Abstract

I present a method to calibrate absolutely a new family of underwater bathymetric laser scanner systems that use a single target range. Depth is calculated by triangulation among the source, the receiver, and the instantaneous position of a single spot produced by a highly collimated laser beam scanned across the target. For calibration, the refractive index of seawater is used to modulate the triangulation parameters rather than use of different target ranges to calibrate for extended range operation. Exploitation of a unique triangulation configuration allows the receiver characteristics to be ignored initially so that the scanner parameters can be determined. This allows the accurate positioning of the laser spot so that the receiver, in turn, can be calibrated. This intercalibration method provides high-resolution parameterization of the source–receiver characteristics and their geometric layout within the system so that an absolute bathymetric calibration can be realized in situ. In addition, a theoretical model derived to develop the methodology can be used to characterize and optimize future designs.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Farcy, R. Damaschini, “Triangulating laser profilometer as a three-dimensional space perception system for the blind,” Appl. Opt. 36, 8227–8232 (1997).
    [CrossRef]
  2. R. W. McCullough, P. D. Bondurant, J. L. Doyle, “Laser-optical triangulation systems provide new capabilities for remote inspection of interior surfaces,” Mater. Eval. 53, 1338–1345 (1995).
  3. M. F. M. Costa, “Surface inspection by an optical triangulation method,” Opt. Eng. 35, 2743–2747 (1996).
    [CrossRef]
  4. J. A. Jalkio, R. C. Kim, S. K. Case, “Three-dimensional inspection using multistripe structured light,” Opt. Eng. 24, 966–974 (1985).
    [CrossRef]
  5. J. Clark, A. M. Wallace, G. L. Pronzato, “Measuring range using a triangulation sensor with variable geometry,” IEEE Trans. Rob. Autom. 14, 60–68 (1998).
    [CrossRef]
  6. G. Häuser, M. Maul, “Telecentric scanner for 3-D sensing,” Opt. Eng. 24, 978–980 (1985).
  7. G. Bickel, G. Häuser, M. Maul, “Triangulation with expanded range of depth,” Opt. Eng. 24, 975–977 (1985).
    [CrossRef]
  8. K. D. Moore, J. S. Jaffe, B. L. Ochoa, “Development of new underwater bathymetric laser imaging system: L-Bath,” J. Atmos. Oceanic Technol. 17, 1106–1117 (2000).
    [CrossRef]
  9. R. W. Austin, S. Q. Duntley, R. L. Ensminger, T. J. Petzold, R. C. Smith, “An underwater laser scanning system,” in Underwater Imaging, Photography, and Visibility, R. W. Spinrad, ed., Proc. SPIE1537, 57–73 (1991).
    [CrossRef]
  10. T. J. Kulp, D. Garvis, R. Kennedy, T. Salmon, K. Cooper, “Development and testing of a synchronous-scanning underwater imaging system capable of rapid two-dimensional frame imaging,” Appl. Opt. 32, 3520–3530 (1993).
    [CrossRef] [PubMed]
  11. J. S. Chu, I. R. MacDonald, “Underwater survey operations SM2000 laser line scan technology,” in Proceedings of the Autonomous Vehicles in Mine Countermeasures Symposium (Naval Postgraduate School, Monterey, Calif., 1995), pp. 6-82–6-90.
  12. M. P. Strand, B. W. Coles, A. J. Nevis, R. Reagan, “Laser line scan fluorescence and multi-spectral imaging of coral reef environments,” in Ocean Optics XIII, S. G. Ackleson, ed., Proc. SPIE2963, 790–795 (1996).
  13. B. Coles, “Laser line scan systems as environmental survey tools,” Ocean News Technol. 3, 22–24 (1997).
  14. J. W. McLean, J. T. Murray, “Streak-tube lidar allows 3-D ocean surveillance,” Laser Focus World 34, 171–172, 174 (1998).
  15. J. A. Beraldin, F. Blais, M. Rioux, L. Cournoyer, D. Laurin, S. G. MacLean, “Eye-safe digital 3-D sensing for space applications,” Opt. Eng. 39, 196–211 (2000).
    [CrossRef]
  16. R. Baribeau, M. Rioux, “Influence of speckle on laser range finders,” Appl. Opt. 30, 2873–2878 (1991).
    [CrossRef] [PubMed]
  17. H. Wang, D. Malacara, “Optical triangulation: a dual-channel configuration,” Rev. Sci. Instrum. 67, 2606–2611 (1996).
    [CrossRef]
  18. L. Zeng, H. Matsumoto, K. Kawachi, “Two directional scanning method for reducing the shadow effects in laser triangulation,” Meas. Sci. Technol. 8, 262–266 (1997).
    [CrossRef]
  19. F. M. Caimi, D. M. Kocak, “Real-time 3D underwater imaging and mapping using a laser line scan technique,” in Optical Scanning Systems: Design and Applications, L. Beiser, S. F. Sagan, eds., Proc. SPIE3131, 241–252 (1997).
  20. S. Tetlow, J. Spours, “Three-dimensional measurement of underwater work sites using structured laser light,” Meas. Sci. Technol. 10, 1162–1167 (1999).
    [CrossRef]
  21. J. M. Sasian, “Image plane tilt in optical systems,” Opt. Eng. 31, 527–532 (1992).
    [CrossRef]
  22. M. J. Chantler, J. Clark, M. Umasuthan, “Calibration and operation of an underwater laser triangulation sensor: the varying baseline problem,” Opt. Eng. 36, 2604–2611 (1997).
    [CrossRef]
  23. The voltage positional encoder of the galvanometrically driven scanner has an angular accuracy of ±0.005°. Because this encoder voltage is digitized at 12 bits over the voltage range of ±10.0 V, the smallest digital increment equates to 0.0195°, i.e., Δϕsz = ±0.01°. Therefore we can assume that the digitizer limits the scanner accuracy if no other noise sources are included.
  24. R. W. Schmitt, P. S. Bogden, C. E. Dorman, “Evaporation minus precipitation and density fluxes for the North Atlantic,” J. Phys. Oceanogr. 19, 1208–1221 (1989).
    [CrossRef]
  25. X. Quan, E. S. Fry, “Empirical equation for the refractive index of seawater,” Appl. Opt. 34, 3477–3480 (1995).
    [CrossRef] [PubMed]

