Abstract

An optical sensor for real-time monitoring of laser welding based on a spectroscopic study of the optical emission of plasma plumes has been developed. The welding plasma’s electron temperature was contemporarily monitored for three of the chemical species that constitute the plasma plume by use of related emission lines. The evolution of electron temperature was recorded and analyzed during several welding procedures carried out under various operating conditions. A clear correlation between the mean value and the standard deviation of the plasma’s electron temperature and the quality of the welded joint has been found. We used this information to find optimal welding parameters and for real-time detection of weld defects such as crater formation, lack of penetration, weld disruptions, and seam oxidation.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. A. Stone, J. S. Smith, J. Lucas, “Sensor for automated weld bead penetration control,” Meas. Sci. Technol. 1, 1143–1143 (1990).
    [CrossRef]
  2. D. A. Stone, J. S. Smith, J. Lucas, “Sensor for automated front face weldbead area control,” Meas. Sci. Technol. 3, 263–269 (1991).
    [CrossRef]
  3. D. A. Stone, J. S. Smith, J. Lucas, “Sensor for automated frontface weldbead area control,” Meas. Sci. Technol. 5, 93–99 (1994).
    [CrossRef]
  4. A. Bicknell, J. S. Smith, J. Lucas, “Infrared sensor for top face monitoring of weld pools,” Meas. Sci. Technol. 5, 371–378 (1994).
    [CrossRef]
  5. L. Li, D. J. Brookfield, W. M. Steen, “Plasma charge sensor for in-process, non-contact monitoring of the laser welding process,” Meas. Sci. Technol. 7, 615–626 (1996).
    [CrossRef]
  6. H. Gu, W. W. Duley, “A statistical approach to acoustic monitoring of laser welding,” J. Phys. D 29, 556–561 (1996).
    [CrossRef]
  7. D. P. Hand, C. Peters, J. D. C. Jones, “Nd:YAG laser welding process monitoring by non-intrusive optical detection in the fibre optic delivery system,” Meas. Sci. Technol. 6, 1389–1389 (1995).
    [CrossRef]
  8. P. Sforza, D. de Blasiis, V. Lombardo, V. Santacesaria, M. Dell’Erba, “A three-modules sensor for CO2 laser welding and cutting processes,” in Projection Displays, M. H. Wu, ed., Proc. SPIE.2407, 116–126 (1994).
  9. J. Beersiek, R. Proprawe, W. Schulz, H. Gu, R. E. Muller, W. W. Duley, “On-line monitoring of penetration depth in laser beam welding,” in Laser Materials Processing’s, Proceedings of the 18th International Congress on Applications of Lasers and Electro-Optics, 15–18 November, 1999, San Diego, Calif., P. Christiansen, P. Denney, I. Miyamoto, K. Watkins, eds. (Laser Institute of America, Orlando, Fla., 1999), sect. D, pp. 49–58.
  10. S. Biermann, A. Topkaya, M. Jagiella, “Capacitive clearence sensor system for high quality Nd:YAG laser cutting and welding of sheet metal,” in Proceedings of the 4th European Conference on Laser Treatment of Materials, 12–15 October 1992, Gottingen, Germany, B. L. Mordike, ed. (DGM-Informationsgesellschaft Verlag, Oberursel, Germany, 1992), sect. 110, pp. 51–55.
  11. F. M. Haran, D. P. Hand, C. Peters, J. D. C. Jones, “Focus control system for laser welding,” Appl. Opt. 36, 5246–5251 (1997).
    [CrossRef] [PubMed]
  12. Jurca Optoelektronik GmbH, model LWM900.
  13. J. Dowden, P. Kapadia, N. Postacioglu, “An analysis of the laser–plasma interaction in laser keyhole welding,” J. Phys. D 22, 741–749 (1989).
    [CrossRef]
  14. B. R. Finke, P. D. Kapadia, J. R. Dowden, “A fundamental plasma based model for energy transfer in laser material processing,” J. Phys. D 23, 643–655 (1990).
    [CrossRef]
  15. U. Dilthey, A. Goumeniouk, V. Lopota, G. Turichin, “Kinetic description of keyhole plasma in laser welding,” J. Phys. D 33, 2747–2753 (2000).
    [CrossRef]
  16. W. Sokolowski, G. Herziger, E. Beyer, “Spectral plasma diagnostics in welding with CO2 lasers,” in High-power CO2 Laser Systems and Applications, A. Quenzer, ed., Proc. SPIE1020, 96–102 (1998).
    [CrossRef]
  17. W. Sokolowski, G. Herziger, E. Beyer, “Spectroscopic study of laser induced plasma in the welding process of steel and aluminum,” in Glasses for Optoelectronics, G. C. Righini, ed., Proc. SPIE1128, 328–335 (1989).
  18. T. J. Rockstroh, J. Mazumder, “Spectroscopic studies of plasma during cw laser materials interaction,” J. Appl. Phys. 61, 917–923 (1987).
    [CrossRef]
  19. J. T. Knudtson, W. B. Green, D. G. Sutton, “The UV–visible spectroscopy of laser-produced aluminum plasmas,” J. Appl. Phys. 61, 4771–4780 (1987).
    [CrossRef]
  20. A. Poueyo-Verwaerde, R. Fabbro, G. Deshors, D. Frutos, P. Orza, “Experimental study of laser induced plasma in welding conditions with continuous CO2 laser,” J. Appl. Phys. 74, 5773–5780 (1993).
    [CrossRef]
  21. Z. Szymanski, J. Kurzyna, “Spectroscopic measurement of laser induced plasma during welding with CO2 laser,” J. Appl. Phys. 76, 7750–7756 (1994).
    [CrossRef]
  22. D. Lacroix, G. Jeandel, C. Boudot, “Spectroscopic characterization of laser-induced plasma created during welding with a pulsed Nd:YAG laser,” J. Appl. Phys. 81, 6599–6606 (1997).
    [CrossRef]
  23. Z. Szymanski, J. Kurzyna, W. Kalita, “The spectroscopy of the plasma plume induced during laser welding of stainless steel and titanium,” J. Phys. D 30, 3153–3162 (1997).
    [CrossRef]
  24. J. Mazumder, T. J. Rockstroh, H. Krier, “Spectroscopic studies of plasma during cw laser gas heating in flowing argon,” J. Appl. Phys. 62, 4712–4718 (1987).
    [CrossRef]
  25. H. R. Griem, Plasma Spectroscopy (McGraw-Hill, New York, 1964), Chap. 14.
  26. R. Miller, T. DebRoy, “Energy absorption by metal-vapor-dominated plasma during carbon dioxide laser welding of steels,” J. Appl. Phys. 68, 2045–2050 (1990).
    [CrossRef]
  27. M. Ferrara, A. Ancona, P. M. Lugarà, M. Sibilano, “On-line quality monitoring of welding processes by means of plasma optical spectroscopy,” in High-Power Lasers in Manufacturing, X. Chen, T. Fujiioka, A. Matsunawa, eds., Proc. SPIE3888, 750–758 (2000).
    [CrossRef]

