Abstract

Polarimetric measurements of the thermal infrared spectral radiance from water are reported and are compared with calculations from a recently published model over the spectral range of 600–1600 cm-1 (6.25–16.67-µm wavelength). In this spectral range, warm water viewed under a dry, clear atmosphere appears vertically polarized by 6–12%. The measured spectral degree of polarization agrees with calculations within the measurement uncertainty (∼0.5% polarization in spectral regions with high atmospheric transmittance and 1.5% polarization in spectral regions with low atmospheric transmittance). Uncertainty also arises from temporal changes in water and air temperatures between measurements at orthogonal polarization states, indicating the desirability of simultaneous measurements for both polarization states.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Shaw, “Degree of linear polarization in spectral radiances from water-viewing infrared radiometers,” Appl. Opt. 38, 3157–3165 (1999).
    [CrossRef]
  2. W. G. Egan, Photometry and Polarization in Remote Sensing (Elsevier, New York, 1985), pp. 337–354.
  3. R. A. Millikan, “A study of the polarization of the light emitted by incandescent solid and liquid surfaces,” Phys. Rev. 3, 81–99, 177–192 (1895).
  4. O. Sandus, “A review of emission polarization,” Appl. Opt. 4, 1634–1642 (1965).
    [CrossRef]
  5. R. D. Tooley, “Man-made target detection using infrared polarization,” in Polarization Considerations for Optical Systems II, R. A. Chipman, ed., Proc. SPIE1166, 52–58 (1989).
    [CrossRef]
  6. T. J. Rogne, F. G. Smith, J. E. Rice, “Passive target detection using polarized components of infrared signatures,” in Polarimetry: Radar, Infrared, Visible, Ultraviolet, and X-Ray, R. A. Chipman, J. W. Morris, eds., Proc. SPIE1317, 242–251 (1990).
  7. A. W. Cooper, W. J. Lentz, P. L. Walker, “Infrared polarization ship images and contrast in the MAPTIP experiment,” in Image Propagation through the Atmosphere, C. Daontg, L. R. Bissonnette, eds., Proc. SPIE2828, 85–96 (1996).
    [CrossRef]
  8. Y. Han, J. A. Shaw, J. H. Churnside, P. D. Brown, S. A. Clough, “Infrared spectral radiance measurements in the tropical Pacific atmosphere,” J. Geophys. Res. 102, 4353–4356 (1997).
    [CrossRef]
  9. J. A. Shaw, H. M. Zorn, J. J. Bates, J. H. Churnside, “Observations of downwelling infrared spectral radiance at Mauna Loa, Hawaii during the 1997–1998 ENSO event,” Geophys. Res. Lett. 26, 1727–1730 (1999).
    [CrossRef]
  10. J. A. Shaw, “The effect of instrument polarization sensitivity on sea-surface remote sensing with infrared spectro-radiometers,” J. Atmos. Oceanic Technol. (to be published).
  11. A. Berk, L. S. Bernstein, D. C. Robertson, “MODTRAN: a moderate resolution model for LOWTRAN7,” (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1989).
  12. G. P. Anderson, S. A. Clough, F. X. Kneizys, J. H. Chetwynd, E. P. Shettle, “AFGL atmospheric constituent profiles (0–120 km),” (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1986).
  13. G. M. Hale, M. R. Querry, “Optical constants of water in the 200-nm to 200-µm wavelength region,” Appl. Opt. 12, 555–563 (1973).
    [CrossRef] [PubMed]
  14. J. A. Shaw, C. Marston, “Polarimetric infrared emissivity for a rough sea surface,” Opt. Exp. 7, 375–380 (2000).
    [CrossRef]
  15. C. Cox, W. Munk, “Measurement of the roughness of the sea surface from photographs of the sun’s glitter,” J. Opt. Soc. Am. 44, 838–850 (1954).
    [CrossRef]
  16. J. A. Shaw, J. H. Churnside, “Scanning-laser glint measurements of sea-surface slope statistics,” Appl. Opt. 36, 4202–4213 (1997).
    [CrossRef] [PubMed]

2000

J. A. Shaw, C. Marston, “Polarimetric infrared emissivity for a rough sea surface,” Opt. Exp. 7, 375–380 (2000).
[CrossRef]