2000 (2)

K. D. Moore, J. S. Jaffe, B. L. Ochoa, “Development of new underwater bathymetric laser imaging system: L-Bath,” J. Atmos. Oceanic Technol. 17, 1106–1117 (2000).
[CrossRef]

J. A. Beraldin, F. Blais, M. Rioux, L. Cournoyer, D. Laurin, S. G. MacLean, “Eye-safe digital 3-D sensing for space applications,” Opt. Eng. 39, 196–211 (2000).
[CrossRef]

1999 (1)

S. Tetlow, J. Spours, “Three-dimensional measurement of underwater work sites using structured laser light,” Meas. Sci. Technol. 10, 1162–1167 (1999).
[CrossRef]

1998 (2)

J. W. McLean, J. T. Murray, “Streak-tube lidar allows 3-D ocean surveillance,” Laser Focus World 34, 171–172, 174 (1998).

J. Clark, A. M. Wallace, G. L. Pronzato, “Measuring range using a triangulation sensor with variable geometry,” IEEE Trans. Rob. Autom. 14, 60–68 (1998).
[CrossRef]

1997 (4)

B. Coles, “Laser line scan systems as environmental survey tools,” Ocean News Technol. 3, 22–24 (1997).

M. J. Chantler, J. Clark, M. Umasuthan, “Calibration and operation of an underwater laser triangulation sensor: the varying baseline problem,” Opt. Eng. 36, 2604–2611 (1997).
[CrossRef]

L. Zeng, H. Matsumoto, K. Kawachi, “Two directional scanning method for reducing the shadow effects in laser triangulation,” Meas. Sci. Technol. 8, 262–266 (1997).
[CrossRef]

