Abstract

The temperature and pump power dependence of infrared luminescence of Cr4+:forsterite are measured. It is demonstrated that temperature-dependent fluorescence in Cr4+:forsterite is the major reason for saturation of the output power of a continuous-wave laser. At higher pump intensities the temperature rise inside the crystal becomes significant, and even outside cooling does not help to prevent significant reduction of the laser performance. These measurements serve as a guideline to construct a high-power continuous-wave Cr4+:forsterite laser.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Shimizu, K. Kumada, N. Yamanaka, N. Iwai, T. Mukaihara, A. Kasakawa, “1.3-µm InAsP modulation-doped MQW lasers,” IEEE J. Quantum Electron. 36, 728–735 (2000).
    [CrossRef]
  2. B. Golubovich, B. E. Bouma, G. J. Tearney, J. G. Fujimoto, “Optical frequency-domain reflectometry using rapid wavelength tuning of a Cr4+:forsterite laser,” Opt. Lett. 22, 1704–1706 (1997).
    [CrossRef]
  3. E. Abraham, E. Bordenave, N. Tsurumachi, G. Jonusauskas, J. Oberle, C. Rulliere, A. Mito, “Real-time two-dimensional imaging in media by use of a femtosecond Cr4+:forsterite laser,” Opt. Lett. 25, 929–931 (2000).
    [CrossRef]
  4. C. Xu, W. Denk, “Two-photon optical beam induced current imaging through the backside of integrated circuits,” Appl. Phys. Lett. 71, 2578–2580 (1997).
    [CrossRef]
  5. F. Rotermund, V. Petrov, “Mercury thiogalate mid-infrared femtosecond optical parametric generator pumped at 1.25 µm by a Cr4+:forsterite regenerative amplifier,” Opt. Lett. 25, 746–748 (2000).
    [CrossRef]
  6. V. Petricevic, S. K. Gayen, R. R. Alfano, K. Yamagishi, H. Anzai, Y. Yamaguchi, “Laser action in chromium-doped forsterite,” Appl. Phys. Lett. 52, 1040–1042 (1988).
    [CrossRef]
  7. I. T. McKinnie, L. A. W. Gloster, Z. X. Jiang, T. A. King, “Chromium-doped forsterite: the influence of crystal characteristics on laser performance,” Appl. Opt. 35, 4159–4165 (1996).
    [CrossRef] [PubMed]
  8. V. Petricevic, S. K. Gayen, R. R. Alfano, “Continuous-wave laser operation of chromium-doped forsterite,” Opt. Lett. 14, 612–614 (1989).
    [CrossRef] [PubMed]
  9. V. Yanovsky, Y. Pang, F. Wise, B. Minkov, “Generation of 25-fs pulses from a self-mode-locked Cr:forsterite laser with optimized group delay,” Opt. Lett. 18, 1541–1543 (1993).
    [CrossRef]
  10. A. Ivanov, B. Minkov, G. Jonusauskas, J. Oberle, C. Rulliere, “Influence of Cr4+ ion concentration on cw operation of a forsterite laser and its relation to thermal problems,” Opt. Commun. 116, 131–135 (1995).
    [CrossRef]
  11. T. J. Carrig, C. R. Pollock, “Performance of a continuous-wave forsterite laser with krypton ion, Ti:sapphire, and Nd:YAG pump lasers,” IEEE J. Quantum Electron. 29, 2835–2844 (1993).
    [CrossRef]
  12. A. Agnesi, E. Piccinini, G. C. Reali, “Influence of thermal effects in Kerr-lens mode-locked femtosecond Cr4+:forsterite lasers,” Opt. Commun. 135, 77–82 (1997).
    [CrossRef]
  13. N. Zhavoronkov, A. Avtukh, V. Mikhailov, “Chromium-doped forsterite laser with 1.1 W of continuous-wave output power at room temperature,” Appl. Opt. 36, 8601–8605 (1997).
    [CrossRef]
  14. H. R. Verdun, L. Merkle, “Evidence of excited-state absorption of pump radiation in the Cr4+:forsterite laser,” in Advanced Solid State Lasers, B. Chai, S. Payne, eds., Vol. 10 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 35–40.
  15. A. Sennaroglu, B. Pekerten, “Determination of the optimum absorption coefficient in Cr4+:forsterite lasers under thermal loading,” Opt. Lett. 23, 361–363 (1998).
    [CrossRef]
  16. A. Sennaroglu, B. Pekerten, “Experimental and numerical investigation of thermal effects in end-pumped Cr4+:forsterite lasers near room temperature,” IEEE J. Quantum Electron. 34, 1996–2005 (1998).
    [CrossRef]
  17. D. Bimberg, M. Sondergeld, E. Grobe, “Thermal dissociation of exitons to neutral acceptors in high-purity GaAs,” Phys. Rev. B 48, 3451–3455 (1971).
    [CrossRef]
  18. V. V. Yakovlev, A. A. Ivanov, V. Shcheslavskiy, A. B. Vasilyev, B. I. Minkov, “High-power operation of continuous-wave Cr4+:forsterite laser: excited state absorption versus crystal temperature,” in Solid State Lasers, R. Scheps, ed., Proc. SPIE4267, 46–55 (2001).