1999

J. A. Shaw, H. M. Zorn, J. J. Bates, J. H. Churnside, “Observations of downwelling infrared spectral radiance at Mauna Loa, Hawaii during the 1997–1998 ENSO event,” Geophys. Res. Lett. 26, 1727–1730 (1999).
[CrossRef]

J. A. Shaw, “Degree of linear polarization in spectral radiances from water-viewing infrared radiometers,” Appl. Opt. 38, 3157–3165 (1999).
[CrossRef]

1997

Y. Han, J. A. Shaw, J. H. Churnside, P. D. Brown, S. A. Clough, “Infrared spectral radiance measurements in the tropical Pacific atmosphere,” J. Geophys. Res. 102, 4353–4356 (1997).
[CrossRef]

J. A. Shaw, J. H. Churnside, “Scanning-laser glint measurements of sea-surface slope statistics,” Appl. Opt. 36, 4202–4213 (1997).
[CrossRef] [PubMed]

1973

1965

1954

1895

R. A. Millikan, “A study of the polarization of the light emitted by incandescent solid and liquid surfaces,” Phys. Rev. 3, 81–99, 177–192 (1895).

Anderson, G. P.

G. P. Anderson, S. A. Clough, F. X. Kneizys, J. H. Chetwynd, E. P. Shettle, “AFGL atmospheric constituent profiles (0–120 km),” (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1986).

Bates, J. J.

J. A. Shaw, H. M. Zorn, J. J. Bates, J. H. Churnside, “Observations of downwelling infrared spectral radiance at Mauna Loa, Hawaii during the 1997–1998 ENSO event,” Geophys. Res. Lett. 26, 1727–1730 (1999).
[CrossRef]

Berk, A.

A. Berk, L. S. Bernstein, D. C. Robertson, “MODTRAN: a moderate resolution model for LOWTRAN7,” (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1989).

Bernstein, L. S.

A. Berk, L. S. Bernstein, D. C. Robertson, “MODTRAN: a moderate resolution model for LOWTRAN7,” (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1989).

Brown, P. D.

Y. Han, J. A. Shaw, J. H. Churnside, P. D. Brown, S. A. Clough, “Infrared spectral radiance measurements in the tropical Pacific atmosphere,” J. Geophys. Res. 102, 4353–4356 (1997).
[CrossRef]

Chetwynd, J. H.

G. P. Anderson, S. A. Clough, F. X. Kneizys, J. H. Chetwynd, E. P. Shettle, “AFGL atmospheric constituent profiles (0–120 km),” (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1986).

Churnside, J. H.

J. A. Shaw, H. M. Zorn, J. J. Bates, J. H. Churnside, “Observations of downwelling infrared spectral radiance at Mauna Loa, Hawaii during the 1997–1998 ENSO event,” Geophys. Res. Lett. 26, 1727–1730 (1999).
[CrossRef]

Y. Han, J. A. Shaw, J. H. Churnside, P. D. Brown, S. A. Clough, “Infrared spectral radiance measurements in the tropical Pacific atmosphere,” J. Geophys. Res. 102, 4353–4356 (1997).
[CrossRef]

J. A. Shaw, J. H. Churnside, “Scanning-laser glint measurements of sea-surface slope statistics,” Appl. Opt. 36, 4202–4213 (1997).
[CrossRef] [PubMed]

Clough, S. A.

Y. Han, J. A. Shaw, J. H. Churnside, P. D. Brown, S. A. Clough, “Infrared spectral radiance measurements in the tropical Pacific atmosphere,” J. Geophys. Res. 102, 4353–4356 (1997).
[CrossRef]

G. P. Anderson, S. A. Clough, F. X. Kneizys, J. H. Chetwynd, E. P. Shettle, “AFGL atmospheric constituent profiles (0–120 km),” (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1986).

Cooper, A. W.

A. W. Cooper, W. J. Lentz, P. L. Walker, “Infrared polarization ship images and contrast in the MAPTIP experiment,” in Image Propagation through the Atmosphere, C. Daontg, L. R. Bissonnette, eds., Proc. SPIE2828, 85–96 (1996).
[CrossRef]

Cox, C.

Egan, W. G.

W. G. Egan, Photometry and Polarization in Remote Sensing (Elsevier, New York, 1985), pp. 337–354.

Hale, G. M.

Han, Y.