R. Farcy, R. Damaschini, “Triangulating laser profilometer as a three-dimensional space perception system for the blind,” Appl. Opt. 36, 8227–8232 (1997).
[CrossRef]

1996 (2)

H. Wang, D. Malacara, “Optical triangulation: a dual-channel configuration,” Rev. Sci. Instrum. 67, 2606–2611 (1996).
[CrossRef]

M. F. M. Costa, “Surface inspection by an optical triangulation method,” Opt. Eng. 35, 2743–2747 (1996).
[CrossRef]

1995 (2)

R. W. McCullough, P. D. Bondurant, J. L. Doyle, “Laser-optical triangulation systems provide new capabilities for remote inspection of interior surfaces,” Mater. Eval. 53, 1338–1345 (1995).

X. Quan, E. S. Fry, “Empirical equation for the refractive index of seawater,” Appl. Opt. 34, 3477–3480 (1995).
[CrossRef] [PubMed]

1993 (1)

1992 (1)

J. M. Sasian, “Image plane tilt in optical systems,” Opt. Eng. 31, 527–532 (1992).
[CrossRef]

1991 (1)

1989 (1)

R. W. Schmitt, P. S. Bogden, C. E. Dorman, “Evaporation minus precipitation and density fluxes for the North Atlantic,” J. Phys. Oceanogr. 19, 1208–1221 (1989).
[CrossRef]

1985 (3)

J. A. Jalkio, R. C. Kim, S. K. Case, “Three-dimensional inspection using multistripe structured light,” Opt. Eng. 24, 966–974 (1985).
[CrossRef]

G. Häuser, M. Maul, “Telecentric scanner for 3-D sensing,” Opt. Eng. 24, 978–980 (1985).

G. Bickel, G. Häuser, M. Maul, “Triangulation with expanded range of depth,” Opt. Eng. 24, 975–977 (1985).
[CrossRef]

Austin, R. W.

R. W. Austin, S. Q. Duntley, R. L. Ensminger, T. J. Petzold, R. C. Smith, “An underwater laser scanning system,” in Underwater Imaging, Photography, and Visibility, R. W. Spinrad, ed., Proc. SPIE1537, 57–73 (1991).
[CrossRef]

Baribeau, R.

Beraldin, J. A.

J. A. Beraldin, F. Blais, M. Rioux, L. Cournoyer, D. Laurin, S. G. MacLean, “Eye-safe digital 3-D sensing for space applications,” Opt. Eng. 39, 196–211 (2000).
[CrossRef]

Bickel, G.

G. Bickel, G. Häuser, M. Maul, “Triangulation with expanded range of depth,” Opt. Eng. 24, 975–977 (1985).
[CrossRef]

Blais, F.

J. A. Beraldin, F. Blais, M. Rioux, L. Cournoyer, D. Laurin, S. G. MacLean, “Eye-safe digital 3-D sensing for space applications,” Opt. Eng. 39, 196–211 (2000).
[CrossRef]

Bogden, P. S.

R. W. Schmitt, P. S. Bogden, C. E. Dorman, “Evaporation minus precipitation and density fluxes for the North Atlantic,” J. Phys. Oceanogr. 19, 1208–1221 (1989).
[CrossRef]

Bondurant, P. D.

R. W. McCullough, P. D. Bondurant, J. L. Doyle, “Laser-optical triangulation systems provide new capabilities for remote inspection of interior surfaces,” Mater. Eval. 53, 1338–1345 (1995).

Caimi, F. M.

F. M. Caimi, D. M. Kocak, “Real-time 3D underwater imaging and mapping using a laser line scan technique,” in Optical Scanning Systems: Design and Applications, L. Beiser, S. F. Sagan, eds., Proc. SPIE3131, 241–252 (1997).

Case, S. K.

J. A. Jalkio, R. C. Kim, S. K. Case, “Three-dimensional inspection using multistripe structured light,” Opt. Eng. 24, 966–974 (1985).
[CrossRef]

Chantler, M. J.