2000

1998

A. Sennaroglu, B. Pekerten, “Determination of the optimum absorption coefficient in Cr4+:forsterite lasers under thermal loading,” Opt. Lett. 23, 361–363 (1998).
[CrossRef]

A. Sennaroglu, B. Pekerten, “Experimental and numerical investigation of thermal effects in end-pumped Cr4+:forsterite lasers near room temperature,” IEEE J. Quantum Electron. 34, 1996–2005 (1998).
[CrossRef]

1997

A. Agnesi, E. Piccinini, G. C. Reali, “Influence of thermal effects in Kerr-lens mode-locked femtosecond Cr4+:forsterite lasers,” Opt. Commun. 135, 77–82 (1997).
[CrossRef]

N. Zhavoronkov, A. Avtukh, V. Mikhailov, “Chromium-doped forsterite laser with 1.1 W of continuous-wave output power at room temperature,” Appl. Opt. 36, 8601–8605 (1997).
[CrossRef]

C. Xu, W. Denk, “Two-photon optical beam induced current imaging through the backside of integrated circuits,” Appl. Phys. Lett. 71, 2578–2580 (1997).
[CrossRef]

B. Golubovich, B. E. Bouma, G. J. Tearney, J. G. Fujimoto, “Optical frequency-domain reflectometry using rapid wavelength tuning of a Cr4+:forsterite laser,” Opt. Lett. 22, 1704–1706 (1997).
[CrossRef]

1996

1995

A. Ivanov, B. Minkov, G. Jonusauskas, J. Oberle, C. Rulliere, “Influence of Cr4+ ion concentration on cw operation of a forsterite laser and its relation to thermal problems,” Opt. Commun. 116, 131–135 (1995).
[CrossRef]

1993

T. J. Carrig, C. R. Pollock, “Performance of a continuous-wave forsterite laser with krypton ion, Ti:sapphire, and Nd:YAG pump lasers,” IEEE J. Quantum Electron. 29, 2835–2844 (1993).
[CrossRef]

V. Yanovsky, Y. Pang, F. Wise, B. Minkov, “Generation of 25-fs pulses from a self-mode-locked Cr:forsterite laser with optimized group delay,” Opt. Lett. 18, 1541–1543 (1993).
[CrossRef]

1989

1988

V. Petricevic, S. K. Gayen, R. R. Alfano, K. Yamagishi, H. Anzai, Y. Yamaguchi, “Laser action in chromium-doped forsterite,” Appl. Phys. Lett. 52, 1040–1042 (1988).
[CrossRef]

1971

D. Bimberg, M. Sondergeld, E. Grobe, “Thermal dissociation of exitons to neutral acceptors in high-purity GaAs,” Phys. Rev. B 48, 3451–3455 (1971).
[CrossRef]

Abraham, E.

Agnesi, A.

A. Agnesi, E. Piccinini, G. C. Reali, “Influence of thermal effects in Kerr-lens mode-locked femtosecond Cr4+:forsterite lasers,” Opt. Commun. 135, 77–82 (1997).
[CrossRef]

Alfano, R. R.

V. Petricevic, S. K. Gayen, R. R. Alfano, “Continuous-wave laser operation of chromium-doped forsterite,” Opt. Lett. 14, 612–614 (1989).
[CrossRef] [PubMed]

V. Petricevic, S. K. Gayen, R. R. Alfano, K. Yamagishi, H. Anzai, Y. Yamaguchi, “Laser action in chromium-doped forsterite,” Appl. Phys. Lett. 52, 1040–1042 (1988).
[CrossRef]

Anzai, H.

