Abstract

We describe a photonic device based on a high-finesse, whispering-gallery-mode disk resonator that can be used for the detection of biological pathogens. This device operates by means of monitoring the change in transfer characteristics of the disk resonator when biological materials fall onto its active area. High sensitivity is achieved because the light wave interacts many times with each pathogen as a consequence of the resonant recirculation of light within the disk structure. Specificity of the detected substance can be achieved when a layer of antibodies or other binding material is deposited onto the active area of the resonator. Formulas are presented that allow the sensitivity of the device to be quantified and that show that, under optimum conditions, as few as 100 molecules can be detected.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. W. Christopher, T. J. Cielak, J. A. Pavlin, E. M. Eitzen, “Biological warfare, a historical perspective,” J. Am. Med. Assoc. 278, 412–417 (1997).
    [CrossRef]
  2. J. W. Hall, A. Pollard, “Near-infrared spectrophotometry: a new dimension in clinical chemistry,” Clin. Chem. (Winston–Salem, N.C.) 38, 1623–1631 (1992).
  3. B. J. Luff, R. D. Harris, J. S. Wilkinson, R. Wilson, D. J. Schiffrin, “Integrated-optical directional coupler biosensor,” Opt. Lett. 21, 618–620 (1996).
    [CrossRef] [PubMed]
  4. B. J. Luff, J. S. Wilkinson, J. Piehler, U. Hollenbach, J. Ingenhoff, N. Fabricius, “Integrated optical Mach-Zehnder biosensor,” J. Lightwave Technol. 16, 583–592 (1998).
    [CrossRef]
  5. W. Lukosz, “Principles and sensitivities of integrated optical and surface plasmon sensors for direct affinity sensing and immunosensing,” Biosens. Bioelectron. 6, 215–225 (1991).
    [CrossRef]
  6. A. A. Kolomenskii, P. D. Gershon, H. A. Schuessler, “Sensitivity and detection limit of concentration and adsorption measurements by laser-induced surface-plasmon resonance,” Appl. Opt. 36, 6539–6547 (1997).
    [CrossRef]
  7. A. A. Kolomenskii, P. D. Gershon, H. A. Schuessler, “Surface-plasmon resonance spectrometry and characterization of absorbing liquids,” Appl. Opt. 39, 3314–3320 (2000).
    [CrossRef]
  8. S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
    [CrossRef]
  9. Y. Yamamoto, R. E. Slusher, “Optical processes in microcavities,” Phys. Today 46, 66–74 (1993).
    [CrossRef]
  10. J. C. Knight, H. S. T. Driver, R. J. Hutcheon, G. N. Robertson, “Core-resonance capillary-fiber whispering-gallery-mode laser,” Opt. Lett. 17, 1280–1282 (1992).
    [CrossRef] [PubMed]
  11. J. Popp, M. H. Fields, R. K. Chang, “Q-switching by saturable absorption in microdroplets: elastic scattering and laser emission,” Opt. Lett. 22, 1296–1298 (1997).
    [CrossRef]
  12. S. Schiller, R. L. Byer, “High-resolution spectroscopy of whispering gallery modes in large dielectric spheres,” Opt. Lett. 16, 1138–1140 (1991).
    [CrossRef] [PubMed]
  13. V. V. Vassiliev, V. L. Velichansky, V. S. Ilchenko, M. L. Gorodetsky, L. Hollberg, A. V. Yarovitsky, “Narrow-line-width diode laser with a high-Q microsphere resonator,” Opt. Commun. 158, 305–312 (1998).
    [CrossRef]
  14. B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998–1005 (1997).
    [CrossRef]
  15. C. K. Madsen, G. Lenz, “Optical all-pass filters for phase response design with applications for dispersion compensation,” IEEE Photon. Technol. Lett. 10, 994–996 (1998).
    [CrossRef]
  16. V. B. Braginsky, M. L. Gorodetsky, V. S. Ilchenko, “Quality-factor and nonlinear properties of optical whispering-gallery modes,” Phys. Lett. A. 137, 393–397 (1989).
    [CrossRef]
  17. F. C. Blom, D. R. van Dijk, H. J. Hoekstra, A. Driessen, Th. J. A. Popma, “Experimental study of integrated-optics microcavity resonators: toward an all-optical switching device,” Appl. Phys. Lett. 71, 747–749 (1997).
  18. R. E. Benner, P. W. Barber, J. F. Owen, R. K. Chang, “Observation of structure resonances in the fluorescence spectra from microspheres,” Phys. Rev. Lett. 44, 475–478 (1980).
    [CrossRef]
  19. A. J. Campillo, J. D. Eversole, H.-B. Lin, “Cavity quantum electrodynamic enhancement of stimulated emission in micro-droplets,” Phys. Rev. Lett. 67, 437–440 (1991).
    [CrossRef] [PubMed]
  20. D. W. Vernooy, V. S. Ilchenko, H. Mabuchi, E. W. Streed, H. J. Kimble, “High-Q measurements of fused-silica microspheres in the near infrared,” Opt. Lett. 23, 247–249 (1998).
    [CrossRef]
  21. S. Blair, Y. Chen, “Resonant-enhanced evanescent-wave fluorescence biosensing with cylindrical optical cavities,” Appl. Opt. 40, 570–582 (2001).
