Abstract

We propose and demonstrate the use of a simple holographic relief photoresist grating covered with an aluminum film as a reflecting polarizing beam splitter. The polarizing effects were achieved as a result of the nonsinusoidal profile of the grating. The best parameters of the gratings for optimizing the polarizing-beam-splitting properties were found by the introduction of the experimental profiles in diffraction calculation software. Theoretical and experimental results are presented, confirming the feasibility of the element.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Habraken, O. Michaux, Y. Renotte, Y. Lion, “Polarizing holographic beam splitter on a photoresist,” Opt. Lett. 20, 2348–2350 (1995).
    [CrossRef] [PubMed]
  2. M. Schmitz, R. Bräuer, O. Bryngdahl, “Gratings in the resonance domain as polarizing beam splitters,” Opt. Lett. 20, 1830–1831 (1995).
    [CrossRef] [PubMed]
  3. C. R. A. Lima, L. L. Soares, L. Cescato, A. L. Gobbi, “Reflecting polarizing beam splitter,” Opt. Lett. 22, 203–205 (1997).
    [CrossRef] [PubMed]
  4. A. G. Lopez, H. G. Craighead, “Wave-plate polarizing beam splitter based on a form-birefringent multilayer grating,” Opt. Lett. 23, 1627–1629 (1998).
    [CrossRef]
  5. R. C. Tyan, P. C. Sun, A. Scherer, Y. Fainman, “Polarizing beam splitter based on the anisotropic spectral reflectivity of form-birefringent multilayer gratings,” Opt. Lett. 21, 761–763 (1996).
    [CrossRef] [PubMed]
  6. J. L. Roumiguieres, “Rectangular-groove grating used as an infrared polarizer,” Opt. Commun. 19, 76–78 (1976).
    [CrossRef]
  7. M. Honkanen, V. Kettunen, M. Kuittinen, J. Lautanen, J. Turunen, “Diffractive polarization beam splitters,” in Diffractive Optics, Vol. 12 of the EOS Topical Meetings Digest Series (European Optical Society, Savolinna, Finland, 1997), pp. 270–271.
  8. Grating Solver Development Company ( http://www.gsolver.com ).
  9. J. Frejlich, L. Cescato, G. F. Mendes, “Analysis of an active stabilization system for a holographic setup,” Appl. Opt. 27, 1967–1976 (1988).
    [CrossRef] [PubMed]
  10. J. M. Elson, H. E. Bennett, J. M. Bennett, “Scattering from optical surfaces,” in Applied Optics and Optical Engineering, R. Kingslake, J. C. Wyant, R. R. Shannon, eds. (Academic, New York, 1979), Vol. VII, p. 201.

1998

1997

1996

1995

1988

1976

J. L. Roumiguieres, “Rectangular-groove grating used as an infrared polarizer,” Opt. Commun. 19, 76–78 (1976).
[CrossRef]

Bennett, H. E.

J. M. Elson, H. E. Bennett, J. M. Bennett, “Scattering from optical surfaces,” in Applied Optics and Optical Engineering, R. Kingslake, J. C. Wyant, R. R. Shannon, eds. (Academic, New York, 1979), Vol. VII, p. 201.

Bennett, J. M.

J. M. Elson, H. E. Bennett, J. M. Bennett, “Scattering from optical surfaces,” in Applied Optics and Optical Engineering, R. Kingslake, J. C. Wyant, R. R. Shannon, eds. (Academic, New York, 1979), Vol. VII, p. 201.

Bräuer, R.

Bryngdahl, O.

Cescato, L.

Craighead, H. G.

Elson, J. M.

J. M. Elson, H. E. Bennett, J. M. Bennett, “Scattering from optical surfaces,” in Applied Optics and Optical Engineering, R. Kingslake, J. C. Wyant, R. R. Shannon, eds. (Academic, New York, 1979), Vol. VII, p. 201.

Fainman, Y.

Frejlich, J.

Gobbi, A. L.

Habraken, S.

Honkanen, M.

M. Honkanen, V. Kettunen, M. Kuittinen, J. Lautanen, J. Turunen, “Diffractive polarization beam splitters,” in Diffractive Optics, Vol. 12 of the EOS Topical Meetings Digest Series (European Optical Society, Savolinna, Finland, 1997), pp. 270–271.

Kettunen, V.