V. Petricevic, S. K. Gayen, R. R. Alfano, K. Yamagishi, H. Anzai, Y. Yamaguchi, “Laser action in chromium-doped forsterite,” Appl. Phys. Lett. 52, 1040–1042 (1988).
[CrossRef]

Avtukh, A.

Bimberg, D.

D. Bimberg, M. Sondergeld, E. Grobe, “Thermal dissociation of exitons to neutral acceptors in high-purity GaAs,” Phys. Rev. B 48, 3451–3455 (1971).
[CrossRef]

Bordenave, E.

Bouma, B. E.

Carrig, T. J.

T. J. Carrig, C. R. Pollock, “Performance of a continuous-wave forsterite laser with krypton ion, Ti:sapphire, and Nd:YAG pump lasers,” IEEE J. Quantum Electron. 29, 2835–2844 (1993).
[CrossRef]

Denk, W.

C. Xu, W. Denk, “Two-photon optical beam induced current imaging through the backside of integrated circuits,” Appl. Phys. Lett. 71, 2578–2580 (1997).
[CrossRef]

Fujimoto, J. G.

Gayen, S. K.

V. Petricevic, S. K. Gayen, R. R. Alfano, “Continuous-wave laser operation of chromium-doped forsterite,” Opt. Lett. 14, 612–614 (1989).
[CrossRef] [PubMed]

V. Petricevic, S. K. Gayen, R. R. Alfano, K. Yamagishi, H. Anzai, Y. Yamaguchi, “Laser action in chromium-doped forsterite,” Appl. Phys. Lett. 52, 1040–1042 (1988).
[CrossRef]

Gloster, L. A. W.

Golubovich, B.

Grobe, E.

D. Bimberg, M. Sondergeld, E. Grobe, “Thermal dissociation of exitons to neutral acceptors in high-purity GaAs,” Phys. Rev. B 48, 3451–3455 (1971).
[CrossRef]

Ivanov, A.

A. Ivanov, B. Minkov, G. Jonusauskas, J. Oberle, C. Rulliere, “Influence of Cr4+ ion concentration on cw operation of a forsterite laser and its relation to thermal problems,” Opt. Commun. 116, 131–135 (1995).
[CrossRef]

Ivanov, A. A.

V. V. Yakovlev, A. A. Ivanov, V. Shcheslavskiy, A. B. Vasilyev, B. I. Minkov, “High-power operation of continuous-wave Cr4+:forsterite laser: excited state absorption versus crystal temperature,” in Solid State Lasers, R. Scheps, ed., Proc. SPIE4267, 46–55 (2001).

Iwai, N.

H. Shimizu, K. Kumada, N. Yamanaka, N. Iwai, T. Mukaihara, A. Kasakawa, “1.3-µm InAsP modulation-doped MQW lasers,” IEEE J. Quantum Electron. 36, 728–735 (2000).
[CrossRef]

Jiang, Z. X.

Jonusauskas, G.

E. Abraham, E. Bordenave, N. Tsurumachi, G. Jonusauskas, J. Oberle, C. Rulliere, A. Mito, “Real-time two-dimensional imaging in media by use of a femtosecond Cr4+:forsterite laser,” Opt. Lett. 25, 929–931 (2000).
[CrossRef]

A. Ivanov, B. Minkov, G. Jonusauskas, J. Oberle, C. Rulliere, “Influence of Cr4+ ion concentration on cw operation of a forsterite laser and its relation to thermal problems,” Opt. Commun. 116, 131–135 (1995).
[CrossRef]

Kasakawa, A.

H. Shimizu, K. Kumada, N. Yamanaka, N. Iwai, T. Mukaihara, A. Kasakawa, “1.3-µm InAsP modulation-doped MQW lasers,” IEEE J. Quantum Electron. 36, 728–735 (2000).
[CrossRef]

King, T. A.

Kumada, K.

H. Shimizu, K. Kumada, N. Yamanaka, N. Iwai, T. Mukaihara, A. Kasakawa, “1.3-µm InAsP modulation-doped MQW lasers,” IEEE J. Quantum Electron. 36, 728–735 (2000).
[CrossRef]

McKinnie, I. T.

Merkle, L.

H. R. Verdun, L. Merkle, “Evidence of excited-state absorption of pump radiation in the Cr4+:forsterite laser,” in Advanced Solid State Lasers, B. Chai, S. Payne, eds., Vol. 10 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 35–40.

Mikhailov, V.

Minkov, B.

A. Ivanov, B. Minkov, G. Jonusauskas, J. Oberle, C. Rulliere, “Influence of Cr4+ ion concentration on cw operation of a forsterite laser and its relation to thermal problems,” Opt. Commun. 116, 131–135 (1995).
[CrossRef]

V. Yanovsky, Y. Pang, F. Wise, B. Minkov, “Generation of 25-fs pulses from a self-mode-locked Cr:forsterite laser with optimized group delay,” Opt. Lett. 18, 1541–1543 (1993).
[CrossRef]

Minkov, B. I.

V. V. Yakovlev, A. A. Ivanov, V. Shcheslavskiy, A. B. Vasilyev, B. I. Minkov, “High-power operation of continuous-wave Cr4+:forsterite laser: excited state absorption versus crystal temperature,” in Solid State Lasers, R. Scheps, ed., Proc. SPIE4267, 46–55 (2001).

Mito, A.

Mukaihara, T.

H. Shimizu, K. Kumada, N. Yamanaka, N. Iwai, T. Mukaihara, A. Kasakawa, “1.3-µm InAsP modulation-doped MQW lasers,” IEEE J. Quantum Electron. 36, 728–735 (2000).
[CrossRef]

Oberle, J.

E. Abraham, E. Bordenave, N. Tsurumachi, G. Jonusauskas, J. Oberle, C. Rulliere, A. Mito, “Real-time two-dimensional imaging in media by use of a femtosecond Cr4+:forsterite laser,” Opt. Lett. 25, 929–931 (2000).
[CrossRef]

A. Ivanov, B. Minkov, G. Jonusauskas, J. Oberle, C. Rulliere, “Influence of Cr4+ ion concentration on cw operation of a forsterite laser and its relation to thermal problems,” Opt. Commun. 116, 131–135 (1995).
[CrossRef]

Pang, Y.

Pekerten, B.

A. Sennaroglu, B. Pekerten, “Experimental and numerical investigation of thermal effects in end-pumped Cr4+:forsterite lasers near room temperature,” IEEE J. Quantum Electron. 34, 1996–2005 (1998).
[CrossRef]

A. Sennaroglu, B. Pekerten, “Determination of the optimum absorption coefficient in Cr4+:forsterite lasers under thermal loading,” Opt. Lett. 23, 361–363 (1998).
[CrossRef]

Petricevic, V.

V. Petricevic, S. K. Gayen, R. R. Alfano, “Continuous-wave laser operation of chromium-doped forsterite,” Opt. Lett. 14, 612–614 (1989).
[CrossRef] [PubMed]

V. Petricevic, S. K. Gayen, R. R. Alfano, K. Yamagishi, H. Anzai, Y. Yamaguchi, “Laser action in chromium-doped forsterite,” Appl. Phys. Lett. 52, 1040–1042 (1988).
[CrossRef]

Petrov, V.

Piccinini, E.

A. Agnesi, E. Piccinini, G. C. Reali, “Influence of thermal effects in Kerr-lens mode-locked femtosecond Cr4+:forsterite lasers,” Opt. Commun. 135, 77–82 (1997).
[CrossRef]

Pollock, C. R.

T. J. Carrig, C. R. Pollock, “Performance of a continuous-wave forsterite laser with krypton ion, Ti:sapphire, and Nd:YAG pump lasers,” IEEE J. Quantum Electron. 29, 2835–2844 (1993).
[CrossRef]

Reali, G. C.

A. Agnesi, E. Piccinini, G. C. Reali, “Influence of thermal effects in Kerr-lens mode-locked femtosecond Cr4+:forsterite lasers,” Opt. Commun. 135, 77–82 (1997).
[CrossRef]

Rotermund, F.

Rulliere, C.

E. Abraham, E. Bordenave, N. Tsurumachi, G. Jonusauskas, J. Oberle, C. Rulliere, A. Mito, “Real-time two-dimensional imaging in media by use of a femtosecond Cr4+:forsterite laser,” Opt. Lett. 25, 929–931 (2000).
[CrossRef]

A. Ivanov, B. Minkov, G. Jonusauskas, J. Oberle, C. Rulliere, “Influence of Cr4+ ion concentration on cw operation of a forsterite laser and its relation to thermal problems,” Opt. Commun. 116, 131–135 (1995).
[CrossRef]

Sennaroglu, A.

