Abstract

The binary zone plate (BZP) is a diffractive optical element whose wide-ranging development is expected to have a strong effect on fields such as optical communications and information processing. With the increasing demand for more-compact systems and devices the BZP needs to be efficient as well as small. It is well known that fabrication errors strongly influence the characteristics of BZPs. To mitigate the influence of fabrication errors and obtain an efficient BZP with a high numerical aperture, we propose a design, called the hybrid-level BZP (HBZP), that combines zones with different numbers of phase levels. A method to correct the phase mismatch generated by such a combination is described. We furthermore discuss the optimum design of HBZPs in the presence of fabrication errors and report on its experimental evaluation.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. P. Herzig, “Design of refractive and diffractive micro-optics,” in Micro-Optics: Elements, Systems and Applications, H. P. Herzig, ed. (Taylor & Francis, London, 1997), Chap. 1.
  2. S. Sinzinger, J. Jahns, “From macrooptics to microoptics—an overview,” in Micro Optics, S. Sinzinger, J. Jahns, eds. (Wiley-VCH, Germany, 1999), Chap. 1.
  3. G. J. Swanson, W. B. Veldkamp, “Diffractive optical elements for use in infrared systems,” Opt. Eng. 28, 605–608 (1989).
    [CrossRef]
  4. Y. Okada, K. Kodate, H. Kamiyama, T. Kamiya, “Fiber-optic pulse delay using composite zone plates for very fast optoelectronics,” Jpn. J. Appl. Phys. 27, 1440–1444 (1988).
    [CrossRef]
  5. A. Okazaki, W. Klaus, K. Kodate, “Design of optimized binary optical element by combining various phase levels,” J. Optoelectron. Laser 9 (Suppl.), 356–358 (1998).
  6. K. Kodate, Y. Orihara, W. Klaus, “Towards the optimal design of binary optical elements with different phase levels using a method of phase mismatch correction,” in Diffractive Optics and Micro-Optics, Vol. 41 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), paper DtuD22, pp. 174–176.
  7. K. Kodate, E. Tokunaga, Y. Tatuno, J. Chen, T. Kamiya, “Efficient zone plate array accessor for optoelectronic integrated circuits: design and fabrication,” Appl. Opt. 29, 5115–5119 (1990).
    [CrossRef] [PubMed]
  8. R. Hainberger, Y. Komai, W. Klaus, K. Kodate, T. Kamiya, “All-optical modules for compact free-space laser link transceivers,” in Proceedings of the Conference on Lasers and Electro-Optics Europe (European Physical Society, Geneva, Switzerland, 2000), paper CTuK100, p. 136.
  9. K. Kodate, A. Hashimoto, R. Thapliya, T. Kamiya, “Binary zone-plate array for a parallel joint transform correlator applied to face recognition,” Appl. Opt. 37, 3060–3067 (1999).
    [CrossRef]
  10. J. A. Cox, T. Werner, J. Lee, S. Nelson, B. Fritz, J. Bergstrom, “Diffraction efficiency of binary optical elements,” in Computer and Optically Formed Holographic Optics, I. Cindrich, S. H. Lee, eds., Proc. SPIE1211, 116–124 (1990).
    [CrossRef]
  11. J. A. Cox, B. Fritz, T. Werner, J. Lee, “Process error limitations on binary optics performance,” in Computer and Optically Formed Holographic Optics, I. Cindrich, S. H. Lee, eds., Proc. SPIE1555, 80–88 (1991).
  12. M. Ferstl, B. Kuhlow, E. Pawlowski, “Effect of fabrication errors on multilevel Fresnel zone lenses,” Opt. Eng. 33, 1229–1235 (1994).
    [CrossRef]
  13. D. A. Pommet, E. B. Grann, M. G. Moharam, “Effect of process errors on the diffraction characteristics of binary dielectric gratings,” Appl. Opt. 34, 2430–2435 (1995).
    [CrossRef] [PubMed]
  14. T. R. Werner, J. A. Cox, J. Gieske, K. Hewitt, “The CO-OP DOE foundry process results,” in Diffractive and Holographic Device Technologies and Applications IV, I. Cindrich, S. H. Lee, eds., Proc. SPIE3010, 96–104 (1997).
    [CrossRef]
  15. M. Kuittinen, J. Turunen, “Mask misalignment in photolithographic fabrication of resonance-domain diffractive elements,” Opt. Commun. 142, 14–18 (1997).
    [CrossRef]
  16. Y. Unno, “Point-spread function for binary diffractive lenses fabricated with misaligned masks,” Appl. Opt. 37, 3401–3407 (1998).
    [CrossRef]
  17. E. N. Glytsis, M. E. Harrigan, T. K. Gaylord, K. Hirayama, “Effects of fabrication errors on the performance of cylindrival diffractive lenses: rigorous boundary-element method and scalar approximation,” Appl. Opt. 37, 6591–6602 (1998).
    [CrossRef]
  18. Y. Unno, “Fabrication of N-level binary optical element by use of M mask patterns with N in the range of 2M−1 + 1 ≤ N ≤ 2M,” Appl. Opt. 37, 8012–8020 (1998).
    [CrossRef]
  19. Y. Unno, Y. Sekine, E. Nurakami, M. Ohta, R. Hirose, “Application of large-scale binary optical elements to high-resolution projection optics used for microlithography,” Jpn. J. Appl. Phys. 38, 6968–6975 (1999).
    [CrossRef]
  20. I. Tanaka, Y. Iwasaki, M. Ogusu, K. Tamamori, Y. Sekine, T. Matsumoto, H. Maehara, R. Hirose, “High-precision binary optical element fabricated by novel self-aligned process,” Jpn. J. Appl. Phys. 38, 6976–6980 (1999).
    [CrossRef]
  21. H. Nishihara, T. Suhara, “Micro Fresnel lenses,” in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1987), Vol. XXIV, pp. 1–40.
    [CrossRef]
  22. B. R. Brown, A. W. Lohmann, “Complex spatial filtering with binary masks,” Appl. Opt. 5, 967–969 (1966).
    [CrossRef] [PubMed]