2000

U. Dilthey, A. Goumeniouk, V. Lopota, G. Turichin, “Kinetic description of keyhole plasma in laser welding,” J. Phys. D 33, 2747–2753 (2000).
[CrossRef]

1997

D. Lacroix, G. Jeandel, C. Boudot, “Spectroscopic characterization of laser-induced plasma created during welding with a pulsed Nd:YAG laser,” J. Appl. Phys. 81, 6599–6606 (1997).
[CrossRef]

Z. Szymanski, J. Kurzyna, W. Kalita, “The spectroscopy of the plasma plume induced during laser welding of stainless steel and titanium,” J. Phys. D 30, 3153–3162 (1997).
[CrossRef]

F. M. Haran, D. P. Hand, C. Peters, J. D. C. Jones, “Focus control system for laser welding,” Appl. Opt. 36, 5246–5251 (1997).
[CrossRef] [PubMed]

1996

L. Li, D. J. Brookfield, W. M. Steen, “Plasma charge sensor for in-process, non-contact monitoring of the laser welding process,” Meas. Sci. Technol. 7, 615–626 (1996).
[CrossRef]

H. Gu, W. W. Duley, “A statistical approach to acoustic monitoring of laser welding,” J. Phys. D 29, 556–561 (1996).
[CrossRef]

1995

D. P. Hand, C. Peters, J. D. C. Jones, “Nd:YAG laser welding process monitoring by non-intrusive optical detection in the fibre optic delivery system,” Meas. Sci. Technol. 6, 1389–1389 (1995).
[CrossRef]

1994

D. A. Stone, J. S. Smith, J. Lucas, “Sensor for automated frontface weldbead area control,” Meas. Sci. Technol. 5, 93–99 (1994).
[CrossRef]

A. Bicknell, J. S. Smith, J. Lucas, “Infrared sensor for top face monitoring of weld pools,” Meas. Sci. Technol. 5, 371–378 (1994).
[CrossRef]

Z. Szymanski, J. Kurzyna, “Spectroscopic measurement of laser induced plasma during welding with CO2 laser,” J. Appl. Phys. 76, 7750–7756 (1994).
[CrossRef]

1993

A. Poueyo-Verwaerde, R. Fabbro, G. Deshors, D. Frutos, P. Orza, “Experimental study of laser induced plasma in welding conditions with continuous CO2 laser,” J. Appl. Phys. 74, 5773–5780 (1993).
[CrossRef]

1991

D. A. Stone, J. S. Smith, J. Lucas, “Sensor for automated front face weldbead area control,” Meas. Sci. Technol. 3, 263–269 (1991).
[CrossRef]

1990

D. A. Stone, J. S. Smith, J. Lucas, “Sensor for automated weld bead penetration control,” Meas. Sci. Technol. 1, 1143–1143 (1990).
[CrossRef]

B. R. Finke, P. D. Kapadia, J. R. Dowden, “A fundamental plasma based model for energy transfer in laser material processing,” J. Phys. D 23, 643–655 (1990).
[CrossRef]

R. Miller, T. DebRoy, “Energy absorption by metal-vapor-dominated plasma during carbon dioxide laser welding of steels,” J. Appl. Phys. 68, 2045–2050 (1990).
[CrossRef]

1989

J. Dowden, P. Kapadia, N. Postacioglu, “An analysis of the laser–plasma interaction in laser keyhole welding,” J. Phys. D 22, 741–749 (1989).
[CrossRef]

1987

J. Mazumder, T. J. Rockstroh, H. Krier, “Spectroscopic studies of plasma during cw laser gas heating in flowing argon,” J. Appl. Phys. 62, 4712–4718 (1987).
[CrossRef]

T. J. Rockstroh, J. Mazumder, “Spectroscopic studies of plasma during cw laser materials interaction,” J. Appl. Phys. 61, 917–923 (1987).
[CrossRef]

J. T. Knudtson, W. B. Green, D. G. Sutton, “The UV–visible spectroscopy of laser-produced aluminum plasmas,” J. Appl. Phys. 61, 4771–4780 (1987).
[CrossRef]

Ancona, A.