M. J. Chantler, J. Clark, M. Umasuthan, “Calibration and operation of an underwater laser triangulation sensor: the varying baseline problem,” Opt. Eng. 36, 2604–2611 (1997).
[CrossRef]

Chu, J. S.

J. S. Chu, I. R. MacDonald, “Underwater survey operations SM2000 laser line scan technology,” in Proceedings of the Autonomous Vehicles in Mine Countermeasures Symposium (Naval Postgraduate School, Monterey, Calif., 1995), pp. 6-82–6-90.

Clark, J.

J. Clark, A. M. Wallace, G. L. Pronzato, “Measuring range using a triangulation sensor with variable geometry,” IEEE Trans. Rob. Autom. 14, 60–68 (1998).
[CrossRef]

M. J. Chantler, J. Clark, M. Umasuthan, “Calibration and operation of an underwater laser triangulation sensor: the varying baseline problem,” Opt. Eng. 36, 2604–2611 (1997).
[CrossRef]

Coles, B.

B. Coles, “Laser line scan systems as environmental survey tools,” Ocean News Technol. 3, 22–24 (1997).

Coles, B. W.

M. P. Strand, B. W. Coles, A. J. Nevis, R. Reagan, “Laser line scan fluorescence and multi-spectral imaging of coral reef environments,” in Ocean Optics XIII, S. G. Ackleson, ed., Proc. SPIE2963, 790–795 (1996).

Cooper, K.

Costa, M. F. M.

M. F. M. Costa, “Surface inspection by an optical triangulation method,” Opt. Eng. 35, 2743–2747 (1996).
[CrossRef]

Cournoyer, L.

J. A. Beraldin, F. Blais, M. Rioux, L. Cournoyer, D. Laurin, S. G. MacLean, “Eye-safe digital 3-D sensing for space applications,” Opt. Eng. 39, 196–211 (2000).
[CrossRef]

Damaschini, R.

Dorman, C. E.

R. W. Schmitt, P. S. Bogden, C. E. Dorman, “Evaporation minus precipitation and density fluxes for the North Atlantic,” J. Phys. Oceanogr. 19, 1208–1221 (1989).
[CrossRef]

Doyle, J. L.

R. W. McCullough, P. D. Bondurant, J. L. Doyle, “Laser-optical triangulation systems provide new capabilities for remote inspection of interior surfaces,” Mater. Eval. 53, 1338–1345 (1995).

Duntley, S. Q.

R. W. Austin, S. Q. Duntley, R. L. Ensminger, T. J. Petzold, R. C. Smith, “An underwater laser scanning system,” in Underwater Imaging, Photography, and Visibility, R. W. Spinrad, ed., Proc. SPIE1537, 57–73 (1991).
[CrossRef]

Ensminger, R. L.

R. W. Austin, S. Q. Duntley, R. L. Ensminger, T. J. Petzold, R. C. Smith, “An underwater laser scanning system,” in Underwater Imaging, Photography, and Visibility, R. W. Spinrad, ed., Proc. SPIE1537, 57–73 (1991).
[CrossRef]

Farcy, R.

Fry, E. S.

Garvis, D.

Häuser, G.

G. Häuser, M. Maul, “Telecentric scanner for 3-D sensing,” Opt. Eng. 24, 978–980 (1985).

G. Bickel, G. Häuser, M. Maul, “Triangulation with expanded range of depth,” Opt. Eng. 24, 975–977 (1985).
[CrossRef]

Jaffe, J. S.

K. D. Moore, J. S. Jaffe, B. L. Ochoa, “Development of new underwater bathymetric laser imaging system: L-Bath,” J. Atmos. Oceanic Technol. 17, 1106–1117 (2000).
[CrossRef]

Jalkio, J. A.

J. A. Jalkio, R. C. Kim, S. K. Case, “Three-dimensional inspection using multistripe structured light,” Opt. Eng. 24, 966–974 (1985).
[CrossRef]

Kawachi, K.

