Abstract

We present a new method for multitemporal synthetic aperture radar image filtering using three-dimensional (3D) adaptive neighborhoods. The method takes both spatial and temporal information into account to derive the speckle-free value of a pixel. For each pixel individually, a 3D adaptive neighborhood is determined that contains only pixels belonging to the same distribution as the current pixel. Then statistics computed inside the established neighborhood are used to derive the filter output. It is shown that the method provides good results by drastically reducing speckle over homogeneous areas while retaining edges and thin structures. The performances of the proposed method are compared in terms of subjective and objective measures with those given by several classical speckle-filtering methods.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. W. Goodman, “Some fundamental properties of speckle,” J. Opt. Soc. Am. 66, 1145–1149 (1976).
    [Crossref]
  2. J. S. Lee, “Digital image enhancement and noise filtering by use of local statistics,” IEEE Trans. Pattern Anal. Mach. Intell. 2, 165–168 (1980).
    [Crossref] [PubMed]
  3. J. S. Lee, “Digital noise smoothing and the sigma filter,” Comput. Graph. Image Process. 24, 255–269 (1983).
  4. D. T. Kuan, A. A. Sawchuk, T. C. Strand, P. Chavel, “Adaptive noise smoothing filter for images with signal-dependent noise,” IEEE Trans. Pattern Anal. Mach. Intell. 7, 165–177 (1985).
    [Crossref] [PubMed]
  5. V. S. Frost, J. Abbot Stiles, K. S. Shanmugan, J. C. Holtzman, “A model for radar images and its application to adaptive digital filtering of multiplicative noise,” IEEE Trans. Pattern Anal. Mach. Intell. 4, 157–165 (1982).
  6. E. J. M. Rignot, J. J. van Zyl, “Change detection techniques for ERS-1 SAR data,” IEEE Trans. Geosci. Remote Sens. 31, 896–906 (1993).
    [Crossref]
  7. S. Quegan, T. Le Toan, J. J. Yu, F. Ribbes, N. Floury, “Multitemporal ERS SAR analysis applied to forest mapping,” IEEE Trans. Geosci. Remote Sens. 38, 741–753 (2000).
    [Crossref]
  8. H. Trébossen, J. P. Rudant, B. Fruneau, N. Classeau, “Contribution of SAR imagery for mapping coastal’s areas: examples of sedimentational and erosional zones in French Guiana and Mauritania,” in Proceedings of the Sixth International Conference on Remote Sensing for Marine and Coastal Environments (Veridian ERIM International, Ann Arbor, Mich., 2000), Vol. 2, pp. 398–405).
  9. J. S. Lee, M. R. Grunes, S. A. Mango, “Speckle reduction in multipolarization, multifrequency SAR imagery,” IEEE Trans. Geosci. Remote Sens. 29, 535–544 (1991).
    [Crossref]
  10. J. Bruniquel, A. Lopès, “Multi-variate optimal speckle reduction in SAR imagery,” Int. J. Remote Sens. 18, 603–627 (1997).
    [Crossref]
  11. A. Lopès, R. Touzi, E. Nezry, “Adaptive speckle filters and scene heterogeneity,” IEEE Trans. Geosci. Remote Sens. 28, 992–1000 (1990).
    [Crossref]
  12. D. T. Kuan, A. A. Sawchuk, T. C. Strand, P. Chavel, “Adaptive restoration of images with speckle,” IEEE Trans. Acoust. Speech Signal Process. 35, 373–383 (1987).
    [Crossref]
  13. H. H. Arsenault, M. Levesque, “Combined homomorphic and local-statistics processing for restoration of images degraded by signal-dependent noise,” Appl. Opt. 23, 845–850 (1984).
    [Crossref] [PubMed]
  14. J. S. Lee, “Refined filtering of image noise using local statistics,” Comput. Graph. Image Process. 15, 380–389 (1981).
    [Crossref]
  15. Y. Wu, H. Maı̂tre, “Smoothing speckled synthetic aperture radar images by using maximum homogeneous region filters,” Opt. Eng. 31, 1785–1792 (1992).
    [Crossref]
  16. J. M. Park, W. J. Song, W. A. Pearlman, “Speckle filtering of SAR images based on adaptive windowing,” IEE Proc. Vision Image Signal Process. 146, 191–197 (1999).
    [Crossref]
  17. T. R. Crimmins, “Geometric filter for speckle reduction,” Appl. Opt. 24, 1438–1443 (1985).
    [Crossref] [PubMed]
  18. F. Safa, G. Flouzat, “Speckle removal on radar imagery based on mathematical morphology,” Signal Process. 16, 319–333 (1989).
    [Crossref]
  19. Q. Lin, J. P. Allebach, “Combating speckle in SAR images: vector filtering and sequential classification based on a multiplicative noise model,” IEEE Trans. Geosci. Remote Sens. 28, 647–653 (1990).
    [Crossref]
  20. R. Gordon, R. M. Rangayyan, “Feature enhancement of film mammograms using fixed and adaptive neighborhoods,” Appl. Opt. 23, 560–564 (1984).
    [Crossref] [PubMed]
  21. R. B. Paranjape, R. M. Rangayyan, W. M. Morrow, “Adaptive neighborhood mean and median filtering,” J. Electron. Imaging 3, 360–367 (1994).
    [Crossref]
  22. R. B. Paranjape, T. F. Rabie, R. M. Rangayyan, “Image restoration by adaptive neighborhood noise subtraction,” Appl. Opt. 33, 1861–1869 (1994).
    [Crossref]
  23. R. M. Rangayyan, A. Das, “Filtering multiplicative noise in images using adaptive region-based statistics,” J. Electron. Imaging 7, 222–230 (1998).
    [Crossref]
  24. R. M. Rangayyan, M. Ciuc, F. Faghih, “Adaptive-neighborhood filtering of images corrupted by signal-dependent noise,” Appl. Opt. 37, 4477–4487 (1998).
    [Crossref]
  25. M. Ciuc, R. M. Rangayyan, T. Zaharia, V. Buzuloiu, “Filtering noise in color images using adaptive-neighborhood statistics,” J. Electron. Imaging 9, 484–494 (2000).
    [Crossref]
  26. R. B. Paranjape, W. M. Morrow, R. M. Rangayyan, “Adaptive-neighborhood histogram equalization for image enhancement,” CVGIP Graph. Models Image Process. 54, 259–267 (1992).
    [Crossref]
  27. V. Buzuloiu, M. Ciuc, R. M. Rangayyan, C. Vertan, “Adaptive-neighborhood histogram equalization of color images,” J. Electron. Imaging 10, 445–459 (2001).
    [Crossref]
  28. M. Ciuc, Ph. Bolon, E. Trouvé, H. Trébossen, “Multitemporal SAR image filtering using 3D adaptive neighborhoods,” in Image and Signal Processing for Remote Sensing VI, S. Serpico, ed., Proc. SPIE4170, 1–12 (2000).
    [Crossref]
  29. J. S. Lee, I. Jurkevich, P. Dewaele, P. Wambacq, A. Oosterlink, “Speckle filtering of synthetic aperture radar images: a review,” Remote Sensing Rev. 8, 313–340 (1994).
    [Crossref]