M. Ferrara, A. Ancona, P. M. Lugarà, M. Sibilano, “On-line quality monitoring of welding processes by means of plasma optical spectroscopy,” in High-Power Lasers in Manufacturing, X. Chen, T. Fujiioka, A. Matsunawa, eds., Proc. SPIE3888, 750–758 (2000).
[CrossRef]

Beersiek, J.

J. Beersiek, R. Proprawe, W. Schulz, H. Gu, R. E. Muller, W. W. Duley, “On-line monitoring of penetration depth in laser beam welding,” in Laser Materials Processing’s, Proceedings of the 18th International Congress on Applications of Lasers and Electro-Optics, 15–18 November, 1999, San Diego, Calif., P. Christiansen, P. Denney, I. Miyamoto, K. Watkins, eds. (Laser Institute of America, Orlando, Fla., 1999), sect. D, pp. 49–58.

Beyer, E.

W. Sokolowski, G. Herziger, E. Beyer, “Spectral plasma diagnostics in welding with CO2 lasers,” in High-power CO2 Laser Systems and Applications, A. Quenzer, ed., Proc. SPIE1020, 96–102 (1998).
[CrossRef]

W. Sokolowski, G. Herziger, E. Beyer, “Spectroscopic study of laser induced plasma in the welding process of steel and aluminum,” in Glasses for Optoelectronics, G. C. Righini, ed., Proc. SPIE1128, 328–335 (1989).

Bicknell, A.

A. Bicknell, J. S. Smith, J. Lucas, “Infrared sensor for top face monitoring of weld pools,” Meas. Sci. Technol. 5, 371–378 (1994).
[CrossRef]

Biermann, S.

S. Biermann, A. Topkaya, M. Jagiella, “Capacitive clearence sensor system for high quality Nd:YAG laser cutting and welding of sheet metal,” in Proceedings of the 4th European Conference on Laser Treatment of Materials, 12–15 October 1992, Gottingen, Germany, B. L. Mordike, ed. (DGM-Informationsgesellschaft Verlag, Oberursel, Germany, 1992), sect. 110, pp. 51–55.

Boudot, C.

D. Lacroix, G. Jeandel, C. Boudot, “Spectroscopic characterization of laser-induced plasma created during welding with a pulsed Nd:YAG laser,” J. Appl. Phys. 81, 6599–6606 (1997).
[CrossRef]

Brookfield, D. J.

L. Li, D. J. Brookfield, W. M. Steen, “Plasma charge sensor for in-process, non-contact monitoring of the laser welding process,” Meas. Sci. Technol. 7, 615–626 (1996).
[CrossRef]

de Blasiis, D.

P. Sforza, D. de Blasiis, V. Lombardo, V. Santacesaria, M. Dell’Erba, “A three-modules sensor for CO2 laser welding and cutting processes,” in Projection Displays, M. H. Wu, ed., Proc. SPIE.2407, 116–126 (1994).

DebRoy, T.

R. Miller, T. DebRoy, “Energy absorption by metal-vapor-dominated plasma during carbon dioxide laser welding of steels,” J. Appl. Phys. 68, 2045–2050 (1990).
[CrossRef]

Dell’Erba, M.

P. Sforza, D. de Blasiis, V. Lombardo, V. Santacesaria, M. Dell’Erba, “A three-modules sensor for CO2 laser welding and cutting processes,” in Projection Displays, M. H. Wu, ed., Proc. SPIE.2407, 116–126 (1994).

Deshors, G.

A. Poueyo-Verwaerde, R. Fabbro, G. Deshors, D. Frutos, P. Orza, “Experimental study of laser induced plasma in welding conditions with continuous CO2 laser,” J. Appl. Phys. 74, 5773–5780 (1993).
[CrossRef]

Dilthey, U.

U. Dilthey, A. Goumeniouk, V. Lopota, G. Turichin, “Kinetic description of keyhole plasma in laser welding,” J. Phys. D 33, 2747–2753 (2000).
[CrossRef]

Dowden, J.

J. Dowden, P. Kapadia, N. Postacioglu, “An analysis of the laser–plasma interaction in laser keyhole welding,” J. Phys. D 22, 741–749 (1989).
[CrossRef]

Dowden, J. R.

B. R. Finke, P. D. Kapadia, J. R. Dowden, “A fundamental plasma based model for energy transfer in laser material processing,” J. Phys. D 23, 643–655 (1990).
[CrossRef]

Duley, W. W.

