Abstract

Lateral light-distribution images of biologic tissues were used to study the tissues’ optical characteristics. Monte Carlo simulation with the same conditions was performed to simulate the light distribution for comparison. Simulation results showed that the lateral light distribution was similar to the internal light distribution in biologic tissue. The direction of muscle fibers and the temperature both affect the near-field light distribution in tissue. The lateral view distribution can be both measured and simulated to study photon migration in tissue. It can also be used to estimate or verify the optical coefficients of tissue.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. O. Svassand, R. Ellingsen, “Optical penetration in human intracranial tumors,” Photochem. Photobiol. 41, 73–76 (1985).
    [CrossRef]
  2. A. M. K. Nilsson, R. Berg, S. Anderson-Engels, “Measurements of the optical properties of tissue in conjunction with photodynamic therapy,” Appl. Opt.34, 4609–4619 (1995).
  3. R. R. Anderson, J. A. Parrish, “The optics of human skin,” J. Invest. Dermatol. 77, 13–19 (1981).
    [CrossRef]
  4. M. J. C. van Gemert, S. L. Jacques, H. J. C. M. Sterenborg, W. M. Star, “Skin optics,” IEEE Trans. Biomed. Eng. 36, 1146–1154 (1989).
  5. B. C. Wilson, S. L. Jacques, “Optical reflectance and transmission of tissues: principles and applications,” IEEE J. Quantum Electron. 26, 2186–2199 (1990).
  6. W. F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
  7. J. M. Schmitt, G. X. Zhou, E. C. Walker, R. T. Wall, “Multilayer model of photon diffusion in skin, J. Opt. Soc. Am. A 7, 2141–2153 (1990).
  8. Y. Hasegawa, Y. Yamada, M. Tamura, Y. Nomura, “Monte Carlo simulation of light transmission through living tissues,” Appl. Opt. 30, 4514–4520 (1991).
  9. R. Graaff, M. H. Koelink, F. F. M. de Mul, W. G. Zijlstra, A. C. M. Dassel, J. G. Aarnoudse, “Condensed Monte Carlo simulations for the description of light transport,” Appl. Opt. 32, 426–434 (1993).
  10. J. W. Pickering, S. A. Prahl, N. van Wierinhen, J. F. Beek, H. J. C. M. Sterenborg, M. J. C. van Gemert, “Double-integrating-sphere system for measuring the optical properties of tissue,” Appl. Opt. 32, 399–410 (1993).
  11. E. Chan, T. Menovsky, A. J. Welch, “Effects of cryogenic grinding on soft-tissue optical properties,” Appl. Opt. 35, 4526–4532 (1996).
  12. A. Kienle, L. Lilge, M. S. Patterson, R. Hibst, R. Steiner, B. C. Wilson, “Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue,” Appl. Opt. 35, 2304–2312 (1996).
  13. E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope, D. T. Delpy, “Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head,” Appl. Opt. 36, 21–31 (1997).
  14. J. Laufer, R. Simpson, M. Kohl, M. Essenpreis, M. Cope, “Effect of temperature on the optical properties of ex vivo human dermis and subdermis,” Phys. Med. Biol. 43, 2479–2489 (1998).
    [CrossRef]
  15. S. J. Matcher, M. Cope, D. T. Delpy, “In vivo measurements of the wavelength dependence of tissue-scattering coefficients between 760 and 900 nm measured with time-resolved spectroscopy,” Appl. Opt. 36, 386–396 (1997).
  16. S. A. Prahl, I. A. Vitkin, U. Bruggemann, B. C. Wilson, R. R. Anderson, “Determination of optical properties of turbid media using pulsed photothermal radiometry,” Phys. Med. Biol. 37, 1203–1217 (1992).
  17. C. R. Simpson, M. Kohl, M. Essenpreis, M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol. 43, 2465–2478 (1998).
    [CrossRef]
  18. S. L. Jacques, L. Wang, “Monte Carlo modeling of light transport in tissues,” in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch, M. J. C. van Gemert, eds. (Plenum, New York, 1995), Chap. 4, pp. 73–100.
    [CrossRef]
  19. H. J. van Staveren, C. J. M. Moes, J. van Marle, S. A. Prahl, M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400–1000 nm,” Appl. Opt. 30, 4507–4514 (1991).
  20. G. V. Simonenko, T. P. Denisova, N. A. Lakodina, V. V. Tuchin, “Measurement of an optical anisotropy of biotissues,” in Coherence Domain Optical Methods in Biomedical Science and Clinical Applications IV, V. V. Tuchin, J. A. Izatt, J. G. Fujimoto, eds., Proc. SPIE3915, 152–157 (2000).
    [CrossRef]