    [CrossRef]
  22. L. Rayleigh, “The problem of the whispering gallery,” Philos. Mag. 20, 1001–1004 (1910).
    [CrossRef]
  23. V. B. Braginsky, V. S. Ilchenko, “Properties of optical dielectric microresonators,” Sov. Phys. Dokl. 32, 306–307 (1987).
  24. Note that, in the absence of absorption, the buildup factor B is related to the finesse ℱ often used to describe optical resonators through the relation B = (2/π)ℱ.
  25. M. L. Gorodetsky, A. A. Savchenkov, V. S. Ilchenko, “Ultimate Q of optical microsphere resonators,” Opt. Lett. 21, 453–455 (1996).
    [CrossRef] [PubMed]
  26. D. Rafizadeh, J. P. Zhang, S. C. Hagness, A. Taflove, K. A. Stair, S. T. Ho, R. C. Tiberio, “Waveguide-coupled AlGaAs/GaAs microcavity ring and disk resonators with high finesse and 21.6-nm free spectral range,” Opt. Lett. 22, 1244–1246 (1997).
    [CrossRef] [PubMed]
  27. S. Arnold, C. T. Liu, W. B. Whitten, J. M. Ramsey, “Room-temperature microparticle-based persistent spectral hole burning memory,” Opt. Lett. 16, 420–422 (1991).
    [CrossRef] [PubMed]
  28. N. Dubreuil, J. C. Knight, D. K. Leventhal, V. Sandoghdar, J. Hare, V. Lefevre, “Eroded monomode optical fiber for whispering-gallery mode excitation in fused-silica microspheres,” Opt. Lett. 20, 813–815 (1995).
    [CrossRef] [PubMed]
  29. J.-P. Laine, B. E. Little, H. A. Haus, “Etch-eroded fiber coupler for whispering-gallery-mode excitation in high-Q silica microspheres,” IEEE Photon. Technol. Lett. 11, 1429–1430 (1999).
    [CrossRef]
  30. M. Cai, O. Painter, K. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-galley mode system,” Phys. Rev. Lett. 85, 74–77 (2000).
    [CrossRef] [PubMed]
  31. B. E. Little, S. T. Chu, “Toward very large-scale integrated photonics,” Opt. Photon. News 11, 24–29 (2000).
    [CrossRef]
  32. B. L. N. Salmaso, G. J. Puppels, P. J. Caspers, R. Floris, R. Wever, J. Greve, “Resonance Raman microspectroscopic characterization of eosinophilic peroxidase in human eosinophilic granulocytes,” Biophys. J. 67, 436–446 (1994).
    [CrossRef] [PubMed]
  33. J. E. Heebner, R. W. Boyd, “Enhanced all-optical switching by use of a nonlinear fiber ring resonator,” Opt. Lett. 24, 847–849 (1999).
    [CrossRef]
  34. B. E. Little, S. T. Chu, “Estimating surface-roughness loss and output coupling in microdisk resonators,” Opt. Lett. 21, 1390–1392 (1996).
    [CrossRef] [PubMed]
  35. C. A. Rowe, L. M. Tender, M. K. Feldstein, J. P. Golden, S. B. Scruggs, B. D. MacCraith, J. J. Cras, F. S. Ligler, “Array biosensor for simultaneous identification of bacterial, viral, and protein analytes,” Anal. Chem. 71, 3846–3852 (1999).
    [CrossRef] [PubMed]
  36. We obtained the value σ = 2 × 10-16 cm2 by converting the measured value of the optical density to an absorption cross section. See H. G. Schulze, L. S. Greek, C. J. Barbosa, M. W. Blades, B. B. Gorzalka, R. F. B. Turner, “Measurement of some small molecule and peptide neurotransmitters in-vitro using a fiber-optics probe with pulsed ultraviolet resonance Raman spectroscopy,” J. Neurosci. Methods 92, 15–24 (1999). These authors measure an optical density of the order of 0.5 at a wavelength of 205 nm for a 1-cm path length through a 10-µM solution of dopamine. An optical density of 0.5 implies that the quantity αL is of the order of unity, where α is the absorption cross section and L is the path length, or that α is of the order of 1/cm. The absorption coefficient can be represented as α = Nσ, where N is the molecular number density and σ is the absorption cross section. Recall that a 1-M solution contains 6 × 1023 molecules/l, or 6 × 1020 molecules/ml. Thus a 10-µM solution contains 6 × 1015 molecules/ml or a number density of molecules of N = 6 × 1015 cm-3. The molecular absorption cross section is thus given by σ = 2 × 10-16 cm2 for dopamine.
  37. It should be noted that buildup factors as large as 109 have been observed, although in geometries less complicated than that of the proposed biosensor. See, for example, Ref. 25.
  38. K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302–307 (1966).
    [CrossRef]
  39. A. Taflove, S. C. Hagness, Computational Electrodynamics, The Finite-Difference Time-Domain Method (Artech House, Boston, Mass., 2000).
  40. S. C. Hagness, D. Rafizadeh, S. T. Ho, A. Taflove, “FDTD microcavity simulations: design and experimental realization of waveguide-coupled single-mode ring and whispering-gallery-mode disk resonators,” J. Lightwave Technol. 15, 2154–2165 (1997).
    [CrossRef]