A. Sennaroglu, B. Pekerten, “Experimental and numerical investigation of thermal effects in end-pumped Cr4+:forsterite lasers near room temperature,” IEEE J. Quantum Electron. 34, 1996–2005 (1998).
[CrossRef]

A. Sennaroglu, B. Pekerten, “Determination of the optimum absorption coefficient in Cr4+:forsterite lasers under thermal loading,” Opt. Lett. 23, 361–363 (1998).
[CrossRef]

Shcheslavskiy, V.

V. V. Yakovlev, A. A. Ivanov, V. Shcheslavskiy, A. B. Vasilyev, B. I. Minkov, “High-power operation of continuous-wave Cr4+:forsterite laser: excited state absorption versus crystal temperature,” in Solid State Lasers, R. Scheps, ed., Proc. SPIE4267, 46–55 (2001).

Shimizu, H.

H. Shimizu, K. Kumada, N. Yamanaka, N. Iwai, T. Mukaihara, A. Kasakawa, “1.3-µm InAsP modulation-doped MQW lasers,” IEEE J. Quantum Electron. 36, 728–735 (2000).
[CrossRef]

Sondergeld, M.

D. Bimberg, M. Sondergeld, E. Grobe, “Thermal dissociation of exitons to neutral acceptors in high-purity GaAs,” Phys. Rev. B 48, 3451–3455 (1971).
[CrossRef]

Tearney, G. J.

Tsurumachi, N.

Vasilyev, A. B.

V. V. Yakovlev, A. A. Ivanov, V. Shcheslavskiy, A. B. Vasilyev, B. I. Minkov, “High-power operation of continuous-wave Cr4+:forsterite laser: excited state absorption versus crystal temperature,” in Solid State Lasers, R. Scheps, ed., Proc. SPIE4267, 46–55 (2001).

Verdun, H. R.

H. R. Verdun, L. Merkle, “Evidence of excited-state absorption of pump radiation in the Cr4+:forsterite laser,” in Advanced Solid State Lasers, B. Chai, S. Payne, eds., Vol. 10 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 35–40.

Wise, F.

Xu, C.

C. Xu, W. Denk, “Two-photon optical beam induced current imaging through the backside of integrated circuits,” Appl. Phys. Lett. 71, 2578–2580 (1997).
[CrossRef]

Yakovlev, V. V.

V. V. Yakovlev, A. A. Ivanov, V. Shcheslavskiy, A. B. Vasilyev, B. I. Minkov, “High-power operation of continuous-wave Cr4+:forsterite laser: excited state absorption versus crystal temperature,” in Solid State Lasers, R. Scheps, ed., Proc. SPIE4267, 46–55 (2001).

Yamagishi, K.

V. Petricevic, S. K. Gayen, R. R. Alfano, K. Yamagishi, H. Anzai, Y. Yamaguchi, “Laser action in chromium-doped forsterite,” Appl. Phys. Lett. 52, 1040–1042 (1988).
[CrossRef]

Yamaguchi, Y.

V. Petricevic, S. K. Gayen, R. R. Alfano, K. Yamagishi, H. Anzai, Y. Yamaguchi, “Laser action in chromium-doped forsterite,” Appl. Phys. Lett. 52, 1040–1042 (1988).
[CrossRef]

Yamanaka, N.

H. Shimizu, K. Kumada, N. Yamanaka, N. Iwai, T. Mukaihara, A. Kasakawa, “1.3-µm InAsP modulation-doped MQW lasers,” IEEE J. Quantum Electron. 36, 728–735 (2000).
[CrossRef]

Yanovsky, V.

Zhavoronkov, N.

Appl. Opt.

Appl. Phys. Lett.

V. Petricevic, S. K. Gayen, R. R. Alfano, K. Yamagishi, H. Anzai, Y. Yamaguchi, “Laser action in chromium-doped forsterite,” Appl. Phys. Lett. 52, 1040–1042 (1988).
[CrossRef]

C. Xu, W. Denk, “Two-photon optical beam induced current imaging through the backside of integrated circuits,” Appl. Phys. Lett. 71, 2578–2580 (1997).
[CrossRef]

IEEE J. Quantum Electron.