L. Zeng, H. Matsumoto, K. Kawachi, “Two directional scanning method for reducing the shadow effects in laser triangulation,” Meas. Sci. Technol. 8, 262–266 (1997).
[CrossRef]

Kennedy, R.

Kim, R. C.

J. A. Jalkio, R. C. Kim, S. K. Case, “Three-dimensional inspection using multistripe structured light,” Opt. Eng. 24, 966–974 (1985).
[CrossRef]

Kocak, D. M.

F. M. Caimi, D. M. Kocak, “Real-time 3D underwater imaging and mapping using a laser line scan technique,” in Optical Scanning Systems: Design and Applications, L. Beiser, S. F. Sagan, eds., Proc. SPIE3131, 241–252 (1997).

Kulp, T. J.

Laurin, D.

J. A. Beraldin, F. Blais, M. Rioux, L. Cournoyer, D. Laurin, S. G. MacLean, “Eye-safe digital 3-D sensing for space applications,” Opt. Eng. 39, 196–211 (2000).
[CrossRef]

MacDonald, I. R.

J. S. Chu, I. R. MacDonald, “Underwater survey operations SM2000 laser line scan technology,” in Proceedings of the Autonomous Vehicles in Mine Countermeasures Symposium (Naval Postgraduate School, Monterey, Calif., 1995), pp. 6-82–6-90.

MacLean, S. G.

J. A. Beraldin, F. Blais, M. Rioux, L. Cournoyer, D. Laurin, S. G. MacLean, “Eye-safe digital 3-D sensing for space applications,” Opt. Eng. 39, 196–211 (2000).
[CrossRef]

Malacara, D.

H. Wang, D. Malacara, “Optical triangulation: a dual-channel configuration,” Rev. Sci. Instrum. 67, 2606–2611 (1996).
[CrossRef]

Matsumoto, H.

L. Zeng, H. Matsumoto, K. Kawachi, “Two directional scanning method for reducing the shadow effects in laser triangulation,” Meas. Sci. Technol. 8, 262–266 (1997).
[CrossRef]

Maul, M.

G. Bickel, G. Häuser, M. Maul, “Triangulation with expanded range of depth,” Opt. Eng. 24, 975–977 (1985).
[CrossRef]

G. Häuser, M. Maul, “Telecentric scanner for 3-D sensing,” Opt. Eng. 24, 978–980 (1985).

McCullough, R. W.

R. W. McCullough, P. D. Bondurant, J. L. Doyle, “Laser-optical triangulation systems provide new capabilities for remote inspection of interior surfaces,” Mater. Eval. 53, 1338–1345 (1995).

McLean, J. W.

J. W. McLean, J. T. Murray, “Streak-tube lidar allows 3-D ocean surveillance,” Laser Focus World 34, 171–172, 174 (1998).

Moore, K. D.

K. D. Moore, J. S. Jaffe, B. L. Ochoa, “Development of new underwater bathymetric laser imaging system: L-Bath,” J. Atmos. Oceanic Technol. 17, 1106–1117 (2000).
[CrossRef]

Murray, J. T.

J. W. McLean, J. T. Murray, “Streak-tube lidar allows 3-D ocean surveillance,” Laser Focus World 34, 171–172, 174 (1998).

Nevis, A. J.

M. P. Strand, B. W. Coles, A. J. Nevis, R. Reagan, “Laser line scan fluorescence and multi-spectral imaging of coral reef environments,” in Ocean Optics XIII, S. G. Ackleson, ed., Proc. SPIE2963, 790–795 (1996).

Ochoa, B. L.

K. D. Moore, J. S. Jaffe, B. L. Ochoa, “Development of new underwater bathymetric laser imaging system: L-Bath,” J. Atmos. Oceanic Technol. 17, 1106–1117 (2000).
[CrossRef]

Petzold, T. J.