1999 (3)

K. Kodate, A. Hashimoto, R. Thapliya, T. Kamiya, “Binary zone-plate array for a parallel joint transform correlator applied to face recognition,” Appl. Opt. 37, 3060–3067 (1999).
[CrossRef]

Y. Unno, Y. Sekine, E. Nurakami, M. Ohta, R. Hirose, “Application of large-scale binary optical elements to high-resolution projection optics used for microlithography,” Jpn. J. Appl. Phys. 38, 6968–6975 (1999).
[CrossRef]

I. Tanaka, Y. Iwasaki, M. Ogusu, K. Tamamori, Y. Sekine, T. Matsumoto, H. Maehara, R. Hirose, “High-precision binary optical element fabricated by novel self-aligned process,” Jpn. J. Appl. Phys. 38, 6976–6980 (1999).
[CrossRef]

1998 (4)

1997 (1)

M. Kuittinen, J. Turunen, “Mask misalignment in photolithographic fabrication of resonance-domain diffractive elements,” Opt. Commun. 142, 14–18 (1997).
[CrossRef]

1995 (1)

1994 (1)

M. Ferstl, B. Kuhlow, E. Pawlowski, “Effect of fabrication errors on multilevel Fresnel zone lenses,” Opt. Eng. 33, 1229–1235 (1994).
[CrossRef]

1990 (1)

1989 (1)

G. J. Swanson, W. B. Veldkamp, “Diffractive optical elements for use in infrared systems,” Opt. Eng. 28, 605–608 (1989).
[CrossRef]

1988 (1)

Y. Okada, K. Kodate, H. Kamiyama, T. Kamiya, “Fiber-optic pulse delay using composite zone plates for very fast optoelectronics,” Jpn. J. Appl. Phys. 27, 1440–1444 (1988).
[CrossRef]

1966 (1)

Bergstrom, J.

