Abstract

We present a technique for improved carrier generation by eliminating the instability of a mechanical device in favor of an electro-optical phase modulator in the reference arm of an optical coherence tomography system. A greater than threefold reduction in the phase variance between consecutive A-line scans at a repetition rate of 1 kHz was achieved. Stable and reproducible interference fringe generation permits phase-resolved digital data processing. A correction algorithm was applied to the interferometric signal to compensate for the departure of the source spectrum from an ideal Gaussian shape, resulting in up to 8-dB sidelobe suppression at the expense of a 1-dB increase in the noise floor. In addition, we could eliminate completely the broadening effect of group-delay dispersion on the coherence function by introducing a quadratic phase shift in the Fourier domain of the interferometric signal.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
    [CrossRef] [PubMed]
  2. W. Drexler, U. Morgner, F. X. Kartner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett. 24, 1221–1223 (1999).
    [CrossRef]
  3. G. J. Tearney, B. E. Bouma, J. G. Fujimoto, “High-speed phase- and group-delay scanning with a grating-based phase control delay line,” Opt. Lett. 22, 1811–1813 (1997).
    [CrossRef]
  4. A. M. Rollins, M. D. Kulkarni, S. Yazdanfar, R. Ung-arunyawee, J. A. Izatt, “In vivo video rate optical coherence tomography,” Opt. Express 3, 219–229 (1998), http://www.opticsexpress.org .
    [CrossRef]
  5. C. E. Saxer, J. F. de Boer, B. H. Park, Y. Zhao, Z. Chen, J. S. Nelson, “High-speed fiber-based polarization-sensitive optical coherence tomography of in vivo human skin,” Opt. Lett. 25, 1355–1357 (2000).
    [CrossRef]
  6. O. E. Martinez, “3000 times grating compressor with positive group velocity dispersion: application to fiber compensation in 1.3–1.6 µm region,” IEEE J. Quantum Electron. 23, 59–64 (1987).
    [CrossRef]
  7. M. D. Kulkarni, C. W. Thomas, J. A. Izatt, “Image enhancement in optical coherence tomography using deconvolution,” Electron. Lett. 33, 1365–1367 (1997).
    [CrossRef]
  8. M. Bashkansky, M. D. Duncan, J. Reintjes, P. R. Battle, “Signal processing for improving field cross-correlation function in optical coherence tomography,” Appl. Opt. 37, 8137–8138 (1998).
  9. K. M. Yung, S. L. Lee, J. M. Schmitt, “Phase-domain processing of optical coherence tomography images,” J. Biomed. Opt. 4, 125–136 (1999).
    [CrossRef] [PubMed]

2000 (1)

1999 (2)

1998 (2)

1997 (2)

M. D. Kulkarni, C. W. Thomas, J. A. Izatt, “Image enhancement in optical coherence tomography using deconvolution,” Electron. Lett. 33, 1365–1367 (1997).
[CrossRef]

G. J. Tearney, B. E. Bouma, J. G. Fujimoto, “High-speed phase- and group-delay scanning with a grating-based phase control delay line,” Opt. Lett. 22, 1811–1813 (1997).
[CrossRef]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

1987 (1)

O. E. Martinez, “3000 times grating compressor with positive group velocity dispersion: application to fiber compensation in 1.3–1.6 µm region,” IEEE J. Quantum Electron. 23, 59–64 (1987).
[CrossRef]

Bashkansky, M.

Battle, P. R.

Boppart, S. A.

Bouma, B. E.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Chen, Z.

de Boer, J. F.

Drexler, W.

Duncan, M. D.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Fujimoto, J. G.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Ippen, E. P.

Izatt, J. A.

A. M. Rollins, M. D. Kulkarni, S. Yazdanfar, R. Ung-arunyawee, J. A. Izatt, “In vivo video rate optical coherence tomography,” Opt. Express 3, 219–229 (1998), http://www.opticsexpress.org .
[CrossRef]

M. D. Kulkarni, C. W. Thomas, J. A. Izatt, “Image enhancement in optical coherence tomography using deconvolution,” Electron. Lett. 33, 1365–1367 (1997).
[CrossRef]

Kartner, F. X.

Kulkarni, M. D.

A. M. Rollins, M. D. Kulkarni, S. Yazdanfar, R. Ung-arunyawee, J. A. Izatt, “In vivo video rate optical coherence tomography,” Opt. Express 3, 219–229 (1998), http://www.opticsexpress.org .
[CrossRef]

M. D. Kulkarni, C. W. Thomas, J. A. Izatt, “Image enhancement in optical coherence tomography using deconvolution,” Electron. Lett. 33, 1365–1367 (1997).
[CrossRef]

Lee, S. L.

K. M. Yung, S. L. Lee, J. M. Schmitt, “Phase-domain processing of optical coherence tomography images,” J. Biomed. Opt. 4, 125–136 (1999).
[CrossRef] [PubMed]

Li, X. D.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Martinez, O. E.

O. E. Martinez, “3000 times grating compressor with positive group velocity dispersion: application to fiber compensation in 1.3–1.6 µm region,” IEEE J. Quantum Electron. 23, 59–64 (1987).
[CrossRef]

Morgner, U.