1998 (2)

J. Laufer, R. Simpson, M. Kohl, M. Essenpreis, M. Cope, “Effect of temperature on the optical properties of ex vivo human dermis and subdermis,” Phys. Med. Biol. 43, 2479–2489 (1998).
[CrossRef]

C. R. Simpson, M. Kohl, M. Essenpreis, M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol. 43, 2465–2478 (1998).
[CrossRef]

1997 (2)

1996 (2)

1993 (2)

1992 (1)

S. A. Prahl, I. A. Vitkin, U. Bruggemann, B. C. Wilson, R. R. Anderson, “Determination of optical properties of turbid media using pulsed photothermal radiometry,” Phys. Med. Biol. 37, 1203–1217 (1992).

1991 (2)

Y. Hasegawa, Y. Yamada, M. Tamura, Y. Nomura, “Monte Carlo simulation of light transmission through living tissues,” Appl. Opt. 30, 4514–4520 (1991).

H. J. van Staveren, C. J. M. Moes, J. van Marle, S. A. Prahl, M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400–1000 nm,” Appl. Opt. 30, 4507–4514 (1991).

1990 (3)

B. C. Wilson, S. L. Jacques, “Optical reflectance and transmission of tissues: principles and applications,” IEEE J. Quantum Electron. 26, 2186–2199 (1990).

W. F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).

J. M. Schmitt, G. X. Zhou, E. C. Walker, R. T. Wall, “Multilayer model of photon diffusion in skin, J. Opt. Soc. Am. A 7, 2141–2153 (1990).

1989 (1)

M. J. C. van Gemert, S. L. Jacques, H. J. C. M. Sterenborg, W. M. Star, “Skin optics,” IEEE Trans. Biomed. Eng. 36, 1146–1154 (1989).

1985 (1)

L. O. Svassand, R. Ellingsen, “Optical penetration in human intracranial tumors,” Photochem. Photobiol. 41, 73–76 (1985).
[CrossRef]

1981 (1)

R. R. Anderson, J. A. Parrish, “The optics of human skin,” J. Invest. Dermatol. 77, 13–19 (1981).
[CrossRef]

Aarnoudse, J. G.

Anderson, R. R.

S. A. Prahl, I. A. Vitkin, U. Bruggemann, B. C. Wilson, R. R. Anderson, “Determination of optical properties of turbid media using pulsed photothermal radiometry,” Phys. Med. Biol. 37, 1203–1217 (1992).

R. R. Anderson, J. A. Parrish, “The optics of human skin,” J. Invest. Dermatol. 77, 13–19 (1981).
[CrossRef]

Anderson-Engels, S.

A. M. K. Nilsson, R. Berg, S. Anderson-Engels, “Measurements of the optical properties of tissue in conjunction with photodynamic therapy,” Appl. Opt.34, 4609–4619 (1995).

Arridge, S. R.

Beek, J. F.

Berg, R.

A. M. K. Nilsson, R. Berg, S. Anderson-Engels, “Measurements of the optical properties of tissue in conjunction with photodynamic therapy,” Appl. Opt.34, 4609–4619 (1995).

Bruggemann, U.

S. A. Prahl, I. A. Vitkin, U. Bruggemann, B. C. Wilson, R. R. Anderson, “Determination of optical properties of turbid media using pulsed photothermal radiometry,” Phys. Med. Biol. 37, 1203–1217 (1992).

Chan, E.

Cheong, W. F.

W. F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).

Cope, M.

C. R. Simpson, M. Kohl, M. Essenpreis, M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol. 43, 2465–2478 (1998).
[CrossRef]

J. Laufer, R. Simpson, M. Kohl, M. Essenpreis, M. Cope, “Effect of temperature on the optical properties of ex vivo human dermis and subdermis,” Phys. Med. Biol. 43, 2479–2489 (1998).
[CrossRef]

S. J. Matcher, M. Cope, D. T. Delpy, “In vivo measurements of the wavelength dependence of tissue-scattering coefficients between 760 and 900 nm measured with time-resolved spectroscopy,” Appl. Opt. 36, 386–396 (1997).

E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope, D. T. Delpy, “Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head,” Appl. Opt. 36, 21–31 (1997).

Dassel, A. C. M.

de Mul, F. F. M.

Delpy, D. T.

Denisova, T. P.

G. V. Simonenko, T. P. Denisova, N. A. Lakodina, V. V. Tuchin, “Measurement of an optical anisotropy of biotissues,” in Coherence Domain Optical Methods in Biomedical Science and Clinical Applications IV, V. V. Tuchin, J. A. Izatt, J. G. Fujimoto, eds., Proc. SPIE3915, 152–157 (2000).
[CrossRef]

Ellingsen, R.

L. O. Svassand, R. Ellingsen, “Optical penetration in human intracranial tumors,” Photochem. Photobiol. 41, 73–76 (1985).
[CrossRef]

Essenpreis, M.

C. R. Simpson, M. Kohl, M. Essenpreis, M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol. 43, 2465–2478 (1998).
[CrossRef]

J. Laufer, R. Simpson, M. Kohl, M. Essenpreis, M. Cope, “Effect of temperature on the optical properties of ex vivo human dermis and subdermis,” Phys. Med. Biol. 43, 2479–2489 (1998).
[CrossRef]

Firbank, M.

Graaff, R.

Hasegawa, Y.

Y. Hasegawa, Y. Yamada, M. Tamura, Y. Nomura, “Monte Carlo simulation of light transmission through living tissues,” Appl. Opt. 30, 4514–4520 (1991).

Hibst, R.

Jacques, S. L.

B. C. Wilson, S. L. Jacques, “Optical reflectance and transmission of tissues: principles and applications,” IEEE J. Quantum Electron. 26, 2186–2199 (1990).

M. J. C. van Gemert, S. L. Jacques, H. J. C. M. Sterenborg, W. M. Star, “Skin optics,” IEEE Trans. Biomed. Eng. 36, 1146–1154 (1989).

S. L. Jacques, L. Wang, “Monte Carlo modeling of light transport in tissues,” in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch, M. J. C. van Gemert, eds. (Plenum, New York, 1995), Chap. 4, pp. 73–100.
[CrossRef]

Kienle, A.

Koelink, M. H.

Kohl, M.

J. Laufer, R. Simpson, M. Kohl, M. Essenpreis, M. Cope, “Effect of temperature on the optical properties of ex vivo human dermis and subdermis,” Phys. Med. Biol. 43, 2479–2489 (1998).
[CrossRef]

C. R. Simpson, M. Kohl, M. Essenpreis, M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol. 43, 2465–2478 (1998).
[CrossRef]

Lakodina, N. A.

G. V. Simonenko, T. P. Denisova, N. A. Lakodina, V. V. Tuchin, “Measurement of an optical anisotropy of biotissues,” in Coherence Domain Optical Methods in Biomedical Science and Clinical Applications IV, V. V. Tuchin, J. A. Izatt, J. G. Fujimoto, eds., Proc. SPIE3915, 152–157 (2000).
[CrossRef]

Laufer, J.

J. Laufer, R. Simpson, M. Kohl, M. Essenpreis, M. Cope, “Effect of temperature on the optical properties of ex vivo human dermis and subdermis,” Phys. Med. Biol. 43, 2479–2489 (1998).
[CrossRef]

Lilge, L.

Matcher, S. J.

Menovsky, T.

Moes, C. J. M.

Nilsson, A. M. K.

A. M. K. Nilsson, R. Berg, S. Anderson-Engels, “Measurements of the optical properties of tissue in conjunction with photodynamic therapy,” Appl. Opt.34, 4609–4619 (1995).

Nomura, Y.

Y. Hasegawa, Y. Yamada, M. Tamura, Y. Nomura, “Monte Carlo simulation of light transmission through living tissues,” Appl. Opt. 30, 4514–4520 (1991).

Okada, E.

Parrish, J. A.

R. R. Anderson, J. A. Parrish, “The optics of human skin,” J. Invest. Dermatol. 77, 13–19 (1981).
[CrossRef]

Patterson, M. S.