J. A. Cox, T. Werner, J. Lee, S. Nelson, B. Fritz, J. Bergstrom, “Diffraction efficiency of binary optical elements,” in Computer and Optically Formed Holographic Optics, I. Cindrich, S. H. Lee, eds., Proc. SPIE1211, 116–124 (1990).
[CrossRef]

Brown, B. R.

Chen, J.

Cox, J. A.

J. A. Cox, T. Werner, J. Lee, S. Nelson, B. Fritz, J. Bergstrom, “Diffraction efficiency of binary optical elements,” in Computer and Optically Formed Holographic Optics, I. Cindrich, S. H. Lee, eds., Proc. SPIE1211, 116–124 (1990).
[CrossRef]

J. A. Cox, B. Fritz, T. Werner, J. Lee, “Process error limitations on binary optics performance,” in Computer and Optically Formed Holographic Optics, I. Cindrich, S. H. Lee, eds., Proc. SPIE1555, 80–88 (1991).

T. R. Werner, J. A. Cox, J. Gieske, K. Hewitt, “The CO-OP DOE foundry process results,” in Diffractive and Holographic Device Technologies and Applications IV, I. Cindrich, S. H. Lee, eds., Proc. SPIE3010, 96–104 (1997).
[CrossRef]

Ferstl, M.

M. Ferstl, B. Kuhlow, E. Pawlowski, “Effect of fabrication errors on multilevel Fresnel zone lenses,” Opt. Eng. 33, 1229–1235 (1994).
[CrossRef]

Fritz, B.

J. A. Cox, B. Fritz, T. Werner, J. Lee, “Process error limitations on binary optics performance,” in Computer and Optically Formed Holographic Optics, I. Cindrich, S. H. Lee, eds., Proc. SPIE1555, 80–88 (1991).

J. A. Cox, T. Werner, J. Lee, S. Nelson, B. Fritz, J. Bergstrom, “Diffraction efficiency of binary optical elements,” in Computer and Optically Formed Holographic Optics, I. Cindrich, S. H. Lee, eds., Proc. SPIE1211, 116–124 (1990).
[CrossRef]

Gaylord, T. K.

Gieske, J.

T. R. Werner, J. A. Cox, J. Gieske, K. Hewitt, “The CO-OP DOE foundry process results,” in Diffractive and Holographic Device Technologies and Applications IV, I. Cindrich, S. H. Lee, eds., Proc. SPIE3010, 96–104 (1997).
[CrossRef]

Glytsis, E. N.

Grann, E. B.

Hainberger, R.

R. Hainberger, Y. Komai, W. Klaus, K. Kodate, T. Kamiya, “All-optical modules for compact free-space laser link transceivers,” in Proceedings of the Conference on Lasers and Electro-Optics Europe (European Physical Society, Geneva, Switzerland, 2000), paper CTuK100, p. 136.

Harrigan, M. E.

Hashimoto, A.

K. Kodate, A. Hashimoto, R. Thapliya, T. Kamiya, “Binary zone-plate array for a parallel joint transform correlator applied to face recognition,” Appl. Opt. 37, 3060–3067 (1999).
[CrossRef]

Herzig, H. P.

H. P. Herzig, “Design of refractive and diffractive micro-optics,” in Micro-Optics: Elements, Systems and Applications, H. P. Herzig, ed. (Taylor & Francis, London, 1997), Chap. 1.

Hewitt, K.

T. R. Werner, J. A. Cox, J. Gieske, K. Hewitt, “The CO-OP DOE foundry process results,” in Diffractive and Holographic Device Technologies and Applications IV, I. Cindrich, S. H. Lee, eds., Proc. SPIE3010, 96–104 (1997).
[CrossRef]

Hirayama, K.