H. Gu, W. W. Duley, “A statistical approach to acoustic monitoring of laser welding,” J. Phys. D 29, 556–561 (1996).
[CrossRef]

J. Beersiek, R. Proprawe, W. Schulz, H. Gu, R. E. Muller, W. W. Duley, “On-line monitoring of penetration depth in laser beam welding,” in Laser Materials Processing’s, Proceedings of the 18th International Congress on Applications of Lasers and Electro-Optics, 15–18 November, 1999, San Diego, Calif., P. Christiansen, P. Denney, I. Miyamoto, K. Watkins, eds. (Laser Institute of America, Orlando, Fla., 1999), sect. D, pp. 49–58.

Fabbro, R.

A. Poueyo-Verwaerde, R. Fabbro, G. Deshors, D. Frutos, P. Orza, “Experimental study of laser induced plasma in welding conditions with continuous CO2 laser,” J. Appl. Phys. 74, 5773–5780 (1993).
[CrossRef]

Ferrara, M.

M. Ferrara, A. Ancona, P. M. Lugarà, M. Sibilano, “On-line quality monitoring of welding processes by means of plasma optical spectroscopy,” in High-Power Lasers in Manufacturing, X. Chen, T. Fujiioka, A. Matsunawa, eds., Proc. SPIE3888, 750–758 (2000).
[CrossRef]

Finke, B. R.

B. R. Finke, P. D. Kapadia, J. R. Dowden, “A fundamental plasma based model for energy transfer in laser material processing,” J. Phys. D 23, 643–655 (1990).
[CrossRef]

Frutos, D.

A. Poueyo-Verwaerde, R. Fabbro, G. Deshors, D. Frutos, P. Orza, “Experimental study of laser induced plasma in welding conditions with continuous CO2 laser,” J. Appl. Phys. 74, 5773–5780 (1993).
[CrossRef]

Goumeniouk, A.

U. Dilthey, A. Goumeniouk, V. Lopota, G. Turichin, “Kinetic description of keyhole plasma in laser welding,” J. Phys. D 33, 2747–2753 (2000).
[CrossRef]

Green, W. B.

J. T. Knudtson, W. B. Green, D. G. Sutton, “The UV–visible spectroscopy of laser-produced aluminum plasmas,” J. Appl. Phys. 61, 4771–4780 (1987).
[CrossRef]

Griem, H. R.

H. R. Griem, Plasma Spectroscopy (McGraw-Hill, New York, 1964), Chap. 14.

Gu, H.

H. Gu, W. W. Duley, “A statistical approach to acoustic monitoring of laser welding,” J. Phys. D 29, 556–561 (1996).
[CrossRef]

J. Beersiek, R. Proprawe, W. Schulz, H. Gu, R. E. Muller, W. W. Duley, “On-line monitoring of penetration depth in laser beam welding,” in Laser Materials Processing’s, Proceedings of the 18th International Congress on Applications of Lasers and Electro-Optics, 15–18 November, 1999, San Diego, Calif., P. Christiansen, P. Denney, I. Miyamoto, K. Watkins, eds. (Laser Institute of America, Orlando, Fla., 1999), sect. D, pp. 49–58.

Hand, D. P.

F. M. Haran, D. P. Hand, C. Peters, J. D. C. Jones, “Focus control system for laser welding,” Appl. Opt. 36, 5246–5251 (1997).
[CrossRef] [PubMed]

D. P. Hand, C. Peters, J. D. C. Jones, “Nd:YAG laser welding process monitoring by non-intrusive optical detection in the fibre optic delivery system,” Meas. Sci. Technol. 6, 1389–1389 (1995).
[CrossRef]

Haran, F. M.

Herziger, G.

W. Sokolowski, G. Herziger, E. Beyer, “Spectral plasma diagnostics in welding with CO2 lasers,” in High-power CO2 Laser Systems and Applications, A. Quenzer, ed., Proc. SPIE1020, 96–102 (1998).
[CrossRef]

W. Sokolowski, G. Herziger, E. Beyer, “Spectroscopic study of laser induced plasma in the welding process of steel and aluminum,” in Glasses for Optoelectronics, G. C. Righini, ed., Proc. SPIE1128, 328–335 (1989).

Jagiella, M.

S. Biermann, A. Topkaya, M. Jagiella, “Capacitive clearence sensor system for high quality Nd:YAG laser cutting and welding of sheet metal,” in Proceedings of the 4th European Conference on Laser Treatment of Materials, 12–15 October 1992, Gottingen, Germany, B. L. Mordike, ed. (DGM-Informationsgesellschaft Verlag, Oberursel, Germany, 1992), sect. 110, pp. 51–55.

Jeandel, G.

D. Lacroix, G. Jeandel, C. Boudot, “Spectroscopic characterization of laser-induced plasma created during welding with a pulsed Nd:YAG laser,” J. Appl. Phys. 81, 6599–6606 (1997).
[CrossRef]

Jones, J. D. C.

F. M. Haran, D. P. Hand, C. Peters, J. D. C. Jones, “Focus control system for laser welding,” Appl. Opt. 36, 5246–5251 (1997).
[CrossRef] [PubMed]

D. P. Hand, C. Peters, J. D. C. Jones, “Nd:YAG laser welding process monitoring by non-intrusive optical detection in the fibre optic delivery system,” Meas. Sci. Technol. 6, 1389–1389 (1995).
[CrossRef]

Kalita, W.