Pickering, J. W.

Prahl, S. A.

J. W. Pickering, S. A. Prahl, N. van Wierinhen, J. F. Beek, H. J. C. M. Sterenborg, M. J. C. van Gemert, “Double-integrating-sphere system for measuring the optical properties of tissue,” Appl. Opt. 32, 399–410 (1993).

S. A. Prahl, I. A. Vitkin, U. Bruggemann, B. C. Wilson, R. R. Anderson, “Determination of optical properties of turbid media using pulsed photothermal radiometry,” Phys. Med. Biol. 37, 1203–1217 (1992).

H. J. van Staveren, C. J. M. Moes, J. van Marle, S. A. Prahl, M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400–1000 nm,” Appl. Opt. 30, 4507–4514 (1991).

W. F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).

Schmitt, J. M.

Schweiger, M.

Simonenko, G. V.

G. V. Simonenko, T. P. Denisova, N. A. Lakodina, V. V. Tuchin, “Measurement of an optical anisotropy of biotissues,” in Coherence Domain Optical Methods in Biomedical Science and Clinical Applications IV, V. V. Tuchin, J. A. Izatt, J. G. Fujimoto, eds., Proc. SPIE3915, 152–157 (2000).
[CrossRef]

Simpson, C. R.

C. R. Simpson, M. Kohl, M. Essenpreis, M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol. 43, 2465–2478 (1998).
[CrossRef]

Simpson, R.

J. Laufer, R. Simpson, M. Kohl, M. Essenpreis, M. Cope, “Effect of temperature on the optical properties of ex vivo human dermis and subdermis,” Phys. Med. Biol. 43, 2479–2489 (1998).
[CrossRef]

Star, W. M.

M. J. C. van Gemert, S. L. Jacques, H. J. C. M. Sterenborg, W. M. Star, “Skin optics,” IEEE Trans. Biomed. Eng. 36, 1146–1154 (1989).

Steiner, R.

Sterenborg, H. J. C. M.

Svassand, L. O.

L. O. Svassand, R. Ellingsen, “Optical penetration in human intracranial tumors,” Photochem. Photobiol. 41, 73–76 (1985).
[CrossRef]

Tamura, M.

Y. Hasegawa, Y. Yamada, M. Tamura, Y. Nomura, “Monte Carlo simulation of light transmission through living tissues,” Appl. Opt. 30, 4514–4520 (1991).

Tuchin, V. V.

G. V. Simonenko, T. P. Denisova, N. A. Lakodina, V. V. Tuchin, “Measurement of an optical anisotropy of biotissues,” in Coherence Domain Optical Methods in Biomedical Science and Clinical Applications IV, V. V. Tuchin, J. A. Izatt, J. G. Fujimoto, eds., Proc. SPIE3915, 152–157 (2000).
[CrossRef]

van Gemert, M. J. C.

van Marle, J.

van Staveren, H. J.

van Wierinhen, N.

Vitkin, I. A.

S. A. Prahl, I. A. Vitkin, U. Bruggemann, B. C. Wilson, R. R. Anderson, “Determination of optical properties of turbid media using pulsed photothermal radiometry,” Phys. Med. Biol. 37, 1203–1217 (1992).

Walker, E. C.

Wall, R. T.

Wang, L.

S. L. Jacques, L. Wang, “Monte Carlo modeling of light transport in tissues,” in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch, M. J. C. van Gemert, eds. (Plenum, New York, 1995), Chap. 4, pp. 73–100.
[CrossRef]

Welch, A. J.

E. Chan, T. Menovsky, A. J. Welch, “Effects of cryogenic grinding on soft-tissue optical properties,” Appl. Opt. 35, 4526–4532 (1996).

W. F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).

Wilson, B. C.

A. Kienle, L. Lilge, M. S. Patterson, R. Hibst, R. Steiner, B. C. Wilson, “Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue,” Appl. Opt. 35, 2304–2312 (1996).

S. A. Prahl, I. A. Vitkin, U. Bruggemann, B. C. Wilson, R. R. Anderson, “Determination of optical properties of turbid media using pulsed photothermal radiometry,” Phys. Med. Biol. 37, 1203–1217 (1992).