Hirose, R.

Y. Unno, Y. Sekine, E. Nurakami, M. Ohta, R. Hirose, “Application of large-scale binary optical elements to high-resolution projection optics used for microlithography,” Jpn. J. Appl. Phys. 38, 6968–6975 (1999).
[CrossRef]

I. Tanaka, Y. Iwasaki, M. Ogusu, K. Tamamori, Y. Sekine, T. Matsumoto, H. Maehara, R. Hirose, “High-precision binary optical element fabricated by novel self-aligned process,” Jpn. J. Appl. Phys. 38, 6976–6980 (1999).
[CrossRef]

Iwasaki, Y.

I. Tanaka, Y. Iwasaki, M. Ogusu, K. Tamamori, Y. Sekine, T. Matsumoto, H. Maehara, R. Hirose, “High-precision binary optical element fabricated by novel self-aligned process,” Jpn. J. Appl. Phys. 38, 6976–6980 (1999).
[CrossRef]

Jahns, J.

S. Sinzinger, J. Jahns, “From macrooptics to microoptics—an overview,” in Micro Optics, S. Sinzinger, J. Jahns, eds. (Wiley-VCH, Germany, 1999), Chap. 1.

Kamiya, T.

K. Kodate, A. Hashimoto, R. Thapliya, T. Kamiya, “Binary zone-plate array for a parallel joint transform correlator applied to face recognition,” Appl. Opt. 37, 3060–3067 (1999).
[CrossRef]

K. Kodate, E. Tokunaga, Y. Tatuno, J. Chen, T. Kamiya, “Efficient zone plate array accessor for optoelectronic integrated circuits: design and fabrication,” Appl. Opt. 29, 5115–5119 (1990).
[CrossRef] [PubMed]

Y. Okada, K. Kodate, H. Kamiyama, T. Kamiya, “Fiber-optic pulse delay using composite zone plates for very fast optoelectronics,” Jpn. J. Appl. Phys. 27, 1440–1444 (1988).
[CrossRef]

R. Hainberger, Y. Komai, W. Klaus, K. Kodate, T. Kamiya, “All-optical modules for compact free-space laser link transceivers,” in Proceedings of the Conference on Lasers and Electro-Optics Europe (European Physical Society, Geneva, Switzerland, 2000), paper CTuK100, p. 136.

Kamiyama, H.

Y. Okada, K. Kodate, H. Kamiyama, T. Kamiya, “Fiber-optic pulse delay using composite zone plates for very fast optoelectronics,” Jpn. J. Appl. Phys. 27, 1440–1444 (1988).
[CrossRef]

Klaus, W.

A. Okazaki, W. Klaus, K. Kodate, “Design of optimized binary optical element by combining various phase levels,” J. Optoelectron. Laser 9 (Suppl.), 356–358 (1998).

K. Kodate, Y. Orihara, W. Klaus, “Towards the optimal design of binary optical elements with different phase levels using a method of phase mismatch correction,” in Diffractive Optics and Micro-Optics, Vol. 41 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), paper DtuD22, pp. 174–176.

R. Hainberger, Y. Komai, W. Klaus, K. Kodate, T. Kamiya, “All-optical modules for compact free-space laser link transceivers,” in Proceedings of the Conference on Lasers and Electro-Optics Europe (European Physical Society, Geneva, Switzerland, 2000), paper CTuK100, p. 136.

Kodate, K.

K. Kodate, A. Hashimoto, R. Thapliya, T. Kamiya, “Binary zone-plate array for a parallel joint transform correlator applied to face recognition,” Appl. Opt. 37, 3060–3067 (1999).
[CrossRef]

A. Okazaki, W. Klaus, K. Kodate, “Design of optimized binary optical element by combining various phase levels,” J. Optoelectron. Laser 9 (Suppl.), 356–358 (1998).

K. Kodate, E. Tokunaga, Y. Tatuno, J. Chen, T. Kamiya, “Efficient zone plate array accessor for optoelectronic integrated circuits: design and fabrication,” Appl. Opt. 29, 5115–5119 (1990).
[CrossRef] [PubMed]

Y. Okada, K. Kodate, H. Kamiyama, T. Kamiya, “Fiber-optic pulse delay using composite zone plates for very fast optoelectronics,” Jpn. J. Appl. Phys. 27, 1440–1444 (1988).
[CrossRef]

K. Kodate, Y. Orihara, W. Klaus, “Towards the optimal design of binary optical elements with different phase levels using a method of phase mismatch correction,” in Diffractive Optics and Micro-Optics, Vol. 41 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), paper DtuD22, pp. 174–176.

R. Hainberger, Y. Komai, W. Klaus, K. Kodate, T. Kamiya, “All-optical modules for compact free-space laser link transceivers,” in Proceedings of the Conference on Lasers and Electro-Optics Europe (European Physical Society, Geneva, Switzerland, 2000), paper CTuK100, p. 136.

Komai, Y.

R. Hainberger, Y. Komai, W. Klaus, K. Kodate, T. Kamiya, “All-optical modules for compact free-space laser link transceivers,” in Proceedings of the Conference on Lasers and Electro-Optics Europe (European Physical Society, Geneva, Switzerland, 2000), paper CTuK100, p. 136.

Kuhlow, B.

M. Ferstl, B. Kuhlow, E. Pawlowski, “Effect of fabrication errors on multilevel Fresnel zone lenses,” Opt. Eng. 33, 1229–1235 (1994).
[CrossRef]

Kuittinen, M.

M. Kuittinen, J. Turunen, “Mask misalignment in photolithographic fabrication of resonance-domain diffractive elements,” Opt. Commun. 142, 14–18 (1997).
[CrossRef]

Lee, J.

J. A. Cox, B. Fritz, T. Werner, J. Lee, “Process error limitations on binary optics performance,” in Computer and Optically Formed Holographic Optics, I. Cindrich, S. H. Lee, eds., Proc. SPIE1555, 80–88 (1991).

J. A. Cox, T. Werner, J. Lee, S. Nelson, B. Fritz, J. Bergstrom, “Diffraction efficiency of binary optical elements,” in Computer and Optically Formed Holographic Optics, I. Cindrich, S. H. Lee, eds., Proc. SPIE1211, 116–124 (1990).
[CrossRef]

Lohmann, A. W.

Maehara, H.

I. Tanaka, Y. Iwasaki, M. Ogusu, K. Tamamori, Y. Sekine, T. Matsumoto, H. Maehara, R. Hirose, “High-precision binary optical element fabricated by novel self-aligned process,” Jpn. J. Appl. Phys. 38, 6976–6980 (1999).
[CrossRef]

Matsumoto, T.

I. Tanaka, Y. Iwasaki, M. Ogusu, K. Tamamori, Y. Sekine, T. Matsumoto, H. Maehara, R. Hirose, “High-precision binary optical element fabricated by novel self-aligned process,” Jpn. J. Appl. Phys. 38, 6976–6980 (1999).
[CrossRef]

Moharam, M. G.

Nelson, S.

J. A. Cox, T. Werner, J. Lee, S. Nelson, B. Fritz, J. Bergstrom, “Diffraction efficiency of binary optical elements,” in Computer and Optically Formed Holographic Optics, I. Cindrich, S. H. Lee, eds., Proc. SPIE1211, 116–124 (1990).
[CrossRef]

Nishihara, H.

H. Nishihara, T. Suhara, “Micro Fresnel lenses,” in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1987), Vol. XXIV, pp. 1–40.
[CrossRef]

Nurakami, E.

