Abstract

A simple method of manufacturing micrometer-sized polymer elements at the extremity of both single-mode and multimode optical fibers is reported. The procedure consists of depositing a drop of a liquid photopolymerizable formulation on a cleaved fiber and using the light that emerges from the fiber to induce the polymerization process. After exposure and rinsing a polymer tip is firmly attached to the fiber as an extension of the fiber core. It is shown that the tip geometry can be adjusted by the variation of basic parameters such as the geometry of the deposited drop and the conditions of drop illumination. When this process is applied to a multimode fiber three-dimensional molds of the fiber’s linearly polarized modes can be obtained. The process of polymer-tip formation was simulated by a numerical calculation that consisted of an iterative beam-propagation method in a medium whose refractive index is time varying. It is shown that this process is based on the gradual growth, just above the fiber core, of an optical waveguide in the liquid formulation. Experimental data concerning two potential uses of the tipped fibers are presented.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (19)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (11)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription