Abstract

The design, microfabrication, and testing of a hybrid microdiffractive–microrefractive lens with a continuous relief that is used with a laser diode for monomode fiber coupling is discussed. The hybrid microlens with a diameter as small as 65 µm and a numerical aperture of 0.25 is fabricated directly onto a spherical surface by use of focused-ion-beam milling technology. A focused Ga+ ion beam is used to mill the continuous relief microstructure at an acceleration voltage of 50 kV. From the test results a coupling efficiency of 71% (-1.49 dB) was achieved at room temperature. A diffraction efficiency of the main diffractive order, -1, was measured to as high as 90.5% at a wavelength of 635 nm. This indicates that the hybrid microlens was suitably designed within the application requirements and satisfactorily manufactured with focused-ion-beam milling.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Guo, ed., Manufacturing by E-Beam and Ion Beam (Mechanical Industry Press, Beijing, 1989).
  2. J. Bi, Z. Li, “Experimental study of submicron focused ion beam sputtering etching,” Micromanuf. Technol. 6(2), 26–34 (1996).
  3. Z. Mai, H. Liu, “Fabrication of silicon microlens arrays using ion beam milling,” Semiconduc. Photon. Technol. 2(1), 61–65 (1996).
  4. Y. Guo, L. Guo, X. Zhang, “Study of etching conditions for photolithographic holographs,” Arct. Opt. Sinica 12(3), 252–255 (1992).
  5. T. Wipiejewski, K. Panzlaff, E. Ebehard, K. J. Ebeling, “Tunable vertical-cavity laser diodes with submilliamp threshold currents and efficient fiber coupling,” in Vertical-Cavity Surface-Emitting Laser Arrays, L. Shrank, ed., Proc. SPIE2147, 48–59 (1994).
    [CrossRef]
  6. S. A. Hall, W. Hanchung, A. Lane, “Coupling efficiency of a batch-aligned laser-fiber array,” in Electro-Optic Computer Peripherals Technology, W. C. Frank, ed., Proc. SPIE1816, 86–93 (1992).
    [CrossRef]
  7. S. L. Willing, D. P. Worland, G. L. Garnagel, J. G. Endriz, “10-watt cw diode laser bar efficiently fiber-coupled to a 381 µm diameter fiber-optic connector,” in Laser Diode Technology and Applications III, D. Renner, ed., Proc. SPIE1418, 358–362 (1991).
    [CrossRef]
  8. H.-P. Herzig, Micro-Optics Elements, Systems, and Applications (Taylor & Francis, London, 1997).
  9. M. Rossi, R. E. Kunz, H.-P. Herzig, “Refractive and diffractive properties of planar micro-optical elements,” Appl. Opt. 34, 5996–6006 (1995).
    [CrossRef] [PubMed]

1996 (2)

J. Bi, Z. Li, “Experimental study of submicron focused ion beam sputtering etching,” Micromanuf. Technol. 6(2), 26–34 (1996).

Z. Mai, H. Liu, “Fabrication of silicon microlens arrays using ion beam milling,” Semiconduc. Photon. Technol. 2(1), 61–65 (1996).

1995 (1)

1992 (1)

Y. Guo, L. Guo, X. Zhang, “Study of etching conditions for photolithographic holographs,” Arct. Opt. Sinica 12(3), 252–255 (1992).

Bi, J.

J. Bi, Z. Li, “Experimental study of submicron focused ion beam sputtering etching,” Micromanuf. Technol. 6(2), 26–34 (1996).

Ebehard, E.

T. Wipiejewski, K. Panzlaff, E. Ebehard, K. J. Ebeling, “Tunable vertical-cavity laser diodes with submilliamp threshold currents and efficient fiber coupling,” in Vertical-Cavity Surface-Emitting Laser Arrays, L. Shrank, ed., Proc. SPIE2147, 48–59 (1994).
[CrossRef]

Ebeling, K. J.

T. Wipiejewski, K. Panzlaff, E. Ebehard, K. J. Ebeling, “Tunable vertical-cavity laser diodes with submilliamp threshold currents and efficient fiber coupling,” in Vertical-Cavity Surface-Emitting Laser Arrays, L. Shrank, ed., Proc. SPIE2147, 48–59 (1994).
[CrossRef]

Endriz, J. G.

S. L. Willing, D. P. Worland, G. L. Garnagel, J. G. Endriz, “10-watt cw diode laser bar efficiently fiber-coupled to a 381 µm diameter fiber-optic connector,” in Laser Diode Technology and Applications III, D. Renner, ed., Proc. SPIE1418, 358–362 (1991).
[CrossRef]

Garnagel, G. L.

S. L. Willing, D. P. Worland, G. L. Garnagel, J. G. Endriz, “10-watt cw diode laser bar efficiently fiber-coupled to a 381 µm diameter fiber-optic connector,” in Laser Diode Technology and Applications III, D. Renner, ed., Proc. SPIE1418, 358–362 (1991).
[CrossRef]

Guo, L.

Y. Guo, L. Guo, X. Zhang, “Study of etching conditions for photolithographic holographs,” Arct. Opt. Sinica 12(3), 252–255 (1992).

Guo, Y.

Y. Guo, L. Guo, X. Zhang, “Study of etching conditions for photolithographic holographs,” Arct. Opt. Sinica 12(3), 252–255 (1992).

Hall, S. A.

S. A. Hall, W. Hanchung, A. Lane, “Coupling efficiency of a batch-aligned laser-fiber array,” in Electro-Optic Computer Peripherals Technology, W. C. Frank, ed., Proc. SPIE1816, 86–93 (1992).
[CrossRef]

Hanchung, W.