M. Honkanen, V. Kettunen, M. Kuittinen, J. Lautanen, J. Turunen, “Diffractive polarization beam splitters,” in Diffractive Optics, Vol. 12 of the EOS Topical Meetings Digest Series (European Optical Society, Savolinna, Finland, 1997), pp. 270–271.

Kuittinen, M.

M. Honkanen, V. Kettunen, M. Kuittinen, J. Lautanen, J. Turunen, “Diffractive polarization beam splitters,” in Diffractive Optics, Vol. 12 of the EOS Topical Meetings Digest Series (European Optical Society, Savolinna, Finland, 1997), pp. 270–271.

Lautanen, J.

M. Honkanen, V. Kettunen, M. Kuittinen, J. Lautanen, J. Turunen, “Diffractive polarization beam splitters,” in Diffractive Optics, Vol. 12 of the EOS Topical Meetings Digest Series (European Optical Society, Savolinna, Finland, 1997), pp. 270–271.

Lima, C. R. A.

Lion, Y.

Lopez, A. G.

Mendes, G. F.

Michaux, O.

Renotte, Y.

Roumiguieres, J. L.

J. L. Roumiguieres, “Rectangular-groove grating used as an infrared polarizer,” Opt. Commun. 19, 76–78 (1976).
[CrossRef]

Scherer, A.

Schmitz, M.

Soares, L. L.

Sun, P. C.

Turunen, J.

M. Honkanen, V. Kettunen, M. Kuittinen, J. Lautanen, J. Turunen, “Diffractive polarization beam splitters,” in Diffractive Optics, Vol. 12 of the EOS Topical Meetings Digest Series (European Optical Society, Savolinna, Finland, 1997), pp. 270–271.

Tyan, R. C.

Appl. Opt.

Opt. Commun.

J. L. Roumiguieres, “Rectangular-groove grating used as an infrared polarizer,” Opt. Commun. 19, 76–78 (1976).
[CrossRef]

Opt. Lett.

Other

M. Honkanen, V. Kettunen, M. Kuittinen, J. Lautanen, J. Turunen, “Diffractive polarization beam splitters,” in Diffractive Optics, Vol. 12 of the EOS Topical Meetings Digest Series (European Optical Society, Savolinna, Finland, 1997), pp. 270–271.

Grating Solver Development Company ( http://www.gsolver.com ).

J. M. Elson, H. E. Bennett, J. M. Bennett, “Scattering from optical surfaces,” in Applied Optics and Optical Engineering, R. Kingslake, J. C. Wyant, R. R. Shannon, eds. (Academic, New York, 1979), Vol. VII, p. 201.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram of the RPBS. Unpolarized light is incident at the Bragg angle. The grating presents only two diffraction orders by reflection: the zeroth order and the minus first order, which is reflected back in the same direction as the incident light. The zeroth diffraction order is linearly polarized in the TM direction, whereas the minus first diffraction order is linearly polarized in the TE direction.

Fig. 2
Fig. 2

Example of the use of an experimental profile for the calculation of the diffraction efficiencies: (a) a SEM photograph of the cross section of a sample, (b) a sliced profile of the cross section as required by the software for the theoretical calculation of the diffraction efficiencies.

Fig. 3
Fig. 3

Best theoretical diffraction efficiencies of the first and the zeroth diffracted orders for a nonlamellar photoresist grating, coated with aluminum, at the Bragg incidence plotted as functions of the wavelength for both orthogonal polarizations (TE and TM). The grating period is Λ = 855 nm, the grating depth is 290 nm, and the fill factor is 25%.

Fig. 4
Fig. 4

Best theoretical diffraction efficiencies of the first and the zeroth diffracted orders for a strict lamellar photoresist grating, coated with aluminum, at the Bragg incidence plotted as functions of the wavelength for both orthogonal polarizations (TE and TM). The grating period is Λ = 855 nm, the grating depth is 300 nm, and the fill factor is 54%.

Fig. 5
Fig. 5

SEM photograph of the cross section of sample 2 (Table 1) (a) before and (b) after aluminum deposition.

Fig. 6
Fig. 6

Diffraction-efficiency measurements for (a) the first order and (b) the zeroth order plotted as functions of the wavelength for sample 1 (Table 1) as measured at the Bragg angle incidence by use of a dedicated spectrometer.

Tables (1)

Tables Icon

Table 1 Absolute Diffraction Efficiencies and Extinction Ratios of Relief Structures Coated with Aluminum Films and Operating as RPBSsa

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

θB=sin-1λ2Λ.

Metrics