B. C. Wilson, S. L. Jacques, “Optical reflectance and transmission of tissues: principles and applications,” IEEE J. Quantum Electron. 26, 2186–2199 (1990).

Yamada, Y.

Y. Hasegawa, Y. Yamada, M. Tamura, Y. Nomura, “Monte Carlo simulation of light transmission through living tissues,” Appl. Opt. 30, 4514–4520 (1991).

Zhou, G. X.

Zijlstra, W. G.

Appl. Opt. (8)

Y. Hasegawa, Y. Yamada, M. Tamura, Y. Nomura, “Monte Carlo simulation of light transmission through living tissues,” Appl. Opt. 30, 4514–4520 (1991).

H. J. van Staveren, C. J. M. Moes, J. van Marle, S. A. Prahl, M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400–1000 nm,” Appl. Opt. 30, 4507–4514 (1991).

J. W. Pickering, S. A. Prahl, N. van Wierinhen, J. F. Beek, H. J. C. M. Sterenborg, M. J. C. van Gemert, “Double-integrating-sphere system for measuring the optical properties of tissue,” Appl. Opt. 32, 399–410 (1993).

R. Graaff, M. H. Koelink, F. F. M. de Mul, W. G. Zijlstra, A. C. M. Dassel, J. G. Aarnoudse, “Condensed Monte Carlo simulations for the description of light transport,” Appl. Opt. 32, 426–434 (1993).

A. Kienle, L. Lilge, M. S. Patterson, R. Hibst, R. Steiner, B. C. Wilson, “Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue,” Appl. Opt. 35, 2304–2312 (1996).

E. Chan, T. Menovsky, A. J. Welch, “Effects of cryogenic grinding on soft-tissue optical properties,” Appl. Opt. 35, 4526–4532 (1996).

E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope, D. T. Delpy, “Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head,” Appl. Opt. 36, 21–31 (1997).

S. J. Matcher, M. Cope, D. T. Delpy, “In vivo measurements of the wavelength dependence of tissue-scattering coefficients between 760 and 900 nm measured with time-resolved spectroscopy,” Appl. Opt. 36, 386–396 (1997).

IEEE J. Quantum Electron. (2)

B. C. Wilson, S. L. Jacques, “Optical reflectance and transmission of tissues: principles and applications,” IEEE J. Quantum Electron. 26, 2186–2199 (1990).

W. F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).

IEEE Trans. Biomed. Eng. (1)

M. J. C. van Gemert, S. L. Jacques, H. J. C. M. Sterenborg, W. M. Star, “Skin optics,” IEEE Trans. Biomed. Eng. 36, 1146–1154 (1989).

J. Invest. Dermatol. (1)

R. R. Anderson, J. A. Parrish, “The optics of human skin,” J. Invest. Dermatol. 77, 13–19 (1981).
[CrossRef]

J. Opt. Soc. Am. A (1)

Photochem. Photobiol. (1)

L. O. Svassand, R. Ellingsen, “Optical penetration in human intracranial tumors,” Photochem. Photobiol. 41, 73–76 (1985).
[CrossRef]

Phys. Med. Biol. (3)

J. Laufer, R. Simpson, M. Kohl, M. Essenpreis, M. Cope, “Effect of temperature on the optical properties of ex vivo human dermis and subdermis,” Phys. Med. Biol. 43, 2479–2489 (1998).
[CrossRef]

S. A. Prahl, I. A. Vitkin, U. Bruggemann, B. C. Wilson, R. R. Anderson, “Determination of optical properties of turbid media using pulsed photothermal radiometry,” Phys. Med. Biol. 37, 1203–1217 (1992).

C. R. Simpson, M. Kohl, M. Essenpreis, M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol. 43, 2465–2478 (1998).
[CrossRef]

Other (3)

S. L. Jacques, L. Wang, “Monte Carlo modeling of light transport in tissues,” in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch, M. J. C. van Gemert, eds. (Plenum, New York, 1995), Chap. 4, pp. 73–100.
[CrossRef]

G. V. Simonenko, T. P. Denisova, N. A. Lakodina, V. V. Tuchin, “Measurement of an optical anisotropy of biotissues,” in Coherence Domain Optical Methods in Biomedical Science and Clinical Applications IV, V. V. Tuchin, J. A. Izatt, J. G. Fujimoto, eds., Proc. SPIE3915, 152–157 (2000).
[CrossRef]