2001 (1)

V. Buzuloiu, M. Ciuc, R. M. Rangayyan, C. Vertan, “Adaptive-neighborhood histogram equalization of color images,” J. Electron. Imaging 10, 445–459 (2001).
[Crossref]

2000 (2)

M. Ciuc, R. M. Rangayyan, T. Zaharia, V. Buzuloiu, “Filtering noise in color images using adaptive-neighborhood statistics,” J. Electron. Imaging 9, 484–494 (2000).
[Crossref]

S. Quegan, T. Le Toan, J. J. Yu, F. Ribbes, N. Floury, “Multitemporal ERS SAR analysis applied to forest mapping,” IEEE Trans. Geosci. Remote Sens. 38, 741–753 (2000).
[Crossref]

1999 (1)

J. M. Park, W. J. Song, W. A. Pearlman, “Speckle filtering of SAR images based on adaptive windowing,” IEE Proc. Vision Image Signal Process. 146, 191–197 (1999).
[Crossref]

1998 (2)

R. M. Rangayyan, A. Das, “Filtering multiplicative noise in images using adaptive region-based statistics,” J. Electron. Imaging 7, 222–230 (1998).
[Crossref]

R. M. Rangayyan, M. Ciuc, F. Faghih, “Adaptive-neighborhood filtering of images corrupted by signal-dependent noise,” Appl. Opt. 37, 4477–4487 (1998).
[Crossref]

1997 (1)

J. Bruniquel, A. Lopès, “Multi-variate optimal speckle reduction in SAR imagery,” Int. J. Remote Sens. 18, 603–627 (1997).
[Crossref]

1994 (3)

R. B. Paranjape, R. M. Rangayyan, W. M. Morrow, “Adaptive neighborhood mean and median filtering,” J. Electron. Imaging 3, 360–367 (1994).
[Crossref]

R. B. Paranjape, T. F. Rabie, R. M. Rangayyan, “Image restoration by adaptive neighborhood noise subtraction,” Appl. Opt. 33, 1861–1869 (1994).
[Crossref]

J. S. Lee, I. Jurkevich, P. Dewaele, P. Wambacq, A. Oosterlink, “Speckle filtering of synthetic aperture radar images: a review,” Remote Sensing Rev. 8, 313–340 (1994).
[Crossref]

1993 (1)

E. J. M. Rignot, J. J. van Zyl, “Change detection techniques for ERS-1 SAR data,” IEEE Trans. Geosci. Remote Sens. 31, 896–906 (1993).
[Crossref]

1992 (2)

Y. Wu, H. Maı̂tre, “Smoothing speckled synthetic aperture radar images by using maximum homogeneous region filters,” Opt. Eng. 31, 1785–1792 (1992).
[Crossref]

R. B. Paranjape, W. M. Morrow, R. M. Rangayyan, “Adaptive-neighborhood histogram equalization for image enhancement,” CVGIP Graph. Models Image Process. 54, 259–267 (1992).
[Crossref]

1991 (1)

J. S. Lee, M. R. Grunes, S. A. Mango, “Speckle reduction in multipolarization, multifrequency SAR imagery,” IEEE Trans. Geosci. Remote Sens. 29, 535–544 (1991).
[Crossref]

1990 (2)

A. Lopès, R. Touzi, E. Nezry, “Adaptive speckle filters and scene heterogeneity,” IEEE Trans. Geosci. Remote Sens. 28, 992–1000 (1990).
[Crossref]

Q. Lin, J. P. Allebach, “Combating speckle in SAR images: vector filtering and sequential classification based on a multiplicative noise model,” IEEE Trans. Geosci. Remote Sens. 28, 647–653 (1990).
[Crossref]

1989 (1)

F. Safa, G. Flouzat, “Speckle removal on radar imagery based on mathematical morphology,” Signal Process. 16, 319–333 (1989).
[Crossref]

1987 (1)

D. T. Kuan, A. A. Sawchuk, T. C. Strand, P. Chavel, “Adaptive restoration of images with speckle,” IEEE Trans. Acoust. Speech Signal Process. 35, 373–383 (1987).
[Crossref]

1985 (2)

T. R. Crimmins, “Geometric filter for speckle reduction,” Appl. Opt. 24, 1438–1443 (1985).
[Crossref] [PubMed]

D. T. Kuan, A. A. Sawchuk, T. C. Strand, P. Chavel, “Adaptive noise smoothing filter for images with signal-dependent noise,” IEEE Trans. Pattern Anal. Mach. Intell. 7, 165–177 (1985).
[Crossref] [PubMed]

1984 (2)

1983 (1)

J. S. Lee, “Digital noise smoothing and the sigma filter,” Comput. Graph. Image Process. 24, 255–269 (1983).

1982 (1)

V. S. Frost, J. Abbot Stiles, K. S. Shanmugan, J. C. Holtzman, “A model for radar images and its application to adaptive digital filtering of multiplicative noise,” IEEE Trans. Pattern Anal. Mach. Intell. 4, 157–165 (1982).

1981 (1)

J. S. Lee, “Refined filtering of image noise using local statistics,” Comput. Graph. Image Process. 15, 380–389 (1981).
[Crossref]

1980 (1)

J. S. Lee, “Digital image enhancement and noise filtering by use of local statistics,” IEEE Trans. Pattern Anal. Mach. Intell. 2, 165–168 (1980).
[Crossref] [PubMed]

1976 (1)

Abbot Stiles, J.

V. S. Frost, J. Abbot Stiles, K. S. Shanmugan, J. C. Holtzman, “A model for radar images and its application to adaptive digital filtering of multiplicative noise,” IEEE Trans. Pattern Anal. Mach. Intell. 4, 157–165 (1982).

Allebach, J. P.

Q. Lin, J. P. Allebach, “Combating speckle in SAR images: vector filtering and sequential classification based on a multiplicative noise model,” IEEE Trans. Geosci. Remote Sens. 28, 647–653 (1990).
[Crossref]

Arsenault, H. H.

Bolon, Ph.

M. Ciuc, Ph. Bolon, E. Trouvé, H. Trébossen, “Multitemporal SAR image filtering using 3D adaptive neighborhoods,” in Image and Signal Processing for Remote Sensing VI, S. Serpico, ed., Proc. SPIE4170, 1–12 (2000).
[Crossref]

Bruniquel, J.

J. Bruniquel, A. Lopès, “Multi-variate optimal speckle reduction in SAR imagery,” Int. J. Remote Sens. 18, 603–627 (1997).
[Crossref]

Buzuloiu, V.

V. Buzuloiu, M. Ciuc, R. M. Rangayyan, C. Vertan, “Adaptive-neighborhood histogram equalization of color images,” J. Electron. Imaging 10, 445–459 (2001).
[Crossref]

M. Ciuc, R. M. Rangayyan, T. Zaharia, V. Buzuloiu, “Filtering noise in color images using adaptive-neighborhood statistics,” J. Electron. Imaging 9, 484–494 (2000).
[Crossref]

Chavel, P.

D. T. Kuan, A. A. Sawchuk, T. C. Strand, P. Chavel, “Adaptive restoration of images with speckle,” IEEE Trans. Acoust. Speech Signal Process. 35, 373–383 (1987).
[Crossref]

D. T. Kuan, A. A. Sawchuk, T. C. Strand, P. Chavel, “Adaptive noise smoothing filter for images with signal-dependent noise,” IEEE Trans. Pattern Anal. Mach. Intell. 7, 165–177 (1985).
[Crossref] [PubMed]

Ciuc, M.

V. Buzuloiu, M. Ciuc, R. M. Rangayyan, C. Vertan, “Adaptive-neighborhood histogram equalization of color images,” J. Electron. Imaging 10, 445–459 (2001).
[Crossref]

M. Ciuc, R. M. Rangayyan, T. Zaharia, V. Buzuloiu, “Filtering noise in color images using adaptive-neighborhood statistics,” J. Electron. Imaging 9, 484–494 (2000).
[Crossref]

R. M. Rangayyan, M. Ciuc, F. Faghih, “Adaptive-neighborhood filtering of images corrupted by signal-dependent noise,” Appl. Opt. 37, 4477–4487 (1998).
[Crossref]

M. Ciuc, Ph. Bolon, E. Trouvé, H. Trébossen, “Multitemporal SAR image filtering using 3D adaptive neighborhoods,” in Image and Signal Processing for Remote Sensing VI, S. Serpico, ed., Proc. SPIE4170, 1–12 (2000).
[Crossref]

Classeau, N.