S. A. Hall, W. Hanchung, A. Lane, “Coupling efficiency of a batch-aligned laser-fiber array,” in Electro-Optic Computer Peripherals Technology, W. C. Frank, ed., Proc. SPIE1816, 86–93 (1992).
[CrossRef]

Herzig, H.-P.

Kunz, R. E.

Lane, A.

S. A. Hall, W. Hanchung, A. Lane, “Coupling efficiency of a batch-aligned laser-fiber array,” in Electro-Optic Computer Peripherals Technology, W. C. Frank, ed., Proc. SPIE1816, 86–93 (1992).
[CrossRef]

Li, Z.

J. Bi, Z. Li, “Experimental study of submicron focused ion beam sputtering etching,” Micromanuf. Technol. 6(2), 26–34 (1996).

Liu, H.

Z. Mai, H. Liu, “Fabrication of silicon microlens arrays using ion beam milling,” Semiconduc. Photon. Technol. 2(1), 61–65 (1996).

Mai, Z.

Z. Mai, H. Liu, “Fabrication of silicon microlens arrays using ion beam milling,” Semiconduc. Photon. Technol. 2(1), 61–65 (1996).

Panzlaff, K.

T. Wipiejewski, K. Panzlaff, E. Ebehard, K. J. Ebeling, “Tunable vertical-cavity laser diodes with submilliamp threshold currents and efficient fiber coupling,” in Vertical-Cavity Surface-Emitting Laser Arrays, L. Shrank, ed., Proc. SPIE2147, 48–59 (1994).
[CrossRef]

Rossi, M.

Willing, S. L.

S. L. Willing, D. P. Worland, G. L. Garnagel, J. G. Endriz, “10-watt cw diode laser bar efficiently fiber-coupled to a 381 µm diameter fiber-optic connector,” in Laser Diode Technology and Applications III, D. Renner, ed., Proc. SPIE1418, 358–362 (1991).
[CrossRef]

Wipiejewski, T.

T. Wipiejewski, K. Panzlaff, E. Ebehard, K. J. Ebeling, “Tunable vertical-cavity laser diodes with submilliamp threshold currents and efficient fiber coupling,” in Vertical-Cavity Surface-Emitting Laser Arrays, L. Shrank, ed., Proc. SPIE2147, 48–59 (1994).
[CrossRef]

Worland, D. P.

S. L. Willing, D. P. Worland, G. L. Garnagel, J. G. Endriz, “10-watt cw diode laser bar efficiently fiber-coupled to a 381 µm diameter fiber-optic connector,” in Laser Diode Technology and Applications III, D. Renner, ed., Proc. SPIE1418, 358–362 (1991).
[CrossRef]

Zhang, X.

Y. Guo, L. Guo, X. Zhang, “Study of etching conditions for photolithographic holographs,” Arct. Opt. Sinica 12(3), 252–255 (1992).

Appl. Opt. (1)

Arct. Opt. Sinica (1)

Y. Guo, L. Guo, X. Zhang, “Study of etching conditions for photolithographic holographs,” Arct. Opt. Sinica 12(3), 252–255 (1992).

Micromanuf. Technol. (1)

J. Bi, Z. Li, “Experimental study of submicron focused ion beam sputtering etching,” Micromanuf. Technol. 6(2), 26–34 (1996).

Semiconduc. Photon. Technol. (1)

Z. Mai, H. Liu, “Fabrication of silicon microlens arrays using ion beam milling,” Semiconduc. Photon. Technol. 2(1), 61–65 (1996).

Other (5)

H. Guo, ed., Manufacturing by E-Beam and Ion Beam (Mechanical Industry Press, Beijing, 1989).

T. Wipiejewski, K. Panzlaff, E. Ebehard, K. J. Ebeling, “Tunable vertical-cavity laser diodes with submilliamp threshold currents and efficient fiber coupling,” in Vertical-Cavity Surface-Emitting Laser Arrays, L. Shrank, ed., Proc. SPIE2147, 48–59 (1994).
[CrossRef]

S. A. Hall, W. Hanchung, A. Lane, “Coupling efficiency of a batch-aligned laser-fiber array,” in Electro-Optic Computer Peripherals Technology, W. C. Frank, ed., Proc. SPIE1816, 86–93 (1992).
[CrossRef]

S. L. Willing, D. P. Worland, G. L. Garnagel, J. G. Endriz, “10-watt cw diode laser bar efficiently fiber-coupled to a 381 µm diameter fiber-optic connector,” in Laser Diode Technology and Applications III, D. Renner, ed., Proc. SPIE1418, 358–362 (1991).
[CrossRef]

H.-P. Herzig, Micro-Optics Elements, Systems, and Applications (Taylor & Francis, London, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagrams of the microhybrid diffractive–refractive lens: (a) a lens with the same sides combined and (b) a lens with both sides combined.

Fig. 2
Fig. 2

Schematic diagram of the microdiffractive–microrefractive lens coupling with a single-mode fiber.

Fig. 3
Fig. 3

Designed microlens with a continuous relief profile.

Fig. 4
Fig. 4

DOE with a continuous relief milled directly onto a BK7 glass substrate by use of FIBM: (a) a three-dimensional micrograph as measured by use of AFM and (b) a two-dimensional DOE profile as measure by use of AFM.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

rm2=2mλf0+mλ2,
Sr=f0+mλ-f02+r21/2n-1,
1=ϕrϕ+ϕdϕ,
xf=xf,rϕrϕ+xf,dϕdϕ,

Metrics