Y. Unno, Y. Sekine, E. Nurakami, M. Ohta, R. Hirose, “Application of large-scale binary optical elements to high-resolution projection optics used for microlithography,” Jpn. J. Appl. Phys. 38, 6968–6975 (1999).
[CrossRef]

Ogusu, M.

I. Tanaka, Y. Iwasaki, M. Ogusu, K. Tamamori, Y. Sekine, T. Matsumoto, H. Maehara, R. Hirose, “High-precision binary optical element fabricated by novel self-aligned process,” Jpn. J. Appl. Phys. 38, 6976–6980 (1999).
[CrossRef]

Ohta, M.

Y. Unno, Y. Sekine, E. Nurakami, M. Ohta, R. Hirose, “Application of large-scale binary optical elements to high-resolution projection optics used for microlithography,” Jpn. J. Appl. Phys. 38, 6968–6975 (1999).
[CrossRef]

Okada, Y.

Y. Okada, K. Kodate, H. Kamiyama, T. Kamiya, “Fiber-optic pulse delay using composite zone plates for very fast optoelectronics,” Jpn. J. Appl. Phys. 27, 1440–1444 (1988).
[CrossRef]

Okazaki, A.

A. Okazaki, W. Klaus, K. Kodate, “Design of optimized binary optical element by combining various phase levels,” J. Optoelectron. Laser 9 (Suppl.), 356–358 (1998).

Orihara, Y.

K. Kodate, Y. Orihara, W. Klaus, “Towards the optimal design of binary optical elements with different phase levels using a method of phase mismatch correction,” in Diffractive Optics and Micro-Optics, Vol. 41 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), paper DtuD22, pp. 174–176.

Pawlowski, E.

M. Ferstl, B. Kuhlow, E. Pawlowski, “Effect of fabrication errors on multilevel Fresnel zone lenses,” Opt. Eng. 33, 1229–1235 (1994).
[CrossRef]

Pommet, D. A.

Sekine, Y.

Y. Unno, Y. Sekine, E. Nurakami, M. Ohta, R. Hirose, “Application of large-scale binary optical elements to high-resolution projection optics used for microlithography,” Jpn. J. Appl. Phys. 38, 6968–6975 (1999).
[CrossRef]

I. Tanaka, Y. Iwasaki, M. Ogusu, K. Tamamori, Y. Sekine, T. Matsumoto, H. Maehara, R. Hirose, “High-precision binary optical element fabricated by novel self-aligned process,” Jpn. J. Appl. Phys. 38, 6976–6980 (1999).
[CrossRef]

Sinzinger, S.

S. Sinzinger, J. Jahns, “From macrooptics to microoptics—an overview,” in Micro Optics, S. Sinzinger, J. Jahns, eds. (Wiley-VCH, Germany, 1999), Chap. 1.

Suhara, T.

H. Nishihara, T. Suhara, “Micro Fresnel lenses,” in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1987), Vol. XXIV, pp. 1–40.
[CrossRef]

Swanson, G. J.

G. J. Swanson, W. B. Veldkamp, “Diffractive optical elements for use in infrared systems,” Opt. Eng. 28, 605–608 (1989).
[CrossRef]

Tamamori, K.

I. Tanaka, Y. Iwasaki, M. Ogusu, K. Tamamori, Y. Sekine, T. Matsumoto, H. Maehara, R. Hirose, “High-precision binary optical element fabricated by novel self-aligned process,” Jpn. J. Appl. Phys. 38, 6976–6980 (1999).
[CrossRef]

Tanaka, I.

I. Tanaka, Y. Iwasaki, M. Ogusu, K. Tamamori, Y. Sekine, T. Matsumoto, H. Maehara, R. Hirose, “High-precision binary optical element fabricated by novel self-aligned process,” Jpn. J. Appl. Phys. 38, 6976–6980 (1999).
[CrossRef]

Tatuno, Y.

Thapliya, R.