H. Trébossen, J. P. Rudant, B. Fruneau, N. Classeau, “Contribution of SAR imagery for mapping coastal’s areas: examples of sedimentational and erosional zones in French Guiana and Mauritania,” in Proceedings of the Sixth International Conference on Remote Sensing for Marine and Coastal Environments (Veridian ERIM International, Ann Arbor, Mich., 2000), Vol. 2, pp. 398–405).

Crimmins, T. R.

Das, A.

R. M. Rangayyan, A. Das, “Filtering multiplicative noise in images using adaptive region-based statistics,” J. Electron. Imaging 7, 222–230 (1998).
[Crossref]

Dewaele, P.

J. S. Lee, I. Jurkevich, P. Dewaele, P. Wambacq, A. Oosterlink, “Speckle filtering of synthetic aperture radar images: a review,” Remote Sensing Rev. 8, 313–340 (1994).
[Crossref]

Faghih, F.

Floury, N.

S. Quegan, T. Le Toan, J. J. Yu, F. Ribbes, N. Floury, “Multitemporal ERS SAR analysis applied to forest mapping,” IEEE Trans. Geosci. Remote Sens. 38, 741–753 (2000).
[Crossref]

Flouzat, G.

F. Safa, G. Flouzat, “Speckle removal on radar imagery based on mathematical morphology,” Signal Process. 16, 319–333 (1989).
[Crossref]

Frost, V. S.

V. S. Frost, J. Abbot Stiles, K. S. Shanmugan, J. C. Holtzman, “A model for radar images and its application to adaptive digital filtering of multiplicative noise,” IEEE Trans. Pattern Anal. Mach. Intell. 4, 157–165 (1982).

Fruneau, B.

H. Trébossen, J. P. Rudant, B. Fruneau, N. Classeau, “Contribution of SAR imagery for mapping coastal’s areas: examples of sedimentational and erosional zones in French Guiana and Mauritania,” in Proceedings of the Sixth International Conference on Remote Sensing for Marine and Coastal Environments (Veridian ERIM International, Ann Arbor, Mich., 2000), Vol. 2, pp. 398–405).

Goodman, J. W.

Gordon, R.

Grunes, M. R.

J. S. Lee, M. R. Grunes, S. A. Mango, “Speckle reduction in multipolarization, multifrequency SAR imagery,” IEEE Trans. Geosci. Remote Sens. 29, 535–544 (1991).
[Crossref]

Holtzman, J. C.

V. S. Frost, J. Abbot Stiles, K. S. Shanmugan, J. C. Holtzman, “A model for radar images and its application to adaptive digital filtering of multiplicative noise,” IEEE Trans. Pattern Anal. Mach. Intell. 4, 157–165 (1982).

Jurkevich, I.

J. S. Lee, I. Jurkevich, P. Dewaele, P. Wambacq, A. Oosterlink, “Speckle filtering of synthetic aperture radar images: a review,” Remote Sensing Rev. 8, 313–340 (1994).
[Crossref]

Kuan, D. T.

D. T. Kuan, A. A. Sawchuk, T. C. Strand, P. Chavel, “Adaptive restoration of images with speckle,” IEEE Trans. Acoust. Speech Signal Process. 35, 373–383 (1987).
[Crossref]

D. T. Kuan, A. A. Sawchuk, T. C. Strand, P. Chavel, “Adaptive noise smoothing filter for images with signal-dependent noise,” IEEE Trans. Pattern Anal. Mach. Intell. 7, 165–177 (1985).
[Crossref] [PubMed]

Le Toan, T.

S. Quegan, T. Le Toan, J. J. Yu, F. Ribbes, N. Floury, “Multitemporal ERS SAR analysis applied to forest mapping,” IEEE Trans. Geosci. Remote Sens. 38, 741–753 (2000).
[Crossref]

Lee, J. S.

J. S. Lee, I. Jurkevich, P. Dewaele, P. Wambacq, A. Oosterlink, “Speckle filtering of synthetic aperture radar images: a review,” Remote Sensing Rev. 8, 313–340 (1994).
[Crossref]

J. S. Lee, M. R. Grunes, S. A. Mango, “Speckle reduction in multipolarization, multifrequency SAR imagery,” IEEE Trans. Geosci. Remote Sens. 29, 535–544 (1991).
[Crossref]

J. S. Lee, “Digital noise smoothing and the sigma filter,” Comput. Graph. Image Process. 24, 255–269 (1983).

J. S. Lee, “Refined filtering of image noise using local statistics,” Comput. Graph. Image Process. 15, 380–389 (1981).
[Crossref]

J. S. Lee, “Digital image enhancement and noise filtering by use of local statistics,” IEEE Trans. Pattern Anal. Mach. Intell. 2, 165–168 (1980).
[Crossref] [PubMed]

Levesque, M.

Lin, Q.

Q. Lin, J. P. Allebach, “Combating speckle in SAR images: vector filtering and sequential classification based on a multiplicative noise model,” IEEE Trans. Geosci. Remote Sens. 28, 647–653 (1990).
[Crossref]

Lopès, A.

J. Bruniquel, A. Lopès, “Multi-variate optimal speckle reduction in SAR imagery,” Int. J. Remote Sens. 18, 603–627 (1997).
[Crossref]

A. Lopès, R. Touzi, E. Nezry, “Adaptive speckle filters and scene heterogeneity,” IEEE Trans. Geosci. Remote Sens. 28, 992–1000 (1990).
[Crossref]

Mai^tre, H.

Y. Wu, H. Maı̂tre, “Smoothing speckled synthetic aperture radar images by using maximum homogeneous region filters,” Opt. Eng. 31, 1785–1792 (1992).
[Crossref]

Mango, S. A.

J. S. Lee, M. R. Grunes, S. A. Mango, “Speckle reduction in multipolarization, multifrequency SAR imagery,” IEEE Trans. Geosci. Remote Sens. 29, 535–544 (1991).
[Crossref]

Morrow, W. M.

R. B. Paranjape, R. M. Rangayyan, W. M. Morrow, “Adaptive neighborhood mean and median filtering,” J. Electron. Imaging 3, 360–367 (1994).
[Crossref]

R. B. Paranjape, W. M. Morrow, R. M. Rangayyan, “Adaptive-neighborhood histogram equalization for image enhancement,” CVGIP Graph. Models Image Process. 54, 259–267 (1992).
[Crossref]

Nezry, E.

A. Lopès, R. Touzi, E. Nezry, “Adaptive speckle filters and scene heterogeneity,” IEEE Trans. Geosci. Remote Sens. 28, 992–1000 (1990).
[Crossref]

Oosterlink, A.

J. S. Lee, I. Jurkevich, P. Dewaele, P. Wambacq, A. Oosterlink, “Speckle filtering of synthetic aperture radar images: a review,” Remote Sensing Rev. 8, 313–340 (1994).
[Crossref]

Paranjape, R. B.

R. B. Paranjape, R. M. Rangayyan, W. M. Morrow, “Adaptive neighborhood mean and median filtering,” J. Electron. Imaging 3, 360–367 (1994).
[Crossref]

R. B. Paranjape, T. F. Rabie, R. M. Rangayyan, “Image restoration by adaptive neighborhood noise subtraction,” Appl. Opt. 33, 1861–1869 (1994).
[Crossref]

R. B. Paranjape, W. M. Morrow, R. M. Rangayyan, “Adaptive-neighborhood histogram equalization for image enhancement,” CVGIP Graph. Models Image Process. 54, 259–267 (1992).
[Crossref]

Park, J. M.

J. M. Park, W. J. Song, W. A. Pearlman, “Speckle filtering of SAR images based on adaptive windowing,” IEE Proc. Vision Image Signal Process. 146, 191–197 (1999).
[Crossref]

Pearlman, W. A.

J. M. Park, W. J. Song, W. A. Pearlman, “Speckle filtering of SAR images based on adaptive windowing,” IEE Proc. Vision Image Signal Process. 146, 191–197 (1999).
[Crossref]

Quegan, S.

S. Quegan, T. Le Toan, J. J. Yu, F. Ribbes, N. Floury, “Multitemporal ERS SAR analysis applied to forest mapping,” IEEE Trans. Geosci. Remote Sens. 38, 741–753 (2000).
[Crossref]

Rabie, T. F.

R. B. Paranjape, T. F. Rabie, R. M. Rangayyan, “Image restoration by adaptive neighborhood noise subtraction,” Appl. Opt. 33, 1861–1869 (1994).
[Crossref]

Rangayyan, R. M.

V. Buzuloiu, M. Ciuc, R. M. Rangayyan, C. Vertan, “Adaptive-neighborhood histogram equalization of color images,” J. Electron. Imaging 10, 445–459 (2001).
[Crossref]

M. Ciuc, R. M. Rangayyan, T. Zaharia, V. Buzuloiu, “Filtering noise in color images using adaptive-neighborhood statistics,” J. Electron. Imaging 9, 484–494 (2000).
[Crossref]

R. M. Rangayyan, A. Das, “Filtering multiplicative noise in images using adaptive region-based statistics,” J. Electron. Imaging 7, 222–230 (1998).
[Crossref]

R. M. Rangayyan, M. Ciuc, F. Faghih, “Adaptive-neighborhood filtering of images corrupted by signal-dependent noise,” Appl. Opt. 37, 4477–4487 (1998).
[Crossref]

R. B. Paranjape, R. M. Rangayyan, W. M. Morrow, “Adaptive neighborhood mean and median filtering,” J. Electron. Imaging 3, 360–367 (1994).
[Crossref]

R. B. Paranjape, T. F. Rabie, R. M. Rangayyan, “Image restoration by adaptive neighborhood noise subtraction,” Appl. Opt. 33, 1861–1869 (1994).
[Crossref]

R. B. Paranjape, W. M. Morrow, R. M. Rangayyan, “Adaptive-neighborhood histogram equalization for image enhancement,” CVGIP Graph. Models Image Process. 54, 259–267 (1992).
[Crossref]

R. Gordon, R. M. Rangayyan, “Feature enhancement of film mammograms using fixed and adaptive neighborhoods,” Appl. Opt. 23, 560–564 (1984).
[Crossref] [PubMed]

Ribbes, F.