Nelson, J. S.

Park, B. H.

Pitris, C.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Reintjes, J.

Rollins, A. M.

Saxer, C. E.

Schmitt, J. M.

K. M. Yung, S. L. Lee, J. M. Schmitt, “Phase-domain processing of optical coherence tomography images,” J. Biomed. Opt. 4, 125–136 (1999).
[CrossRef] [PubMed]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Tearney, G. J.

Thomas, C. W.

M. D. Kulkarni, C. W. Thomas, J. A. Izatt, “Image enhancement in optical coherence tomography using deconvolution,” Electron. Lett. 33, 1365–1367 (1997).
[CrossRef]

Ung-arunyawee, R.

Yazdanfar, S.

Yung, K. M.

K. M. Yung, S. L. Lee, J. M. Schmitt, “Phase-domain processing of optical coherence tomography images,” J. Biomed. Opt. 4, 125–136 (1999).
[CrossRef] [PubMed]

Zhao, Y.

Appl. Opt. (1)

Electron. Lett. (1)

M. D. Kulkarni, C. W. Thomas, J. A. Izatt, “Image enhancement in optical coherence tomography using deconvolution,” Electron. Lett. 33, 1365–1367 (1997).
[CrossRef]

IEEE J. Quantum Electron. (1)

O. E. Martinez, “3000 times grating compressor with positive group velocity dispersion: application to fiber compensation in 1.3–1.6 µm region,” IEEE J. Quantum Electron. 23, 59–64 (1987).
[CrossRef]

J. Biomed. Opt. (1)

K. M. Yung, S. L. Lee, J. M. Schmitt, “Phase-domain processing of optical coherence tomography images,” J. Biomed. Opt. 4, 125–136 (1999).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (3)

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of the clock synchronization of the function generators (FG) and the analog-to-digital (AD) board and the RSOD line and phase modulator. Waveforms generated by the FGs are shown (timing not to scale). In our experimental configuration, the spectrum is centered on a scanning mirror (SM), i.e., x = 0. Phase Mod., LiNbO3 phase modulator; G, grating; L, lens; f, focal length (10 cm); y, displacement of grating from focal plane; SM, galvo-mounted scanning mirror; λ0, center wavelength of source; αt, scan angle of mirror; x, lateral displacement of pivoting axis of SM with respect to position of the center wavelength; RM, return mirror that reflects the light back for a double pass through the delay line.

Fig. 2
Fig. 2

Probability distribution of phase noise for mechanical and electro-optical carrier generations. The distribution of phase differences between adjacent A-line scans, determined at the reflectivity peak of a single surface, is shown. Squares, mechanical carrier generation that we obtained by displacing the pivoting axis of the scanning mirror with respect to the center wavelength (x ≠ 0); circles, electro-optical generation of the carrier by the phase modulator only (x = 0); solid curves, Gaussian fits to the data. Variance of the distribution is 25.6° and 7.9°, respectively.

Fig. 3
Fig. 3

Response to a single surface on a logarithmic scale as a function of distance in air. Dashed curve, uncorrected response; solid curve, response after spectral correction. Insert: power spectrum (left y axis) of the signal response to a single surface as a function of frequency (lower x axis) and the corresponding wavelength (upper x axis). Dotted curve, signal spectrum; dashed curve, fit of a Gaussian to the signal spectrum; solid curve, correction factor defined as the ratio of the Gaussian and signal spectrum (with respect to right y axis).

Fig. 4
Fig. 4

Ratio of uncorrected over corrected response on a logarithmic scale, showing sidelobe suppression that can be obtained by correction of the spectral modulation shown in the insert of Fig. 3. Up to 8-dB sidelobe suppression is achieved in exchange for a 1-dB increase in the noise floor.

Fig. 5
Fig. 5

Spectrum (left y axis) and phase derivative (right y axis) of the response to a single surface as a function of frequency (lower x axis) and the corresponding wavelength (upper x axis). Dashed curve, power spectrum; connected squares, derivative of the phase of the Fourier components; solid curve, linear fit to the phase derivative with slope 1.36 × 10-7 mrad s2, which corresponds to a GDD d2ϕ/dω2 = 4700 fs2. Insert shows the corresponding response (coherence envelope) on a linear scale before (dashed curve, FWHM of 31.6 µm) and after (solid curve, FWHM of 10.4 µm) digital processing to remove GDD.

Fig. 6
Fig. 6

Images of ex vivo human skin graft before and after signal processing to remove 4.4 × 103 fs2 GDD. Left: Image blurred by GDD introduced by unbalanced dispersion in the sample and reference arm. Right: The same image after processing to eliminate GDD. GDD correction was calculated by a measurement of the dispersion imbalance before image acquisition.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

It, Δz   Sωexpi2kΔz+ϕDω, tdω+c.c.
ϕDω, t=4αtxωc+8παtfΔωωs+4yωccos2πcΔωω02s-8πy tanΘstan22πcΔωω02s+βt,

Metrics