R. W. Austin, S. Q. Duntley, R. L. Ensminger, T. J. Petzold, R. C. Smith, “An underwater laser scanning system,” in Underwater Imaging, Photography, and Visibility, R. W. Spinrad, ed., Proc. SPIE1537, 57–73 (1991).
[CrossRef]

Pronzato, G. L.

J. Clark, A. M. Wallace, G. L. Pronzato, “Measuring range using a triangulation sensor with variable geometry,” IEEE Trans. Rob. Autom. 14, 60–68 (1998).
[CrossRef]

Quan, X.

Reagan, R.

M. P. Strand, B. W. Coles, A. J. Nevis, R. Reagan, “Laser line scan fluorescence and multi-spectral imaging of coral reef environments,” in Ocean Optics XIII, S. G. Ackleson, ed., Proc. SPIE2963, 790–795 (1996).

Rioux, M.

J. A. Beraldin, F. Blais, M. Rioux, L. Cournoyer, D. Laurin, S. G. MacLean, “Eye-safe digital 3-D sensing for space applications,” Opt. Eng. 39, 196–211 (2000).
[CrossRef]

R. Baribeau, M. Rioux, “Influence of speckle on laser range finders,” Appl. Opt. 30, 2873–2878 (1991).
[CrossRef] [PubMed]

Salmon, T.

Sasian, J. M.

J. M. Sasian, “Image plane tilt in optical systems,” Opt. Eng. 31, 527–532 (1992).
[CrossRef]

Schmitt, R. W.

R. W. Schmitt, P. S. Bogden, C. E. Dorman, “Evaporation minus precipitation and density fluxes for the North Atlantic,” J. Phys. Oceanogr. 19, 1208–1221 (1989).
[CrossRef]

Smith, R. C.

R. W. Austin, S. Q. Duntley, R. L. Ensminger, T. J. Petzold, R. C. Smith, “An underwater laser scanning system,” in Underwater Imaging, Photography, and Visibility, R. W. Spinrad, ed., Proc. SPIE1537, 57–73 (1991).
[CrossRef]

Spours, J.

S. Tetlow, J. Spours, “Three-dimensional measurement of underwater work sites using structured laser light,” Meas. Sci. Technol. 10, 1162–1167 (1999).
[CrossRef]

Strand, M. P.

M. P. Strand, B. W. Coles, A. J. Nevis, R. Reagan, “Laser line scan fluorescence and multi-spectral imaging of coral reef environments,” in Ocean Optics XIII, S. G. Ackleson, ed., Proc. SPIE2963, 790–795 (1996).

Tetlow, S.

S. Tetlow, J. Spours, “Three-dimensional measurement of underwater work sites using structured laser light,” Meas. Sci. Technol. 10, 1162–1167 (1999).
[CrossRef]

Umasuthan, M.

M. J. Chantler, J. Clark, M. Umasuthan, “Calibration and operation of an underwater laser triangulation sensor: the varying baseline problem,” Opt. Eng. 36, 2604–2611 (1997).
[CrossRef]

Wallace, A. M.

J. Clark, A. M. Wallace, G. L. Pronzato, “Measuring range using a triangulation sensor with variable geometry,” IEEE Trans. Rob. Autom. 14, 60–68 (1998).
[CrossRef]

Wang, H.

H. Wang, D. Malacara, “Optical triangulation: a dual-channel configuration,” Rev. Sci. Instrum. 67, 2606–2611 (1996).
[CrossRef]

Zeng, L.

L. Zeng, H. Matsumoto, K. Kawachi, “Two directional scanning method for reducing the shadow effects in laser triangulation,” Meas. Sci. Technol. 8, 262–266 (1997).
[CrossRef]

Appl. Opt. (4)

IEEE Trans. Rob. Autom. (1)

J. Clark, A. M. Wallace, G. L. Pronzato, “Measuring range using a triangulation sensor with variable geometry,” IEEE Trans. Rob. Autom. 14, 60–68 (1998).
[CrossRef]

J. Atmos. Oceanic Technol. (1)

K. D. Moore, J. S. Jaffe, B. L. Ochoa, “Development of new underwater bathymetric laser imaging system: L-Bath,” J. Atmos. Oceanic Technol. 17, 1106–1117 (2000).
[CrossRef]

J. Phys. Oceanogr. (1)

R. W. Schmitt, P. S. Bogden, C. E. Dorman, “Evaporation minus precipitation and density fluxes for the North Atlantic,” J. Phys. Oceanogr. 19, 1208–1221 (1989).
[CrossRef]

Laser Focus World (1)

J. W. McLean, J. T. Murray, “Streak-tube lidar allows 3-D ocean surveillance,” Laser Focus World 34, 171–172, 174 (1998).