S. Quegan, T. Le Toan, J. J. Yu, F. Ribbes, N. Floury, “Multitemporal ERS SAR analysis applied to forest mapping,” IEEE Trans. Geosci. Remote Sens. 38, 741–753 (2000).
[Crossref]

Rignot, E. J. M.

E. J. M. Rignot, J. J. van Zyl, “Change detection techniques for ERS-1 SAR data,” IEEE Trans. Geosci. Remote Sens. 31, 896–906 (1993).
[Crossref]

Rudant, J. P.

H. Trébossen, J. P. Rudant, B. Fruneau, N. Classeau, “Contribution of SAR imagery for mapping coastal’s areas: examples of sedimentational and erosional zones in French Guiana and Mauritania,” in Proceedings of the Sixth International Conference on Remote Sensing for Marine and Coastal Environments (Veridian ERIM International, Ann Arbor, Mich., 2000), Vol. 2, pp. 398–405).

Safa, F.

F. Safa, G. Flouzat, “Speckle removal on radar imagery based on mathematical morphology,” Signal Process. 16, 319–333 (1989).
[Crossref]

Sawchuk, A. A.

D. T. Kuan, A. A. Sawchuk, T. C. Strand, P. Chavel, “Adaptive restoration of images with speckle,” IEEE Trans. Acoust. Speech Signal Process. 35, 373–383 (1987).
[Crossref]

D. T. Kuan, A. A. Sawchuk, T. C. Strand, P. Chavel, “Adaptive noise smoothing filter for images with signal-dependent noise,” IEEE Trans. Pattern Anal. Mach. Intell. 7, 165–177 (1985).
[Crossref] [PubMed]

Shanmugan, K. S.

V. S. Frost, J. Abbot Stiles, K. S. Shanmugan, J. C. Holtzman, “A model for radar images and its application to adaptive digital filtering of multiplicative noise,” IEEE Trans. Pattern Anal. Mach. Intell. 4, 157–165 (1982).

Song, W. J.

J. M. Park, W. J. Song, W. A. Pearlman, “Speckle filtering of SAR images based on adaptive windowing,” IEE Proc. Vision Image Signal Process. 146, 191–197 (1999).
[Crossref]

Strand, T. C.

D. T. Kuan, A. A. Sawchuk, T. C. Strand, P. Chavel, “Adaptive restoration of images with speckle,” IEEE Trans. Acoust. Speech Signal Process. 35, 373–383 (1987).
[Crossref]

D. T. Kuan, A. A. Sawchuk, T. C. Strand, P. Chavel, “Adaptive noise smoothing filter for images with signal-dependent noise,” IEEE Trans. Pattern Anal. Mach. Intell. 7, 165–177 (1985).
[Crossref] [PubMed]

Touzi, R.

A. Lopès, R. Touzi, E. Nezry, “Adaptive speckle filters and scene heterogeneity,” IEEE Trans. Geosci. Remote Sens. 28, 992–1000 (1990).
[Crossref]

Trébossen, H.

H. Trébossen, J. P. Rudant, B. Fruneau, N. Classeau, “Contribution of SAR imagery for mapping coastal’s areas: examples of sedimentational and erosional zones in French Guiana and Mauritania,” in Proceedings of the Sixth International Conference on Remote Sensing for Marine and Coastal Environments (Veridian ERIM International, Ann Arbor, Mich., 2000), Vol. 2, pp. 398–405).

M. Ciuc, Ph. Bolon, E. Trouvé, H. Trébossen, “Multitemporal SAR image filtering using 3D adaptive neighborhoods,” in Image and Signal Processing for Remote Sensing VI, S. Serpico, ed., Proc. SPIE4170, 1–12 (2000).
[Crossref]

Trouvé, E.

M. Ciuc, Ph. Bolon, E. Trouvé, H. Trébossen, “Multitemporal SAR image filtering using 3D adaptive neighborhoods,” in Image and Signal Processing for Remote Sensing VI, S. Serpico, ed., Proc. SPIE4170, 1–12 (2000).
[Crossref]

van Zyl, J. J.

E. J. M. Rignot, J. J. van Zyl, “Change detection techniques for ERS-1 SAR data,” IEEE Trans. Geosci. Remote Sens. 31, 896–906 (1993).
[Crossref]

Vertan, C.

V. Buzuloiu, M. Ciuc, R. M. Rangayyan, C. Vertan, “Adaptive-neighborhood histogram equalization of color images,” J. Electron. Imaging 10, 445–459 (2001).
[Crossref]

Wambacq, P.