H. Shimizu, K. Kumada, N. Yamanaka, N. Iwai, T. Mukaihara, A. Kasakawa, “1.3-µm InAsP modulation-doped MQW lasers,” IEEE J. Quantum Electron. 36, 728–735 (2000).
[CrossRef]

T. J. Carrig, C. R. Pollock, “Performance of a continuous-wave forsterite laser with krypton ion, Ti:sapphire, and Nd:YAG pump lasers,” IEEE J. Quantum Electron. 29, 2835–2844 (1993).
[CrossRef]

A. Sennaroglu, B. Pekerten, “Experimental and numerical investigation of thermal effects in end-pumped Cr4+:forsterite lasers near room temperature,” IEEE J. Quantum Electron. 34, 1996–2005 (1998).
[CrossRef]

Opt. Commun.

A. Agnesi, E. Piccinini, G. C. Reali, “Influence of thermal effects in Kerr-lens mode-locked femtosecond Cr4+:forsterite lasers,” Opt. Commun. 135, 77–82 (1997).
[CrossRef]

A. Ivanov, B. Minkov, G. Jonusauskas, J. Oberle, C. Rulliere, “Influence of Cr4+ ion concentration on cw operation of a forsterite laser and its relation to thermal problems,” Opt. Commun. 116, 131–135 (1995).
[CrossRef]

Opt. Lett.

Phys. Rev. B

D. Bimberg, M. Sondergeld, E. Grobe, “Thermal dissociation of exitons to neutral acceptors in high-purity GaAs,” Phys. Rev. B 48, 3451–3455 (1971).
[CrossRef]

Other

V. V. Yakovlev, A. A. Ivanov, V. Shcheslavskiy, A. B. Vasilyev, B. I. Minkov, “High-power operation of continuous-wave Cr4+:forsterite laser: excited state absorption versus crystal temperature,” in Solid State Lasers, R. Scheps, ed., Proc. SPIE4267, 46–55 (2001).

H. R. Verdun, L. Merkle, “Evidence of excited-state absorption of pump radiation in the Cr4+:forsterite laser,” in Advanced Solid State Lasers, B. Chai, S. Payne, eds., Vol. 10 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 35–40.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental layout of a cw Cr4+:forsterite laser.

Fig. 2
Fig. 2

Output power of a cw Cr4+:forsterite laser as a function of pump power (1.064 µm) for different crystal holder temperatures: squares, t = 1.5 °C; circles, t = 6.5 °C; triangles, t = 16.5 °C.

Fig. 3
Fig. 3

Integrated luminescence intensity of Cr4+:forsterite crystal as a function of pump power (1.064 µm) for different crystal holder temperatures: squares, t = 6 °C; crosses, t = 16 °C; circles, t = 26 °C; diamonds, t = 36 °C.

Fig. 4
Fig. 4

Logarithm of integrated luminescence intensity as a function of inverse temperature Θ [see relation (3)] for different absorbed pump powers: squares, 1.18 W; circles, 1.74 W; triangles, 2.32 W; diamonds, 3.43 W; crosses, 4.55 W; stars, 5.5 W. The solid lines represent the slopes of these dependences, assuming that E a = 200 meV [see relation (3)].

Fig. 5
Fig. 5

Integrated luminescence intensity of Cr4+:forsterite crystal as a function of pump power (1.064 µm) for different crystal holder temperatures obtained with Eqs. (1) and (2) and relation (3): points, experimental data; curves, theoretical simulations; squares and solid curve, t = 6 °C; crosses and dashed curve, t = 16 °C; circles and dotted curve, t = 26 °C; triangles and dash–dot curve, t = 36 °C.

Fig. 6
Fig. 6

Output power of a cw Cr4+:forsterite laser pumped with a Yb:fiber (1064 nm) laser for different output couplers: squares, 8%; circles, 4%; triangles, 2.2%. The pump power was measured in front of the laser beam. The crystal holder temperature was maintained at 0 °C. The solid lines were drawn as a guide for the eye.

Fig. 7
Fig. 7

Output power of a cw Cr4+:forsterite laser for different crystal holder temperatures: squares, 0 °C, triangles, 10 °C, inverted triangles, 15 °C. The pump power was measured in front of the laser crystal. We used an output coupler with 2.2% transmission at 1250 nm. The solid lines were drawn as a guide for the eye.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ΔT=KPpump W,
Θ=1/273.15+t+ΔT,
Pluminescence  Ppump1+C exp-Ea Θ,

Metrics