Y. Han, J. A. Shaw, J. H. Churnside, P. D. Brown, S. A. Clough, “Infrared spectral radiance measurements in the tropical Pacific atmosphere,” J. Geophys. Res. 102, 4353–4356 (1997).
[CrossRef]

Kneizys, F. X.

G. P. Anderson, S. A. Clough, F. X. Kneizys, J. H. Chetwynd, E. P. Shettle, “AFGL atmospheric constituent profiles (0–120 km),” (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1986).

Lentz, W. J.

A. W. Cooper, W. J. Lentz, P. L. Walker, “Infrared polarization ship images and contrast in the MAPTIP experiment,” in Image Propagation through the Atmosphere, C. Daontg, L. R. Bissonnette, eds., Proc. SPIE2828, 85–96 (1996).
[CrossRef]

Marston, C.

J. A. Shaw, C. Marston, “Polarimetric infrared emissivity for a rough sea surface,” Opt. Exp. 7, 375–380 (2000).
[CrossRef]

Millikan, R. A.

R. A. Millikan, “A study of the polarization of the light emitted by incandescent solid and liquid surfaces,” Phys. Rev. 3, 81–99, 177–192 (1895).

Munk, W.

Querry, M. R.

Rice, J. E.

T. J. Rogne, F. G. Smith, J. E. Rice, “Passive target detection using polarized components of infrared signatures,” in Polarimetry: Radar, Infrared, Visible, Ultraviolet, and X-Ray, R. A. Chipman, J. W. Morris, eds., Proc. SPIE1317, 242–251 (1990).

Robertson, D. C.

A. Berk, L. S. Bernstein, D. C. Robertson, “MODTRAN: a moderate resolution model for LOWTRAN7,” (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1989).

Rogne, T. J.

T. J. Rogne, F. G. Smith, J. E. Rice, “Passive target detection using polarized components of infrared signatures,” in Polarimetry: Radar, Infrared, Visible, Ultraviolet, and X-Ray, R. A. Chipman, J. W. Morris, eds., Proc. SPIE1317, 242–251 (1990).

Sandus, O.

Shaw, J. A.

J. A. Shaw, C. Marston, “Polarimetric infrared emissivity for a rough sea surface,” Opt. Exp. 7, 375–380 (2000).
[CrossRef]

J. A. Shaw, “Degree of linear polarization in spectral radiances from water-viewing infrared radiometers,” Appl. Opt. 38, 3157–3165 (1999).
[CrossRef]

J. A. Shaw, H. M. Zorn, J. J. Bates, J. H. Churnside, “Observations of downwelling infrared spectral radiance at Mauna Loa, Hawaii during the 1997–1998 ENSO event,” Geophys. Res. Lett. 26, 1727–1730 (1999).
[CrossRef]

J. A. Shaw, J. H. Churnside, “Scanning-laser glint measurements of sea-surface slope statistics,” Appl. Opt. 36, 4202–4213 (1997).
[CrossRef] [PubMed]

Y. Han, J. A. Shaw, J. H. Churnside, P. D. Brown, S. A. Clough, “Infrared spectral radiance measurements in the tropical Pacific atmosphere,” J. Geophys. Res. 102, 4353–4356 (1997).
[CrossRef]

J. A. Shaw, “The effect of instrument polarization sensitivity on sea-surface remote sensing with infrared spectro-radiometers,” J. Atmos. Oceanic Technol. (to be published).

Shettle, E. P.

G. P. Anderson, S. A. Clough, F. X. Kneizys, J. H. Chetwynd, E. P. Shettle, “AFGL atmospheric constituent profiles (0–120 km),” (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1986).

Smith, F. G.

T. J. Rogne, F. G. Smith, J. E. Rice, “Passive target detection using polarized components of infrared signatures,” in Polarimetry: Radar, Infrared, Visible, Ultraviolet, and X-Ray, R. A. Chipman, J. W. Morris, eds., Proc. SPIE1317, 242–251 (1990).

Tooley, R. D.

R. D. Tooley, “Man-made target detection using infrared polarization,” in Polarization Considerations for Optical Systems II, R. A. Chipman, ed., Proc. SPIE1166, 52–58 (1989).
[CrossRef]

Walker, P. L.

A. W. Cooper, W. J. Lentz, P. L. Walker, “Infrared polarization ship images and contrast in the MAPTIP experiment,” in Image Propagation through the Atmosphere, C. Daontg, L. R. Bissonnette, eds., Proc. SPIE2828, 85–96 (1996).
[CrossRef]

Zorn, H. M.