2001 (1)

2000 (3)

M. Cai, O. Painter, K. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-galley mode system,” Phys. Rev. Lett. 85, 74–77 (2000).
[CrossRef] [PubMed]

B. E. Little, S. T. Chu, “Toward very large-scale integrated photonics,” Opt. Photon. News 11, 24–29 (2000).
[CrossRef]

A. A. Kolomenskii, P. D. Gershon, H. A. Schuessler, “Surface-plasmon resonance spectrometry and characterization of absorbing liquids,” Appl. Opt. 39, 3314–3320 (2000).
[CrossRef]

1999 (4)

J. E. Heebner, R. W. Boyd, “Enhanced all-optical switching by use of a nonlinear fiber ring resonator,” Opt. Lett. 24, 847–849 (1999).
[CrossRef]

J.-P. Laine, B. E. Little, H. A. Haus, “Etch-eroded fiber coupler for whispering-gallery-mode excitation in high-Q silica microspheres,” IEEE Photon. Technol. Lett. 11, 1429–1430 (1999).
[CrossRef]

C. A. Rowe, L. M. Tender, M. K. Feldstein, J. P. Golden, S. B. Scruggs, B. D. MacCraith, J. J. Cras, F. S. Ligler, “Array biosensor for simultaneous identification of bacterial, viral, and protein analytes,” Anal. Chem. 71, 3846–3852 (1999).
[CrossRef] [PubMed]

We obtained the value σ = 2 × 10-16 cm2 by converting the measured value of the optical density to an absorption cross section. See H. G. Schulze, L. S. Greek, C. J. Barbosa, M. W. Blades, B. B. Gorzalka, R. F. B. Turner, “Measurement of some small molecule and peptide neurotransmitters in-vitro using a fiber-optics probe with pulsed ultraviolet resonance Raman spectroscopy,” J. Neurosci. Methods 92, 15–24 (1999). These authors measure an optical density of the order of 0.5 at a wavelength of 205 nm for a 1-cm path length through a 10-µM solution of dopamine. An optical density of 0.5 implies that the quantity αL is of the order of unity, where α is the absorption cross section and L is the path length, or that α is of the order of 1/cm. The absorption coefficient can be represented as α = Nσ, where N is the molecular number density and σ is the absorption cross section. Recall that a 1-M solution contains 6 × 1023 molecules/l, or 6 × 1020 molecules/ml. Thus a 10-µM solution contains 6 × 1015 molecules/ml or a number density of molecules of N = 6 × 1015 cm-3. The molecular absorption cross section is thus given by σ = 2 × 10-16 cm2 for dopamine.

1998 (4)

D. W. Vernooy, V. S. Ilchenko, H. Mabuchi, E. W. Streed, H. J. Kimble, “High-Q measurements of fused-silica microspheres in the near infrared,” Opt. Lett. 23, 247–249 (1998).
[CrossRef]

B. J. Luff, J. S. Wilkinson, J. Piehler, U. Hollenbach, J. Ingenhoff, N. Fabricius, “Integrated optical Mach-Zehnder biosensor,” J. Lightwave Technol. 16, 583–592 (1998).
[CrossRef]

V. V. Vassiliev, V. L. Velichansky, V. S. Ilchenko, M. L. Gorodetsky, L. Hollberg, A. V. Yarovitsky, “Narrow-line-width diode laser with a high-Q microsphere resonator,” Opt. Commun. 158, 305–312 (1998).
[CrossRef]

C. K. Madsen, G. Lenz, “Optical all-pass filters for phase response design with applications for dispersion compensation,” IEEE Photon. Technol. Lett. 10, 994–996 (1998).
[CrossRef]

1997 (7)

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998–1005 (1997).
[CrossRef]

J. Popp, M. H. Fields, R. K. Chang, “Q-switching by saturable absorption in microdroplets: elastic scattering and laser emission,” Opt. Lett. 22, 1296–1298 (1997).
[CrossRef]

G. W. Christopher, T. J. Cielak, J. A. Pavlin, E. M. Eitzen, “Biological warfare, a historical perspective,” J. Am. Med. Assoc. 278, 412–417 (1997).
[CrossRef]

A. A. Kolomenskii, P. D. Gershon, H. A. Schuessler, “Sensitivity and detection limit of concentration and adsorption measurements by laser-induced surface-plasmon resonance,” Appl. Opt. 36, 6539–6547 (1997).
[CrossRef]

F. C. Blom, D. R. van Dijk, H. J. Hoekstra, A. Driessen, Th. J. A. Popma, “Experimental study of integrated-optics microcavity resonators: toward an all-optical switching device,” Appl. Phys. Lett. 71, 747–749 (1997).

D. Rafizadeh, J. P. Zhang, S. C. Hagness, A. Taflove, K. A. Stair, S. T. Ho, R. C. Tiberio, “Waveguide-coupled AlGaAs/GaAs microcavity ring and disk resonators with high finesse and 21.6-nm free spectral range,” Opt. Lett. 22, 1244–1246 (1997).
[CrossRef] [PubMed]

S. C. Hagness, D. Rafizadeh, S. T. Ho, A. Taflove, “FDTD microcavity simulations: design and experimental realization of waveguide-coupled single-mode ring and whispering-gallery-mode disk resonators,” J. Lightwave Technol. 15, 2154–2165 (1997).
[CrossRef]

1996 (3)

1995 (1)

1994 (1)

B. L. N. Salmaso, G. J. Puppels, P. J. Caspers, R. Floris, R. Wever, J. Greve, “Resonance Raman microspectroscopic characterization of eosinophilic peroxidase in human eosinophilic granulocytes,” Biophys. J. 67, 436–446 (1994).
[CrossRef] [PubMed]

1993 (1)

Y. Yamamoto, R. E. Slusher, “Optical processes in microcavities,” Phys. Today 46, 66–74 (1993).
[CrossRef]

1992 (3)

J. C. Knight, H. S. T. Driver, R. J. Hutcheon, G. N. Robertson, “Core-resonance capillary-fiber whispering-gallery-mode laser,” Opt. Lett. 17, 1280–1282 (1992).
[CrossRef] [PubMed]

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
[CrossRef]

J. W. Hall, A. Pollard, “Near-infrared spectrophotometry: a new dimension in clinical chemistry,” Clin. Chem. (Winston–Salem, N.C.) 38, 1623–1631 (1992).

1991 (4)

W. Lukosz, “Principles and sensitivities of integrated optical and surface plasmon sensors for direct affinity sensing and immunosensing,” Biosens. Bioelectron. 6, 215–225 (1991).
[CrossRef]

S. Schiller, R. L. Byer, “High-resolution spectroscopy of whispering gallery modes in large dielectric spheres,” Opt. Lett. 16, 1138–1140 (1991).
[CrossRef] [PubMed]

S. Arnold, C. T. Liu, W. B. Whitten, J. M. Ramsey, “Room-temperature microparticle-based persistent spectral hole burning memory,” Opt. Lett. 16, 420–422 (1991).
[CrossRef] [PubMed]

A. J. Campillo, J. D. Eversole, H.-B. Lin, “Cavity quantum electrodynamic enhancement of stimulated emission in micro-droplets,” Phys. Rev. Lett. 67, 437–440 (1991).
[CrossRef] [PubMed]

1989 (1)

V. B. Braginsky, M. L. Gorodetsky, V. S. Ilchenko, “Quality-factor and nonlinear properties of optical whispering-gallery modes,” Phys. Lett. A. 137, 393–397 (1989).
[CrossRef]

1987 (1)

V. B. Braginsky, V. S. Ilchenko, “Properties of optical dielectric microresonators,” Sov. Phys. Dokl. 32, 306–307 (1987).

1980 (1)

R. E. Benner, P. W. Barber, J. F. Owen, R. K. Chang, “Observation of structure resonances in the fluorescence spectra from microspheres,” Phys. Rev. Lett. 44, 475–478 (1980).
[CrossRef]

1966 (1)

K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302–307 (1966).
[CrossRef]

1910 (1)

L. Rayleigh, “The problem of the whispering gallery,” Philos. Mag. 20, 1001–1004 (1910).
[CrossRef]

Arnold, S.

Barber, P. W.

R. E. Benner, P. W. Barber, J. F. Owen, R. K. Chang, “Observation of structure resonances in the fluorescence spectra from microspheres,” Phys. Rev. Lett. 44, 475–478 (1980).
[CrossRef]

Barbosa, C. J.

We obtained the value σ = 2 × 10-16 cm2 by converting the measured value of the optical density to an absorption cross section. See H. G. Schulze, L. S. Greek, C. J. Barbosa, M. W. Blades, B. B. Gorzalka, R. F. B. Turner, “Measurement of some small molecule and peptide neurotransmitters in-vitro using a fiber-optics probe with pulsed ultraviolet resonance Raman spectroscopy,” J. Neurosci. Methods 92, 15–24 (1999). These authors measure an optical density of the order of 0.5 at a wavelength of 205 nm for a 1-cm path length through a 10-µM solution of dopamine. An optical density of 0.5 implies that the quantity αL is of the order of unity, where α is the absorption cross section and L is the path length, or that α is of the order of 1/cm. The absorption coefficient can be represented as α = Nσ, where N is the molecular number density and σ is the absorption cross section. Recall that a 1-M solution contains 6 × 1023 molecules/l, or 6 × 1020 molecules/ml. Thus a 10-µM solution contains 6 × 1015 molecules/ml or a number density of molecules of N = 6 × 1015 cm-3. The molecular absorption cross section is thus given by σ = 2 × 10-16 cm2 for dopamine.

Benner, R. E.

R. E. Benner, P. W. Barber, J. F. Owen, R. K. Chang, “Observation of structure resonances in the fluorescence spectra from microspheres,” Phys. Rev. Lett. 44, 475–478 (1980).
[CrossRef]

Blades, M. W.

We obtained the value σ = 2 × 10-16 cm2 by converting the measured value of the optical density to an absorption cross section. See H. G. Schulze, L. S. Greek, C. J. Barbosa, M. W. Blades, B. B. Gorzalka, R. F. B. Turner, “Measurement of some small molecule and peptide neurotransmitters in-vitro using a fiber-optics probe with pulsed ultraviolet resonance Raman spectroscopy,” J. Neurosci. Methods 92, 15–24 (1999). These authors measure an optical density of the order of 0.5 at a wavelength of 205 nm for a 1-cm path length through a 10-µM solution of dopamine. An optical density of 0.5 implies that the quantity αL is of the order of unity, where α is the absorption cross section and L is the path length, or that α is of the order of 1/cm. The absorption coefficient can be represented as α = Nσ, where N is the molecular number density and σ is the absorption cross section. Recall that a 1-M solution contains 6 × 1023 molecules/l, or 6 × 1020 molecules/ml. Thus a 10-µM solution contains 6 × 1015 molecules/ml or a number density of molecules of N = 6 × 1015 cm-3. The molecular absorption cross section is thus given by σ = 2 × 10-16 cm2 for dopamine.

Blair, S.

Blom, F. C.

F. C. Blom, D. R. van Dijk, H. J. Hoekstra, A. Driessen, Th. J. A. Popma, “Experimental study of integrated-optics microcavity resonators: toward an all-optical switching device,” Appl. Phys. Lett. 71, 747–749 (1997).

Boyd, R. W.

Braginsky, V. B.

V. B. Braginsky, M. L. Gorodetsky, V. S. Ilchenko, “Quality-factor and nonlinear properties of optical whispering-gallery modes,” Phys. Lett. A. 137, 393–397 (1989).
[CrossRef]

V. B. Braginsky, V. S. Ilchenko, “Properties of optical dielectric microresonators,” Sov. Phys. Dokl. 32, 306–307 (1987).

Byer, R. L.

Cai, M.

M. Cai, O. Painter, K. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-galley mode system,” Phys. Rev. Lett. 85, 74–77 (2000).
[CrossRef] [PubMed]

Campillo, A. J.

A. J. Campillo, J. D. Eversole, H.-B. Lin, “Cavity quantum electrodynamic enhancement of stimulated emission in micro-droplets,” Phys. Rev. Lett. 67, 437–440 (1991).
[CrossRef] [PubMed]

Caspers, P. J.

B. L. N. Salmaso, G. J. Puppels, P. J. Caspers, R. Floris, R. Wever, J. Greve, “Resonance Raman microspectroscopic characterization of eosinophilic peroxidase in human eosinophilic granulocytes,” Biophys. J. 67, 436–446 (1994).
[CrossRef] [PubMed]

Chang, R. K.

J. Popp, M. H. Fields, R. K. Chang, “Q-switching by saturable absorption in microdroplets: elastic scattering and laser emission,” Opt. Lett. 22, 1296–1298 (1997).
[CrossRef]

R. E. Benner, P. W. Barber, J. F. Owen, R. K. Chang, “Observation of structure resonances in the fluorescence spectra from microspheres,” Phys. Rev. Lett. 44, 475–478 (1980).
[CrossRef]

Chen, Y.