Mater. Eval. (1)

R. W. McCullough, P. D. Bondurant, J. L. Doyle, “Laser-optical triangulation systems provide new capabilities for remote inspection of interior surfaces,” Mater. Eval. 53, 1338–1345 (1995).

Meas. Sci. Technol. (2)

L. Zeng, H. Matsumoto, K. Kawachi, “Two directional scanning method for reducing the shadow effects in laser triangulation,” Meas. Sci. Technol. 8, 262–266 (1997).
[CrossRef]

S. Tetlow, J. Spours, “Three-dimensional measurement of underwater work sites using structured laser light,” Meas. Sci. Technol. 10, 1162–1167 (1999).
[CrossRef]

Ocean News Technol. (1)

B. Coles, “Laser line scan systems as environmental survey tools,” Ocean News Technol. 3, 22–24 (1997).

Opt. Eng. (7)

J. M. Sasian, “Image plane tilt in optical systems,” Opt. Eng. 31, 527–532 (1992).
[CrossRef]

M. J. Chantler, J. Clark, M. Umasuthan, “Calibration and operation of an underwater laser triangulation sensor: the varying baseline problem,” Opt. Eng. 36, 2604–2611 (1997).
[CrossRef]

M. F. M. Costa, “Surface inspection by an optical triangulation method,” Opt. Eng. 35, 2743–2747 (1996).
[CrossRef]

J. A. Jalkio, R. C. Kim, S. K. Case, “Three-dimensional inspection using multistripe structured light,” Opt. Eng. 24, 966–974 (1985).
[CrossRef]

G. Häuser, M. Maul, “Telecentric scanner for 3-D sensing,” Opt. Eng. 24, 978–980 (1985).

G. Bickel, G. Häuser, M. Maul, “Triangulation with expanded range of depth,” Opt. Eng. 24, 975–977 (1985).
[CrossRef]

J. A. Beraldin, F. Blais, M. Rioux, L. Cournoyer, D. Laurin, S. G. MacLean, “Eye-safe digital 3-D sensing for space applications,” Opt. Eng. 39, 196–211 (2000).
[CrossRef]

Rev. Sci. Instrum. (1)

H. Wang, D. Malacara, “Optical triangulation: a dual-channel configuration,” Rev. Sci. Instrum. 67, 2606–2611 (1996).
[CrossRef]

Other (5)

J. S. Chu, I. R. MacDonald, “Underwater survey operations SM2000 laser line scan technology,” in Proceedings of the Autonomous Vehicles in Mine Countermeasures Symposium (Naval Postgraduate School, Monterey, Calif., 1995), pp. 6-82–6-90.

M. P. Strand, B. W. Coles, A. J. Nevis, R. Reagan, “Laser line scan fluorescence and multi-spectral imaging of coral reef environments,” in Ocean Optics XIII, S. G. Ackleson, ed., Proc. SPIE2963, 790–795 (1996).

The voltage positional encoder of the galvanometrically driven scanner has an angular accuracy of ±0.005°. Because this encoder voltage is digitized at 12 bits over the voltage range of ±10.0 V, the smallest digital increment equates to 0.0195°, i.e., Δϕsz = ±0.01°. Therefore we can assume that the digitizer limits the scanner accuracy if no other noise sources are included.

F. M. Caimi, D. M. Kocak, “Real-time 3D underwater imaging and mapping using a laser line scan technique,” in Optical Scanning Systems: Design and Applications, L. Beiser, S. F. Sagan, eds., Proc. SPIE3131, 241–252 (1997).