K. Kodate, A. Hashimoto, R. Thapliya, T. Kamiya, “Binary zone-plate array for a parallel joint transform correlator applied to face recognition,” Appl. Opt. 37, 3060–3067 (1999).
[CrossRef]

Tokunaga, E.

Turunen, J.

M. Kuittinen, J. Turunen, “Mask misalignment in photolithographic fabrication of resonance-domain diffractive elements,” Opt. Commun. 142, 14–18 (1997).
[CrossRef]

Unno, Y.

Veldkamp, W. B.

G. J. Swanson, W. B. Veldkamp, “Diffractive optical elements for use in infrared systems,” Opt. Eng. 28, 605–608 (1989).
[CrossRef]

Werner, T.

J. A. Cox, T. Werner, J. Lee, S. Nelson, B. Fritz, J. Bergstrom, “Diffraction efficiency of binary optical elements,” in Computer and Optically Formed Holographic Optics, I. Cindrich, S. H. Lee, eds., Proc. SPIE1211, 116–124 (1990).
[CrossRef]

J. A. Cox, B. Fritz, T. Werner, J. Lee, “Process error limitations on binary optics performance,” in Computer and Optically Formed Holographic Optics, I. Cindrich, S. H. Lee, eds., Proc. SPIE1555, 80–88 (1991).

Werner, T. R.

T. R. Werner, J. A. Cox, J. Gieske, K. Hewitt, “The CO-OP DOE foundry process results,” in Diffractive and Holographic Device Technologies and Applications IV, I. Cindrich, S. H. Lee, eds., Proc. SPIE3010, 96–104 (1997).
[CrossRef]

Appl. Opt. (7)

J. Optoelectron. Laser (1)

A. Okazaki, W. Klaus, K. Kodate, “Design of optimized binary optical element by combining various phase levels,” J. Optoelectron. Laser 9 (Suppl.), 356–358 (1998).

Jpn. J. Appl. Phys. (3)

Y. Okada, K. Kodate, H. Kamiyama, T. Kamiya, “Fiber-optic pulse delay using composite zone plates for very fast optoelectronics,” Jpn. J. Appl. Phys. 27, 1440–1444 (1988).
[CrossRef]

Y. Unno, Y. Sekine, E. Nurakami, M. Ohta, R. Hirose, “Application of large-scale binary optical elements to high-resolution projection optics used for microlithography,” Jpn. J. Appl. Phys. 38, 6968–6975 (1999).
[CrossRef]

I. Tanaka, Y. Iwasaki, M. Ogusu, K. Tamamori, Y. Sekine, T. Matsumoto, H. Maehara, R. Hirose, “High-precision binary optical element fabricated by novel self-aligned process,” Jpn. J. Appl. Phys. 38, 6976–6980 (1999).
[CrossRef]

Opt. Commun. (1)

M. Kuittinen, J. Turunen, “Mask misalignment in photolithographic fabrication of resonance-domain diffractive elements,” Opt. Commun. 142, 14–18 (1997).
[CrossRef]

Opt. Eng. (2)

M. Ferstl, B. Kuhlow, E. Pawlowski, “Effect of fabrication errors on multilevel Fresnel zone lenses,” Opt. Eng. 33, 1229–1235 (1994).
[CrossRef]

G. J. Swanson, W. B. Veldkamp, “Diffractive optical elements for use in infrared systems,” Opt. Eng. 28, 605–608 (1989).
[CrossRef]

Other (8)

H. P. Herzig, “Design of refractive and diffractive micro-optics,” in Micro-Optics: Elements, Systems and Applications, H. P. Herzig, ed. (Taylor & Francis, London, 1997), Chap. 1.

S. Sinzinger, J. Jahns, “From macrooptics to microoptics—an overview,” in Micro Optics, S. Sinzinger, J. Jahns, eds. (Wiley-VCH, Germany, 1999), Chap. 1.