Christopher, G. W.

G. W. Christopher, T. J. Cielak, J. A. Pavlin, E. M. Eitzen, “Biological warfare, a historical perspective,” J. Am. Med. Assoc. 278, 412–417 (1997).
[CrossRef]

Chu, S. T.

B. E. Little, S. T. Chu, “Toward very large-scale integrated photonics,” Opt. Photon. News 11, 24–29 (2000).
[CrossRef]

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998–1005 (1997).
[CrossRef]

B. E. Little, S. T. Chu, “Estimating surface-roughness loss and output coupling in microdisk resonators,” Opt. Lett. 21, 1390–1392 (1996).
[CrossRef] [PubMed]

Cielak, T. J.

G. W. Christopher, T. J. Cielak, J. A. Pavlin, E. M. Eitzen, “Biological warfare, a historical perspective,” J. Am. Med. Assoc. 278, 412–417 (1997).
[CrossRef]

Cras, J. J.

C. A. Rowe, L. M. Tender, M. K. Feldstein, J. P. Golden, S. B. Scruggs, B. D. MacCraith, J. J. Cras, F. S. Ligler, “Array biosensor for simultaneous identification of bacterial, viral, and protein analytes,” Anal. Chem. 71, 3846–3852 (1999).
[CrossRef] [PubMed]

Driessen, A.

F. C. Blom, D. R. van Dijk, H. J. Hoekstra, A. Driessen, Th. J. A. Popma, “Experimental study of integrated-optics microcavity resonators: toward an all-optical switching device,” Appl. Phys. Lett. 71, 747–749 (1997).

Driver, H. S. T.

Dubreuil, N.

Eitzen, E. M.

G. W. Christopher, T. J. Cielak, J. A. Pavlin, E. M. Eitzen, “Biological warfare, a historical perspective,” J. Am. Med. Assoc. 278, 412–417 (1997).
[CrossRef]

Eversole, J. D.

A. J. Campillo, J. D. Eversole, H.-B. Lin, “Cavity quantum electrodynamic enhancement of stimulated emission in micro-droplets,” Phys. Rev. Lett. 67, 437–440 (1991).
[CrossRef] [PubMed]

Fabricius, N.

Feldstein, M. K.

C. A. Rowe, L. M. Tender, M. K. Feldstein, J. P. Golden, S. B. Scruggs, B. D. MacCraith, J. J. Cras, F. S. Ligler, “Array biosensor for simultaneous identification of bacterial, viral, and protein analytes,” Anal. Chem. 71, 3846–3852 (1999).
[CrossRef] [PubMed]

Fields, M. H.

Floris, R.

B. L. N. Salmaso, G. J. Puppels, P. J. Caspers, R. Floris, R. Wever, J. Greve, “Resonance Raman microspectroscopic characterization of eosinophilic peroxidase in human eosinophilic granulocytes,” Biophys. J. 67, 436–446 (1994).
[CrossRef] [PubMed]

Foresi, J.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998–1005 (1997).
[CrossRef]

Gershon, P. D.

Golden, J. P.

C. A. Rowe, L. M. Tender, M. K. Feldstein, J. P. Golden, S. B. Scruggs, B. D. MacCraith, J. J. Cras, F. S. Ligler, “Array biosensor for simultaneous identification of bacterial, viral, and protein analytes,” Anal. Chem. 71, 3846–3852 (1999).
[CrossRef] [PubMed]

Gorodetsky, M. L.

V. V. Vassiliev, V. L. Velichansky, V. S. Ilchenko, M. L. Gorodetsky, L. Hollberg, A. V. Yarovitsky, “Narrow-line-width diode laser with a high-Q microsphere resonator,” Opt. Commun. 158, 305–312 (1998).
[CrossRef]

M. L. Gorodetsky, A. A. Savchenkov, V. S. Ilchenko, “Ultimate Q of optical microsphere resonators,” Opt. Lett. 21, 453–455 (1996).
[CrossRef] [PubMed]

V. B. Braginsky, M. L. Gorodetsky, V. S. Ilchenko, “Quality-factor and nonlinear properties of optical whispering-gallery modes,” Phys. Lett. A. 137, 393–397 (1989).
[CrossRef]

Gorzalka, B. B.