Z. Szymanski, J. Kurzyna, W. Kalita, “The spectroscopy of the plasma plume induced during laser welding of stainless steel and titanium,” J. Phys. D 30, 3153–3162 (1997).
[CrossRef]

Kapadia, P.

J. Dowden, P. Kapadia, N. Postacioglu, “An analysis of the laser–plasma interaction in laser keyhole welding,” J. Phys. D 22, 741–749 (1989).
[CrossRef]

Kapadia, P. D.

B. R. Finke, P. D. Kapadia, J. R. Dowden, “A fundamental plasma based model for energy transfer in laser material processing,” J. Phys. D 23, 643–655 (1990).
[CrossRef]

Knudtson, J. T.

J. T. Knudtson, W. B. Green, D. G. Sutton, “The UV–visible spectroscopy of laser-produced aluminum plasmas,” J. Appl. Phys. 61, 4771–4780 (1987).
[CrossRef]

Krier, H.

J. Mazumder, T. J. Rockstroh, H. Krier, “Spectroscopic studies of plasma during cw laser gas heating in flowing argon,” J. Appl. Phys. 62, 4712–4718 (1987).
[CrossRef]

Kurzyna, J.

Z. Szymanski, J. Kurzyna, W. Kalita, “The spectroscopy of the plasma plume induced during laser welding of stainless steel and titanium,” J. Phys. D 30, 3153–3162 (1997).
[CrossRef]

Z. Szymanski, J. Kurzyna, “Spectroscopic measurement of laser induced plasma during welding with CO2 laser,” J. Appl. Phys. 76, 7750–7756 (1994).
[CrossRef]

Lacroix, D.

D. Lacroix, G. Jeandel, C. Boudot, “Spectroscopic characterization of laser-induced plasma created during welding with a pulsed Nd:YAG laser,” J. Appl. Phys. 81, 6599–6606 (1997).
[CrossRef]

Li, L.

L. Li, D. J. Brookfield, W. M. Steen, “Plasma charge sensor for in-process, non-contact monitoring of the laser welding process,” Meas. Sci. Technol. 7, 615–626 (1996).
[CrossRef]

Lombardo, V.

P. Sforza, D. de Blasiis, V. Lombardo, V. Santacesaria, M. Dell’Erba, “A three-modules sensor for CO2 laser welding and cutting processes,” in Projection Displays, M. H. Wu, ed., Proc. SPIE.2407, 116–126 (1994).

Lopota, V.

U. Dilthey, A. Goumeniouk, V. Lopota, G. Turichin, “Kinetic description of keyhole plasma in laser welding,” J. Phys. D 33, 2747–2753 (2000).
[CrossRef]

Lucas, J.

A. Bicknell, J. S. Smith, J. Lucas, “Infrared sensor for top face monitoring of weld pools,” Meas. Sci. Technol. 5, 371–378 (1994).
[CrossRef]

D. A. Stone, J. S. Smith, J. Lucas, “Sensor for automated frontface weldbead area control,” Meas. Sci. Technol. 5, 93–99 (1994).
[CrossRef]

D. A. Stone, J. S. Smith, J. Lucas, “Sensor for automated front face weldbead area control,” Meas. Sci. Technol. 3, 263–269 (1991).
[CrossRef]

D. A. Stone, J. S. Smith, J. Lucas, “Sensor for automated weld bead penetration control,” Meas. Sci. Technol. 1, 1143–1143 (1990).
[CrossRef]

Lugarà, P. M.

M. Ferrara, A. Ancona, P. M. Lugarà, M. Sibilano, “On-line quality monitoring of welding processes by means of plasma optical spectroscopy,” in High-Power Lasers in Manufacturing, X. Chen, T. Fujiioka, A. Matsunawa, eds., Proc. SPIE3888, 750–758 (2000).
[CrossRef]

Mazumder, J.

T. J. Rockstroh, J. Mazumder, “Spectroscopic studies of plasma during cw laser materials interaction,” J. Appl. Phys. 61, 917–923 (1987).
[CrossRef]

J. Mazumder, T. J. Rockstroh, H. Krier, “Spectroscopic studies of plasma during cw laser gas heating in flowing argon,” J. Appl. Phys. 62, 4712–4718 (1987).
[CrossRef]

Miller, R.

R. Miller, T. DebRoy, “Energy absorption by metal-vapor-dominated plasma during carbon dioxide laser welding of steels,” J. Appl. Phys. 68, 2045–2050 (1990).
[CrossRef]

Muller, R. E.

J. Beersiek, R. Proprawe, W. Schulz, H. Gu, R. E. Muller, W. W. Duley, “On-line monitoring of penetration depth in laser beam welding,” in Laser Materials Processing’s, Proceedings of the 18th International Congress on Applications of Lasers and Electro-Optics, 15–18 November, 1999, San Diego, Calif., P. Christiansen, P. Denney, I. Miyamoto, K. Watkins, eds. (Laser Institute of America, Orlando, Fla., 1999), sect. D, pp. 49–58.

