tunable Diode and Other Infrared Sources, A. Fried, ed. Proc. SPIE3758, 62–73 (1999).

Sanders, S.

Schiller, S.

F. Kuhnemann, K. Schneider, A. Hecker, A. A. E. Martis, W. Urban, S. Schiller, J. Mlynek, “Photoacoustic trace-gas detection using a cw single-frequency parametric oscillator,” Appl. Phys. B 66, 741–745 (1998).
[CrossRef]

Schmitt, R. L.

K. W. Aniolek, T. J. Kulp, B. A. Richman, S. E. Bisson, P. E. Powers, R. L. Schmitt, “Trace gas detection in the mid-IR with a compact PPLN-based cavity ringdown spectrometer,” in Applications of Tunable Diode and Other Infrared Sources, A. Fried, ed. Proc. SPIE3758, 62–73 (1999).

Schneider, K.

F. Kuhnemann, K. Schneider, A. Hecker, A. A. E. Martis, W. Urban, S. Schiller, J. Mlynek, “Photoacoustic trace-gas detection using a cw single-frequency parametric oscillator,” Appl. Phys. B 66, 741–745 (1998).
[CrossRef]

Smith, A. V.

Tittel, F. K.

K. P. Petrov, R. F. Curl, F. K. Tittel, “Compact laser difference-frequency spectrometer for multicomponent trace gas detection,” Appl. Phys. B 66, 531–538 (1998).
[CrossRef]

Urban, W.

F. Kuhnemann, K. Schneider, A. Hecker, A. A. E. Martis, W. Urban, S. Schiller, J. Mlynek, “Photoacoustic trace-gas detection using a cw single-frequency parametric oscillator,” Appl. Phys. B 66, 741–745 (1998).
[CrossRef]

Waarts, R. G.

Wallenstein, R.

Webjorn, J.

Welch, D. F.

Yang, S. T.

S. T. Yang, R. C. Eckardt, R. L. Byer, “Power and spectral characteristics of continuous-wave parametric oscillators: the doubly to singly resonant transition,” J. Opt. Soc. B 10, 1684–1695 (1993).
[CrossRef]

Appl. Phys. B (3)

K. P. Petrov, R. F. Curl, F. K. Tittel, “Compact laser difference-frequency spectrometer for multicomponent trace gas detection,” Appl. Phys. B 66, 531–538 (1998).
[CrossRef]

F. Kuhnemann, K. Schneider, A. Hecker, A. A. E. Martis, W. Urban, S. Schiller, J. Mlynek, “Photoacoustic trace-gas detection using a cw single-frequency parametric oscillator,” Appl. Phys. B 66, 741–745 (1998).
[CrossRef]

L. Huang, D. Hui, D. Bamford, S. J. Field, I. Mnushkina, L. E. Myers, J. V. Kayser, “Periodic poling of magnesium-oxide-doped stoichiometric lithium niobate grown by the top-seeded solution method,” Appl. Phys. B 72, 301–306 (2001).
[CrossRef]

Chem. Phys. Lett. (1)

K. W. Aniolek, T. J. Kulp, B. A. Richman, S. E. Bisson, “Cavity ringdown laser absorption spectroscopy with a 1-kHz mid-infrared periodically poled lithium niobate optical parametric generator/amplifier,” Chem. Phys. Lett. 302, 555–562 (1999).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Opt. Soc. B (1)

S. T. Yang, R. C. Eckardt, R. L. Byer, “Power and spectral characteristics of continuous-wave parametric oscillators: the doubly to singly resonant transition,” J. Opt. Soc. B 10, 1684–1695 (1993).
[CrossRef]

Opt. Lett. (6)

Other (5)

F. Harren, J. Reuss, Encyclopedia of Applied Physics 19 (VCH, Cambridge, UK, 1997), pp. 413–435.

K. W. Aniolek, T. J. Kulp, B. A. Richman, S. E. Bisson, P. E. Powers, R. L. Schmitt, “Trace gas detection in the mid-IR with a compact PPLN-based cavity ringdown spectrometer,” in Applications of Tunable Diode and Other Infrared Sources, A. Fried, ed. Proc. SPIE3758, 62–73 (1999).

SNLO code available at www.sandia.gov/imrl/XWEB1128/XP1128.htm .

M. Arbore, T. McHugh, “0.5 Watt, single-frequency, 1510–1630 nm, pump-and signal-resonant optical parametric oscillator,” in Conference on Lasers and Electro-Optics, in 2000 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2000), pp. 520–521.

USF HITRAN PC available from Ontar Corporation, 9 Village Way, North Andover, MA 01845-2000, telephone 978-689-9622, www.ontar.com .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic diagram of the cw ring OPO. In this research the PPLN crystal was actually oriented perpendicular to the plane of the ring, opposite to that shown. The piezo driver on the planer cavity mirror was used only for continuous tuning.

Fig. 2
Fig. 2

Variable grating PPLN structure. Crystal dimensions are 0.5 mm thick × 2 cm wide × 5 cm long. Arrows within the crystal indicate the poling direction. The pump, signal, and idler beams propagated along the x axis, sampling only one periodicity.

Fig. 3
Fig. 3

Rotating etalon scan with a 400-µm-thick solid YAG etalon. For this scan the PPLN crystal was translated synchronously with the etalon rotation, which resulted in each etalon scan being displaced from the previous scan. In this way a broad spectral range could be covered. The jump near point 600 is an etalon mode hop.

Fig. 4
Fig. 4

Q-branch spectrum of methane acquired with the 400-µm-thick rotating solid etalon in the OPO cavity. For comparison a theoretical HITRAN spectrum is overlaid. The discrete nature of the tuning is barely perceptible.

Fig. 5
Fig. 5

Mode hop scan greater than 14 cm-1 obtained by synchronous scanning of the PPLN crystal and a 1.5-mm airspaced etalon. Some etalon mode hops are evident.

Fig. 6
Fig. 6

Spatial-mode profile of the idler beam under normal operation with the etalon centered on the PPLN gain curve. The beam was observed in the far field at a distance of ∼3 m. The horizontal axis was rotated 90° by the camera.

Fig. 7
Fig. 7

Spatial-mode profile of the idler beam when the OPO hopped an etalon mode. This image was acquired in the same conditions as in Fig. 6.

Fig. 8
Fig. 8

Slices of the above images illustrating the magnitude of the shoulder after an etalon mode hop. When multiplied by the transverse beam radius squared, we see that the power contained within the shoulder is quite significant. The sharp nature of the profile is due to under filling of the camera array, giving a poor spatial resolution.

Metrics