A. M. K. Nilsson, R. Berg, S. Anderson-Engels, “Measurements of the optical properties of tissue in conjunction with photodynamic therapy,” Appl. Opt.34, 4609–4619 (1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Three kinds of setup used in this study for simulation and measurement. (a) Light is injected nearby the edge of the tissue sample. The lateral light distribution can be both simulated and measured. (b) Light is injected at the center of the tissue sample. The distribution of light on the top surface can also be both simulated and measured. (c) Light is injected at the center position of the tissue sample. The internal light distribution can only be simulated.

Fig. 2
Fig. 2

Anisotropy factor (g) of Henyey–Greenstein phase function used in the simulation of muscle tissue. The g value is assumed to be a function of the angle (θ) between the traveling direction of a photon and the direction of muscle fibers, g(θ) = 0.75 + 0.22 cos θ.

Fig. 3
Fig. 3

(a) Beam profile of light emitted from the 0.5-mm plastic optical fiber with N.A. value of 0.56. (b) Normalized radiation pattern of the optical fiber emission calculated from the beam profile.

Fig. 4
Fig. 4

Measured and simulated light distribution of pork (muscle) tissue. The image size is 5 mm × 5 mm (a) White-light images of samples show that muscle fibers were cut in different angels. (b) Images of lateral light distribution with room light off. (c) Contour maps of the measured distributions in (b). (d) Contour maps of Monte Carlo simulation with the setup in Fig. 1(a). The bold bars show the direction of muscle fibers in 0°, 30°, 60°, and 90° with the thin vertical bar. (e) Contour maps of Monte Carlo simulation with the setup in Fig. 1(c). The gray-scale bars show the normalized intensity ratio levels between exp(-11) and exp(-18).

Fig. 5
Fig. 5

Measured and simulated light distributions in fat tissue, stacked skin (dermis) tissue, and Lipovenös-10%. (a) White-light images of samples. (b) Images of lateral light distribution with room light off. (c) Contour maps of the measured distributions in (b). (d) Contour maps of Monte Carlo simulation with the setup in Fig. 1(a). The coefficients were μ a = 0.134 cm-1, μ s = 127 cm-1, and g = 0.9 for fat; μ a = 0.352 cm-1, μ s = 274 cm-1, and g = 0.9 for skin; μ a = 0.2 cm-1, μ s = 475 cm-1, and g = 0.75 for Lipovenös-10%. (e) Contour maps of Monte Carlo simulation with the setup in Fig. 1(c). The white area at far field is with normalized intensity ratio lower than exp(-18).

Fig. 6
Fig. 6

Measured and simulated light distributions of surface reflectance on fat tissue, stacked skin tissue, and Lipovenös-10%. The setups for measurement and simulation are shown in Fig. 1(b). The image size is 10 mm × 10 mm. Light guided in by a 0.5-mm optical fiber was perpendicularly injected from the top surface at the center position. (a) White-light images of samples. (b) Images of the backscattered light distribution on the top surface of samples. (c) Contour maps of the measured distributions in (b). (d) Contour maps of Monte Carlo simulation with the setup in Fig. 1(b). The coefficients were μ a = 0.134 cm-1, μ s = 127 cm-1, and g = 0.9 for fat; μ a = 0.352 cm-1, μ s = 274 cm-1, and g = 0.9 for skin; μ a = 0.2 cm-1, μ s = 475 cm-1, and g = 0.75 for Lipovenös-10%.

Fig. 7
Fig. 7

Measured and simulated light distributions of fat tissue at 25 °C and 42 °C. (a) White-light images of the same fat tissue sample before and after heating. (b) Images of the lateral light distributions. (c) Contour maps of the measured distributions in (b). (d) Contour maps of Monte Carlo simulation with the setup in Fig. 1(a). The coefficients were μ a = 0.134 cm-1, μ s = 127 cm-1, and g = 0.9 for 25 °C; μ a = 0.134 cm-1, μ s = 15 cm-1, and g = 0.95 for 42 °C. (e) Contour maps of Monte Carlo simulation with the setup in Fig. 1(c).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

gθ=0.75+0.22 cosθ.

Metrics