Orza, P.

A. Poueyo-Verwaerde, R. Fabbro, G. Deshors, D. Frutos, P. Orza, “Experimental study of laser induced plasma in welding conditions with continuous CO2 laser,” J. Appl. Phys. 74, 5773–5780 (1993).
[CrossRef]

Peters, C.

F. M. Haran, D. P. Hand, C. Peters, J. D. C. Jones, “Focus control system for laser welding,” Appl. Opt. 36, 5246–5251 (1997).
[CrossRef] [PubMed]

D. P. Hand, C. Peters, J. D. C. Jones, “Nd:YAG laser welding process monitoring by non-intrusive optical detection in the fibre optic delivery system,” Meas. Sci. Technol. 6, 1389–1389 (1995).
[CrossRef]

Postacioglu, N.

J. Dowden, P. Kapadia, N. Postacioglu, “An analysis of the laser–plasma interaction in laser keyhole welding,” J. Phys. D 22, 741–749 (1989).
[CrossRef]

Poueyo-Verwaerde, A.

A. Poueyo-Verwaerde, R. Fabbro, G. Deshors, D. Frutos, P. Orza, “Experimental study of laser induced plasma in welding conditions with continuous CO2 laser,” J. Appl. Phys. 74, 5773–5780 (1993).
[CrossRef]

Proprawe, R.

J. Beersiek, R. Proprawe, W. Schulz, H. Gu, R. E. Muller, W. W. Duley, “On-line monitoring of penetration depth in laser beam welding,” in Laser Materials Processing’s, Proceedings of the 18th International Congress on Applications of Lasers and Electro-Optics, 15–18 November, 1999, San Diego, Calif., P. Christiansen, P. Denney, I. Miyamoto, K. Watkins, eds. (Laser Institute of America, Orlando, Fla., 1999), sect. D, pp. 49–58.

Rockstroh, T. J.

T. J. Rockstroh, J. Mazumder, “Spectroscopic studies of plasma during cw laser materials interaction,” J. Appl. Phys. 61, 917–923 (1987).
[CrossRef]

J. Mazumder, T. J. Rockstroh, H. Krier, “Spectroscopic studies of plasma during cw laser gas heating in flowing argon,” J. Appl. Phys. 62, 4712–4718 (1987).
[CrossRef]

Santacesaria, V.

P. Sforza, D. de Blasiis, V. Lombardo, V. Santacesaria, M. Dell’Erba, “A three-modules sensor for CO2 laser welding and cutting processes,” in Projection Displays, M. H. Wu, ed., Proc. SPIE.2407, 116–126 (1994).

Schulz, W.

J. Beersiek, R. Proprawe, W. Schulz, H. Gu, R. E. Muller, W. W. Duley, “On-line monitoring of penetration depth in laser beam welding,” in Laser Materials Processing’s, Proceedings of the 18th International Congress on Applications of Lasers and Electro-Optics, 15–18 November, 1999, San Diego, Calif., P. Christiansen, P. Denney, I. Miyamoto, K. Watkins, eds. (Laser Institute of America, Orlando, Fla., 1999), sect. D, pp. 49–58.

Sforza, P.

P. Sforza, D. de Blasiis, V. Lombardo, V. Santacesaria, M. Dell’Erba, “A three-modules sensor for CO2 laser welding and cutting processes,” in Projection Displays, M. H. Wu, ed., Proc. SPIE.2407, 116–126 (1994).

Sibilano, M.

M. Ferrara, A. Ancona, P. M. Lugarà, M. Sibilano, “On-line quality monitoring of welding processes by means of plasma optical spectroscopy,” in High-Power Lasers in Manufacturing, X. Chen, T. Fujiioka, A. Matsunawa, eds., Proc. SPIE3888, 750–758 (2000).
[CrossRef]

Smith, J. S.

A. Bicknell, J. S. Smith, J. Lucas, “Infrared sensor for top face monitoring of weld pools,” Meas. Sci. Technol. 5, 371–378 (1994).
[CrossRef]

D. A. Stone, J. S. Smith, J. Lucas, “Sensor for automated frontface weldbead area control,” Meas. Sci. Technol. 5, 93–99 (1994).
[CrossRef]

D. A. Stone, J. S. Smith, J. Lucas, “Sensor for automated front face weldbead area control,” Meas. Sci. Technol. 3, 263–269 (1991).
[CrossRef]

D. A. Stone, J. S. Smith, J. Lucas, “Sensor for automated weld bead penetration control,” Meas. Sci. Technol. 1, 1143–1143 (1990).
[CrossRef]

Sokolowski, W.

W. Sokolowski, G. Herziger, E. Beyer, “Spectroscopic study of laser induced plasma in the welding process of steel and aluminum,” in Glasses for Optoelectronics, G. C. Righini, ed., Proc. SPIE1128, 328–335 (1989).

W. Sokolowski, G. Herziger, E. Beyer, “Spectral plasma diagnostics in welding with CO2 lasers,” in High-power CO2 Laser Systems and Applications, A. Quenzer, ed., Proc. SPIE1020, 96–102 (1998).
[CrossRef]

Steen, W. M.

L. Li, D. J. Brookfield, W. M. Steen, “Plasma charge sensor for in-process, non-contact monitoring of the laser welding process,” Meas. Sci. Technol. 7, 615–626 (1996).
[CrossRef]

Stone, D. A.

D. A. Stone, J. S. Smith, J. Lucas, “Sensor for automated frontface weldbead area control,” Meas. Sci. Technol. 5, 93–99 (1994).
[CrossRef]

D. A. Stone, J. S. Smith, J. Lucas, “Sensor for automated front face weldbead area control,” Meas. Sci. Technol. 3, 263–269 (1991).
[CrossRef]

D. A. Stone, J. S. Smith, J. Lucas, “Sensor for automated weld bead penetration control,” Meas. Sci. Technol. 1, 1143–1143 (1990).
[CrossRef]

Sutton, D. G.

J. T. Knudtson, W. B. Green, D. G. Sutton, “The UV–visible spectroscopy of laser-produced aluminum plasmas,” J. Appl. Phys. 61, 4771–4780 (1987).
[CrossRef]

Szymanski, Z.

Z. Szymanski, J. Kurzyna, W. Kalita, “The spectroscopy of the plasma plume induced during laser welding of stainless steel and titanium,” J. Phys. D 30, 3153–3162 (1997).
[CrossRef]

Z. Szymanski, J. Kurzyna, “Spectroscopic measurement of laser induced plasma during welding with CO2 laser,” J. Appl. Phys. 76, 7750–7756 (1994).
[CrossRef]

Topkaya, A.

S. Biermann, A. Topkaya, M. Jagiella, “Capacitive clearence sensor system for high quality Nd:YAG laser cutting and welding of sheet metal,” in Proceedings of the 4th European Conference on Laser Treatment of Materials, 12–15 October 1992, Gottingen, Germany, B. L. Mordike, ed. (DGM-Informationsgesellschaft Verlag, Oberursel, Germany, 1992), sect. 110, pp. 51–55.

Turichin, G.

U. Dilthey, A. Goumeniouk, V. Lopota, G. Turichin, “Kinetic description of keyhole plasma in laser welding,” J. Phys. D 33, 2747–2753 (2000).
[CrossRef]

Appl. Opt.

J. Appl. Phys.

T. J. Rockstroh, J. Mazumder, “Spectroscopic studies of plasma during cw laser materials interaction,” J. Appl. Phys. 61, 917–923 (1987).
[CrossRef]

J. T. Knudtson, W. B. Green, D. G. Sutton, “The UV–visible spectroscopy of laser-produced aluminum plasmas,” J. Appl. Phys. 61, 4771–4780 (1987).
[CrossRef]

A. Poueyo-Verwaerde, R. Fabbro, G. Deshors, D. Frutos, P. Orza, “Experimental study of laser induced plasma in welding conditions with continuous CO2 laser,” J. Appl. Phys. 74, 5773–5780 (1993).
[CrossRef]

Z. Szymanski, J. Kurzyna, “Spectroscopic measurement of laser induced plasma during welding with CO2 laser,” J. Appl. Phys. 76, 7750–7756 (1994).
[CrossRef]

D. Lacroix, G. Jeandel, C. Boudot, “Spectroscopic characterization of laser-induced plasma created during welding with a pulsed Nd:YAG laser,” J. Appl. Phys. 81, 6599–6606 (1997).
[CrossRef]

J. Mazumder, T. J. Rockstroh, H. Krier, “Spectroscopic studies of plasma during cw laser gas heating in flowing argon,” J. Appl. Phys. 62, 4712–4718 (1987).
[CrossRef]

R. Miller, T. DebRoy, “Energy absorption by metal-vapor-dominated plasma during carbon dioxide laser welding of steels,” J. Appl. Phys. 68, 2045–2050 (1990).
[CrossRef]

J. Phys. D

Z. Szymanski, J. Kurzyna, W. Kalita, “The spectroscopy of the plasma plume induced during laser welding of stainless steel and titanium,” J. Phys. D 30, 3153–3162 (1997).
[CrossRef]

J. Dowden, P. Kapadia, N. Postacioglu, “An analysis of the laser–plasma interaction in laser keyhole welding,” J. Phys. D 22, 741–749 (1989).
[CrossRef]

B. R. Finke, P. D. Kapadia, J. R. Dowden, “A fundamental plasma based model for energy transfer in laser material processing,” J. Phys. D 23, 643–655 (1990).
[CrossRef]

U. Dilthey, A. Goumeniouk, V. Lopota, G. Turichin, “Kinetic description of keyhole plasma in laser welding,” J. Phys. D 33, 2747–2753 (2000).
[CrossRef]

H. Gu, W. W. Duley, “A statistical approach to acoustic monitoring of laser welding,” J. Phys. D 29, 556–561 (1996).
[CrossRef]

Meas. Sci. Technol.