R. W. Austin, S. Q. Duntley, R. L. Ensminger, T. J. Petzold, R. C. Smith, “An underwater laser scanning system,” in Underwater Imaging, Photography, and Visibility, R. W. Spinrad, ed., Proc. SPIE1537, 57–73 (1991).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Parameters of the generic model for bathymetric laser line scan systems. Both in-air and in-water path lengths are shown for a fixed laser beam angle.

Fig. 2
Fig. 2

Generic model for the system nadir axis to determine the nadir pixel p nadir and the scanner offset angle ϕ o . Note the triangle along the S–R baseline axis, the in-air laser beam path, and the nadir axis used in the depth calculation. Only the separation modulation parameter for the scanner, s s z , is required in this configuration.

Fig. 3
Fig. 3

Calibration configuration for the 3D Sea Scan design.

Fig. 4
Fig. 4

Optimal roll-off correction for the 3D Sea Scan in terms of detector pixels. The inset demonstrates the sensitivity of the roll-off correction to different combinations of f and h r .

Fig. 5
Fig. 5

Correct values of f and h r when in-water scan data are used.

Fig. 6
Fig. 6

Calculated depth profiles after calibration. The scanned target lengths for the three depths in water are limited by the receiver field of view (FOV) and the maximum scanner angle, whereas in air the receiver field of view and the actual length of the target determine the scanned target length.

Equations (35)

Equations on this page are rendered with MathJax. Learn more.

Dj=Stan ϕj-tan ωj,
Dj=Stanϕo+kvj-tanωo+Ωppj,
tan θj=xjf,
tan ωj=tanθj+β=xj-xnadirf.
tan ωj=xj+xro j-xnadirf,
tan ωj=pj+ropj-pnadirppitchf,
Dj=sjtanϕo+kvj+α-pj+ropj-pnadirppitchf,
sj=S-sSj-sRj,
sS=ssa+sswin+ssd.
sR=sra+srwin+srd.
sS=hs sin ϕcos φ+ts sin ϕwincos φwin1+tan α tan ϕa+d tan ϕa,
ϕwin=sin-1sin φ 1ηwin+α,
sR=hr sin ωcos θ+tr sin ωwincos θwin1+tan β tan ωa,
ωwin=sin-1sinω-β1ηwin+β.
Dwj=swjtan ϕwj-tan ωwj.
Dwj=swjtansin-1sinϕo+kvj-α1ηw+α-pwj+ropwj-pwnadirppitchηwf,
sw=S-sSw-sRw,
sSw=hs sin ϕcos φ+ts sin ϕwincos φwin1+tan α tan ϕw+d tan ϕw,
ϕw=sin-1sin φ 1ηw+β.
sRw=ηwhr sin ωcos θ+ηwηwintr sin ωwincos θwin×1+tan β tan ωw,
ωw=sin-1sinω-β1ηw+β.
snadir=t sinβ-βwincos βwin,
β=tan-1×pnadir water+ropnadir water-pnadirppitchf ηw.
Dz=sztan ϕz=sztanϕo+ϕsz,
ϕz=ϕo+ϕsz=tan-1SD.
sztanϕo+ϕsz=swztansin-1sinϕo+ϕswz-α1ηw+α.
γ=tan-1poptic axis+ropoptic axis-pnadirppitchf,
ropj=fppitchtan ϕj-sjD+pnadir-pj.
roi=fppitchtan ϕi-siD+inadir-i,
hr=af+b,
sS=hs tan ϕ+t tan ϕwin+d tan ϕa,
sR=hr tan ω+t tan ωwin,
sSw=h tan ϕ+t tan ϕwin+d tan ϕw,
sRw=ηwhr tan ω+ηwηwin t tan ωwin.
Δϕo=tan-1S+ΔS-ssz+ΔsszD+ΔD-ϕsz+Δϕsz-ϕo,

Metrics