J. S. Lee, I. Jurkevich, P. Dewaele, P. Wambacq, A. Oosterlink, “Speckle filtering of synthetic aperture radar images: a review,” Remote Sensing Rev. 8, 313–340 (1994).
[Crossref]

Wu, Y.

Y. Wu, H. Maı̂tre, “Smoothing speckled synthetic aperture radar images by using maximum homogeneous region filters,” Opt. Eng. 31, 1785–1792 (1992).
[Crossref]

Yu, J. J.

S. Quegan, T. Le Toan, J. J. Yu, F. Ribbes, N. Floury, “Multitemporal ERS SAR analysis applied to forest mapping,” IEEE Trans. Geosci. Remote Sens. 38, 741–753 (2000).
[Crossref]

Zaharia, T.

M. Ciuc, R. M. Rangayyan, T. Zaharia, V. Buzuloiu, “Filtering noise in color images using adaptive-neighborhood statistics,” J. Electron. Imaging 9, 484–494 (2000).
[Crossref]

Appl. Opt. (5)

Comput. Graph. Image Process. (2)

J. S. Lee, “Refined filtering of image noise using local statistics,” Comput. Graph. Image Process. 15, 380–389 (1981).
[Crossref]

J. S. Lee, “Digital noise smoothing and the sigma filter,” Comput. Graph. Image Process. 24, 255–269 (1983).

CVGIP Graph. Models Image Process (1)

R. B. Paranjape, W. M. Morrow, R. M. Rangayyan, “Adaptive-neighborhood histogram equalization for image enhancement,” CVGIP Graph. Models Image Process. 54, 259–267 (1992).
[Crossref]

IEE Proc. Vision Image Signal Process (1)

J. M. Park, W. J. Song, W. A. Pearlman, “Speckle filtering of SAR images based on adaptive windowing,” IEE Proc. Vision Image Signal Process. 146, 191–197 (1999).
[Crossref]

IEEE Trans. Acoust. Speech Signal Process. (1)

D. T. Kuan, A. A. Sawchuk, T. C. Strand, P. Chavel, “Adaptive restoration of images with speckle,” IEEE Trans. Acoust. Speech Signal Process. 35, 373–383 (1987).
[Crossref]

IEEE Trans. Geosci. Remote Sens. (5)

A. Lopès, R. Touzi, E. Nezry, “Adaptive speckle filters and scene heterogeneity,” IEEE Trans. Geosci. Remote Sens. 28, 992–1000 (1990).
[Crossref]

Q. Lin, J. P. Allebach, “Combating speckle in SAR images: vector filtering and sequential classification based on a multiplicative noise model,” IEEE Trans. Geosci. Remote Sens. 28, 647–653 (1990).
[Crossref]

E. J. M. Rignot, J. J. van Zyl, “Change detection techniques for ERS-1 SAR data,” IEEE Trans. Geosci. Remote Sens. 31, 896–906 (1993).
[Crossref]

S. Quegan, T. Le Toan, J. J. Yu, F. Ribbes, N. Floury, “Multitemporal ERS SAR analysis applied to forest mapping,” IEEE Trans. Geosci. Remote Sens. 38, 741–753 (2000).
[Crossref]

J. S. Lee, M. R. Grunes, S. A. Mango, “Speckle reduction in multipolarization, multifrequency SAR imagery,” IEEE Trans. Geosci. Remote Sens. 29, 535–544 (1991).
[Crossref]

IEEE Trans. Pattern Anal. Mach. Intell. (3)

D. T. Kuan, A. A. Sawchuk, T. C. Strand, P. Chavel, “Adaptive noise smoothing filter for images with signal-dependent noise,” IEEE Trans. Pattern Anal. Mach. Intell. 7, 165–177 (1985).
[Crossref] [PubMed]

V. S. Frost, J. Abbot Stiles, K. S. Shanmugan, J. C. Holtzman, “A model for radar images and its application to adaptive digital filtering of multiplicative noise,” IEEE Trans. Pattern Anal. Mach. Intell. 4, 157–165 (1982).

J. S. Lee, “Digital image enhancement and noise filtering by use of local statistics,” IEEE Trans. Pattern Anal. Mach. Intell. 2, 165–168 (1980).
[Crossref] [PubMed]

Int. J. Remote Sens. (1)

J. Bruniquel, A. Lopès, “Multi-variate optimal speckle reduction in SAR imagery,” Int. J. Remote Sens. 18, 603–627 (1997).
[Crossref]

J. Electron. Imaging (4)

V. Buzuloiu, M. Ciuc, R. M. Rangayyan, C. Vertan, “Adaptive-neighborhood histogram equalization of color images,” J. Electron. Imaging 10, 445–459 (2001).
[Crossref]

M. Ciuc, R. M. Rangayyan, T. Zaharia, V. Buzuloiu, “Filtering noise in color images using adaptive-neighborhood statistics,” J. Electron. Imaging 9, 484–494 (2000).
[Crossref]

R. M. Rangayyan, A. Das, “Filtering multiplicative noise in images using adaptive region-based statistics,” J. Electron. Imaging 7, 222–230 (1998).
[Crossref]