J. A. Shaw, H. M. Zorn, J. J. Bates, J. H. Churnside, “Observations of downwelling infrared spectral radiance at Mauna Loa, Hawaii during the 1997–1998 ENSO event,” Geophys. Res. Lett. 26, 1727–1730 (1999).
[CrossRef]

Appl. Opt.

Geophys. Res. Lett.

J. A. Shaw, H. M. Zorn, J. J. Bates, J. H. Churnside, “Observations of downwelling infrared spectral radiance at Mauna Loa, Hawaii during the 1997–1998 ENSO event,” Geophys. Res. Lett. 26, 1727–1730 (1999).
[CrossRef]

J. Geophys. Res.

Y. Han, J. A. Shaw, J. H. Churnside, P. D. Brown, S. A. Clough, “Infrared spectral radiance measurements in the tropical Pacific atmosphere,” J. Geophys. Res. 102, 4353–4356 (1997).
[CrossRef]

J. Opt. Soc. Am.

Opt. Exp.

J. A. Shaw, C. Marston, “Polarimetric infrared emissivity for a rough sea surface,” Opt. Exp. 7, 375–380 (2000).
[CrossRef]

Phys. Rev.

R. A. Millikan, “A study of the polarization of the light emitted by incandescent solid and liquid surfaces,” Phys. Rev. 3, 81–99, 177–192 (1895).

Other

R. D. Tooley, “Man-made target detection using infrared polarization,” in Polarization Considerations for Optical Systems II, R. A. Chipman, ed., Proc. SPIE1166, 52–58 (1989).
[CrossRef]

T. J. Rogne, F. G. Smith, J. E. Rice, “Passive target detection using polarized components of infrared signatures,” in Polarimetry: Radar, Infrared, Visible, Ultraviolet, and X-Ray, R. A. Chipman, J. W. Morris, eds., Proc. SPIE1317, 242–251 (1990).

A. W. Cooper, W. J. Lentz, P. L. Walker, “Infrared polarization ship images and contrast in the MAPTIP experiment,” in Image Propagation through the Atmosphere, C. Daontg, L. R. Bissonnette, eds., Proc. SPIE2828, 85–96 (1996).
[CrossRef]

J. A. Shaw, “The effect of instrument polarization sensitivity on sea-surface remote sensing with infrared spectro-radiometers,” J. Atmos. Oceanic Technol. (to be published).

A. Berk, L. S. Bernstein, D. C. Robertson, “MODTRAN: a moderate resolution model for LOWTRAN7,” (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1989).

G. P. Anderson, S. A. Clough, F. X. Kneizys, J. H. Chetwynd, E. P. Shettle, “AFGL atmospheric constituent profiles (0–120 km),” (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1986).

W. G. Egan, Photometry and Polarization in Remote Sensing (Elsevier, New York, 1985), pp. 337–354.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Layout of the infrared water polarization measurement experiment. The FTIR spectroradiometer, calibration sources (not shown), and tub of water were inside a laboratory with an open door so that the reflected background was the clear outside atmosphere.

Fig. 2
Fig. 2

Components and geometry for the polarimetric radiative transfer program used to calculate infrared water polarization.

Fig. 3
Fig. 3

Slope is introduced into the degree of polarization spectrum when the target temperature changes between acquisition of horizontally and vertically polarized spectra. Each curve is for an unpolarized target that cools by the noted amount from 40 °C.

Fig. 4
Fig. 4

Measured spectral degree of polarization for water viewed at 75° with a clear background atmosphere.

Fig. 5
Fig. 5

Difference of measured minus calculated spectral degree of polarization for Fig. 4.

Fig. 6
Fig. 6

Atmospheric transmittance for a 75° zenith-angle path through an atmosphere defined by local radiosonde profiles of temperature and humidity and profiles of the remaining atmospheric constituents taken from a standard Mid-latitude Winter atmosphere model.

Fig. 7
Fig. 7

Measured spectral degree of polarization for water viewed at normal incidence, for which the polarization should be zero.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

DPf=Lhf-LvfLhf+Lvf,
Lh,v=τaLwh,v+Rwh,vLbg+La.
wh,v=1-Rwh,v,

Metrics