D. P. Hand, C. Peters, J. D. C. Jones, “Nd:YAG laser welding process monitoring by non-intrusive optical detection in the fibre optic delivery system,” Meas. Sci. Technol. 6, 1389–1389 (1995).
[CrossRef]

D. A. Stone, J. S. Smith, J. Lucas, “Sensor for automated weld bead penetration control,” Meas. Sci. Technol. 1, 1143–1143 (1990).
[CrossRef]

D. A. Stone, J. S. Smith, J. Lucas, “Sensor for automated front face weldbead area control,” Meas. Sci. Technol. 3, 263–269 (1991).
[CrossRef]

D. A. Stone, J. S. Smith, J. Lucas, “Sensor for automated frontface weldbead area control,” Meas. Sci. Technol. 5, 93–99 (1994).
[CrossRef]

A. Bicknell, J. S. Smith, J. Lucas, “Infrared sensor for top face monitoring of weld pools,” Meas. Sci. Technol. 5, 371–378 (1994).
[CrossRef]

L. Li, D. J. Brookfield, W. M. Steen, “Plasma charge sensor for in-process, non-contact monitoring of the laser welding process,” Meas. Sci. Technol. 7, 615–626 (1996).
[CrossRef]

Other

M. Ferrara, A. Ancona, P. M. Lugarà, M. Sibilano, “On-line quality monitoring of welding processes by means of plasma optical spectroscopy,” in High-Power Lasers in Manufacturing, X. Chen, T. Fujiioka, A. Matsunawa, eds., Proc. SPIE3888, 750–758 (2000).
[CrossRef]

H. R. Griem, Plasma Spectroscopy (McGraw-Hill, New York, 1964), Chap. 14.

W. Sokolowski, G. Herziger, E. Beyer, “Spectral plasma diagnostics in welding with CO2 lasers,” in High-power CO2 Laser Systems and Applications, A. Quenzer, ed., Proc. SPIE1020, 96–102 (1998).
[CrossRef]

W. Sokolowski, G. Herziger, E. Beyer, “Spectroscopic study of laser induced plasma in the welding process of steel and aluminum,” in Glasses for Optoelectronics, G. C. Righini, ed., Proc. SPIE1128, 328–335 (1989).

P. Sforza, D. de Blasiis, V. Lombardo, V. Santacesaria, M. Dell’Erba, “A three-modules sensor for CO2 laser welding and cutting processes,” in Projection Displays, M. H. Wu, ed., Proc. SPIE.2407, 116–126 (1994).

J. Beersiek, R. Proprawe, W. Schulz, H. Gu, R. E. Muller, W. W. Duley, “On-line monitoring of penetration depth in laser beam welding,” in Laser Materials Processing’s, Proceedings of the 18th International Congress on Applications of Lasers and Electro-Optics, 15–18 November, 1999, San Diego, Calif., P. Christiansen, P. Denney, I. Miyamoto, K. Watkins, eds. (Laser Institute of America, Orlando, Fla., 1999), sect. D, pp. 49–58.

S. Biermann, A. Topkaya, M. Jagiella, “Capacitive clearence sensor system for high quality Nd:YAG laser cutting and welding of sheet metal,” in Proceedings of the 4th European Conference on Laser Treatment of Materials, 12–15 October 1992, Gottingen, Germany, B. L. Mordike, ed. (DGM-Informationsgesellschaft Verlag, Oberursel, Germany, 1992), sect. 110, pp. 51–55.

Jurca Optoelektronik GmbH, model LWM900.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup of the optical sensor.

Fig. 2
Fig. 2

Boltzmann plots of atomic Fe, Cr, and Mn. The selected line parameters are listed in Table 1. Electron temperatures were extracted from the linear fits of the data, as explained in the text.

Fig. 3
Fig. 3

Plasma-emission spectrum acquired for welding performed at 1400-W incident laser power and 10-mm/s translation speed at a 30-L/min argon flow rate. Arrows indicate the Fe (I), Cr (I), and Mn (I) emission lines used for calculation of electron temperature. 1 Å = 0.1 nm.

Fig. 4
Fig. 4

Electron temperature signals acquired for a welding bead without defects, obtained by operation at 1400-W incident power, a 30-L/min argon flow rate, and a 10-mm/s translation speed. The resultant welding bead is shown in the photo.

Fig. 5
Fig. 5

Mean value and standard deviation of plasma’s electron temperature measured for Fe (I) (light-gray bars), Cr (I) (dark-gray bars), and Mn (I) (white bars) averaged over five welding processes: (a) 30-L/min argon flow rate, beam focus position 1 mm inside the plate, at different incident laser powers; (b) 30-L/min argon flow rate, 1400-W incident laser power, at different beam focus positions; the zero in the focal shift axes corresponds to a beam focus positioned 1 mm inside the plate; (c) 1400-W incident laser power, beam focus position 1 mm inside the plate, at different argon flow rates.

Fig. 6
Fig. 6

Electron temperature signals correlated to the welded joints shown in the photos, for various weld defects: (a) crater formation, (b) weld disruptions, (c) plate undulations, (d) gas interruptions.

Tables (1)

Tables Icon

Table 1 Spectroscopic Parameters of the Emission Lines Used for Calculations of Electron Temperaturea

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Ne1.6×1012Te1/2ΔE3,
Imn=NmAmnhνmn,
Nm=N/Zgm exp-Em/kT,
lnImnλmnAmngm=lnNhcZ-EmkT.
I1I2=A1g1v1A2g2v2exp-Em1-Em2kTe.
Te=Em2-Em1k lnI1A2gm2λ1I2A1gm1λ2.

Metrics