R. B. Paranjape, R. M. Rangayyan, W. M. Morrow, “Adaptive neighborhood mean and median filtering,” J. Electron. Imaging 3, 360–367 (1994).
[Crossref]

J. Opt. Soc. Am. (1)

Opt. Eng. (1)

Y. Wu, H. Maı̂tre, “Smoothing speckled synthetic aperture radar images by using maximum homogeneous region filters,” Opt. Eng. 31, 1785–1792 (1992).
[Crossref]

Remote Sensing Rev. (1)

J. S. Lee, I. Jurkevich, P. Dewaele, P. Wambacq, A. Oosterlink, “Speckle filtering of synthetic aperture radar images: a review,” Remote Sensing Rev. 8, 313–340 (1994).
[Crossref]

Signal Process (1)

F. Safa, G. Flouzat, “Speckle removal on radar imagery based on mathematical morphology,” Signal Process. 16, 319–333 (1989).
[Crossref]

Other (2)

H. Trébossen, J. P. Rudant, B. Fruneau, N. Classeau, “Contribution of SAR imagery for mapping coastal’s areas: examples of sedimentational and erosional zones in French Guiana and Mauritania,” in Proceedings of the Sixth International Conference on Remote Sensing for Marine and Coastal Environments (Veridian ERIM International, Ann Arbor, Mich., 2000), Vol. 2, pp. 398–405).

M. Ciuc, Ph. Bolon, E. Trouvé, H. Trébossen, “Multitemporal SAR image filtering using 3D adaptive neighborhoods,” in Image and Signal Processing for Remote Sensing VI, S. Serpico, ed., Proc. SPIE4170, 1–12 (2000).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Histogram of pixels inspected during the determination of the AN. Solid curve, pixels selected during the first step of region growing. Dashed curve, background pixels included during the second step. Dotted curve, background pixels not included in the AN.

Fig. 2
Fig. 2

Preservation of temporal information. Left column, 512 × 512 pixel portions of three successive original images containing rice fields changing from one acquisition to the other. Right column, images filtered with the 3D-ANF.

Fig. 3
Fig. 3

Results of different speckle-filtering algorithms. (a) Original 512 × 512 pixel part of a 3-look amplitude image from a six-image multitemporal sequence; (b) image after the Kuan filtering; (c) image after the RLF; (d) image after the MHRF.

Fig. 4
Fig. 4

Results of different filtering algorithms on the original image in Fig. 3(a). (a) Image after the TCMF; (b) image after the TCMF, followed by the RLF; (c) image after the TCMF, followed by the MHRF; (d) image after the 3D-ANF.

Fig. 5
Fig. 5

Image parts used for assessing edge preservation. Left column, original edges of images. Right column, strips manually drawn along edges.

Fig. 6
Fig. 6

Speckle PDF over a homogeneous area of a 3-look intensity image of average intensity hom = 100. The speckle standard deviation σ g hom = hom/L ≈ 58. ∊ ≈ 0.11. The dashed line corresponds to the distribution mean value. In the dashed–dotted lines, the limits of the centered interval are [ hom - σ g hom , hom + σ g hom ]. In the dotted lines, the limits of the interval to be used to avoid biased estimation are [ hom(1 + ∊) - σ g hom , hom(1 + ∊) + σ g hom ].

Tables (3)

Tables Icon

Table 1 Values of Parameter β for Different Featureless Image Areas

Tables Icon

Table 2 G and S Parameters Used to Assess Edge Preservation

Tables Icon

Table 3 Mean Value over Uniform Areas

Equations (30)

Equations on this page are rendered with MathJax. Learn more.

g=fu,
pux=exp-xif x00otherwise.
pux=2x exp-x2if x00otherwise.
pux=LLxL-1ΓL exp-Lxif x00otherwise,
pux=2LLx2L-1ΓL exp-Lx2if x00otherwise.
pghomx=1f¯ puxf¯,
g¯hom=f¯ū,
σghom=f¯σu.
fˆ=f¯+σf2/σg2g-g¯.
fˆ=g¯ū+ūσg2ū2-g¯2σu2σg2ū4+g¯2σu4g-g¯.
fˆ=g¯ū+σg2ū2-g¯2σu2σg2ū2ū2+σu2g-g¯.
T1=gmed-σugmedū+θ,
T2=gmed+σugmedū+θ,
θ=gmed.
gpT1, T2,
T1=g¯reg-2 σug¯regū+θ,
T2=g¯reg+2 σug¯regū+θ,
θ=g¯reg.
β=σghomg¯hom,
ENL=1β2
ENL=0.522β2
G=|μstrip 1-μstrip 2|,
S=σstrip 12+σstrip 22,
g¯ˆhom=A g¯hom-Tg¯hom+T x pghomxdx,
B g¯hom-T+θg¯hom+T+θ x pghomxdx=g¯hom,
B=g¯hom-T+θg¯hom+T+θ pghomxdx-1.
g¯hom-T+θg¯hom+T+θL=exp-2LTg¯hom,
θ=1+exp-2Tg¯hom1-exp-2Tg¯hom T-g¯hom.
=1+exp-2/L1-exp-2/L1L-1,
=1+exp-4/L1-exp-4/L2L-1.

Metrics