K. Kodate, Y. Orihara, W. Klaus, “Towards the optimal design of binary optical elements with different phase levels using a method of phase mismatch correction,” in Diffractive Optics and Micro-Optics, Vol. 41 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), paper DtuD22, pp. 174–176.

R. Hainberger, Y. Komai, W. Klaus, K. Kodate, T. Kamiya, “All-optical modules for compact free-space laser link transceivers,” in Proceedings of the Conference on Lasers and Electro-Optics Europe (European Physical Society, Geneva, Switzerland, 2000), paper CTuK100, p. 136.

H. Nishihara, T. Suhara, “Micro Fresnel lenses,” in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1987), Vol. XXIV, pp. 1–40.
[CrossRef]

T. R. Werner, J. A. Cox, J. Gieske, K. Hewitt, “The CO-OP DOE foundry process results,” in Diffractive and Holographic Device Technologies and Applications IV, I. Cindrich, S. H. Lee, eds., Proc. SPIE3010, 96–104 (1997).
[CrossRef]

J. A. Cox, T. Werner, J. Lee, S. Nelson, B. Fritz, J. Bergstrom, “Diffraction efficiency of binary optical elements,” in Computer and Optically Formed Holographic Optics, I. Cindrich, S. H. Lee, eds., Proc. SPIE1211, 116–124 (1990).
[CrossRef]

J. A. Cox, B. Fritz, T. Werner, J. Lee, “Process error limitations on binary optics performance,” in Computer and Optically Formed Holographic Optics, I. Cindrich, S. H. Lee, eds., Proc. SPIE1555, 80–88 (1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Fabrication process including two types of fabrication error (Ee, etch-depth error; Ea, alignment error).

Fig. 2
Fig. 2

Diffraction efficiency plotted versus the NA for an eight-level BZP with alignment errors. λ = 0.6328 µm; f = 10 mm.

Fig. 3
Fig. 3

Diffraction efficiency plotted versus the NA for eight-, four-, and two-level combinations and no alignment error. λ = 0.6328 µm; f = 10 mm; W min = 1 µm.

Fig. 4
Fig. 4

Cross-sectional view of a fabricated two-, four-, and eight-level HBZP.

Fig. 5
Fig. 5

Two methods for compensating for the phase mismatch of HBZPs: (a) no correction, (b) correction by means of a lateral shift, (c) correction by means of a phase-depth adjustment.

Fig. 6
Fig. 6

Diffraction efficiency plotted versus the area ratio with various alignment errors taken into account for (a) a two- and four-level HBZP with a NA of 0.12 and (b) a four- and eight-level HBZP with a NA of 0.05.

Fig. 7
Fig. 7

Design procedure and choice of either BZPs or HBZPs, depending on the fabrication’s resolution limit and the desired level number.

Fig. 8
Fig. 8

Range of alignment errors for efficiency margins of 10% and 20% for a four- and eight-level HBZP designed for a NA of 0.12.

Fig. 9
Fig. 9

Relation between radial displacement e and alignment error E.

Tables (2)

Tables Icon

Table 1 Calculated Results of the Diffraction Efficiency for a HBZP with and without Phase-Mismatch Correction for a NA of 0.02

Tables Icon

Table 2 Comparison of Calculated and Measured Diffraction Efficiencies for HBZPs Designed for a NA of 0.12

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

rm=mfλ2N-1+mλ2N21/2,
DN=12Nλn-1,
Wmin=λL×NA.
cn=1Λ0Λ txexp-i 2πΛ nxdx,
c1=exp-i πLsinc1L.
ϕ=πL1-πL2.
Λr=λ r2+f21/2r,
eθ=E cos θ,
η=8π21-sin2πEΛ.
|E|<l/3,
η=8π212π02π1-sin2πE cos θΛdθ=8π2-16π30π/2 sin2π EΛ cos θdθ.
η=8π21-329EΛ.
E916 l.
E916 l
l1.8E.

Metrics