We obtained the value σ = 2 × 10-16 cm2 by converting the measured value of the optical density to an absorption cross section. See H. G. Schulze, L. S. Greek, C. J. Barbosa, M. W. Blades, B. B. Gorzalka, R. F. B. Turner, “Measurement of some small molecule and peptide neurotransmitters in-vitro using a fiber-optics probe with pulsed ultraviolet resonance Raman spectroscopy,” J. Neurosci. Methods 92, 15–24 (1999). These authors measure an optical density of the order of 0.5 at a wavelength of 205 nm for a 1-cm path length through a 10-µM solution of dopamine. An optical density of 0.5 implies that the quantity αL is of the order of unity, where α is the absorption cross section and L is the path length, or that α is of the order of 1/cm. The absorption coefficient can be represented as α = Nσ, where N is the molecular number density and σ is the absorption cross section. Recall that a 1-M solution contains 6 × 1023 molecules/l, or 6 × 1020 molecules/ml. Thus a 10-µM solution contains 6 × 1015 molecules/ml or a number density of molecules of N = 6 × 1015 cm-3. The molecular absorption cross section is thus given by σ = 2 × 10-16 cm2 for dopamine.

Greek, L. S.

We obtained the value σ = 2 × 10-16 cm2 by converting the measured value of the optical density to an absorption cross section. See H. G. Schulze, L. S. Greek, C. J. Barbosa, M. W. Blades, B. B. Gorzalka, R. F. B. Turner, “Measurement of some small molecule and peptide neurotransmitters in-vitro using a fiber-optics probe with pulsed ultraviolet resonance Raman spectroscopy,” J. Neurosci. Methods 92, 15–24 (1999). These authors measure an optical density of the order of 0.5 at a wavelength of 205 nm for a 1-cm path length through a 10-µM solution of dopamine. An optical density of 0.5 implies that the quantity αL is of the order of unity, where α is the absorption cross section and L is the path length, or that α is of the order of 1/cm. The absorption coefficient can be represented as α = Nσ, where N is the molecular number density and σ is the absorption cross section. Recall that a 1-M solution contains 6 × 1023 molecules/l, or 6 × 1020 molecules/ml. Thus a 10-µM solution contains 6 × 1015 molecules/ml or a number density of molecules of N = 6 × 1015 cm-3. The molecular absorption cross section is thus given by σ = 2 × 10-16 cm2 for dopamine.

Greve, J.

B. L. N. Salmaso, G. J. Puppels, P. J. Caspers, R. Floris, R. Wever, J. Greve, “Resonance Raman microspectroscopic characterization of eosinophilic peroxidase in human eosinophilic granulocytes,” Biophys. J. 67, 436–446 (1994).
[CrossRef] [PubMed]

Hagness, S. C.

S. C. Hagness, D. Rafizadeh, S. T. Ho, A. Taflove, “FDTD microcavity simulations: design and experimental realization of waveguide-coupled single-mode ring and whispering-gallery-mode disk resonators,” J. Lightwave Technol. 15, 2154–2165 (1997).
[CrossRef]

D. Rafizadeh, J. P. Zhang, S. C. Hagness, A. Taflove, K. A. Stair, S. T. Ho, R. C. Tiberio, “Waveguide-coupled AlGaAs/GaAs microcavity ring and disk resonators with high finesse and 21.6-nm free spectral range,” Opt. Lett. 22, 1244–1246 (1997).
[CrossRef] [PubMed]

A. Taflove, S. C. Hagness, Computational Electrodynamics, The Finite-Difference Time-Domain Method (Artech House, Boston, Mass., 2000).

Hall, J. W.

J. W. Hall, A. Pollard, “Near-infrared spectrophotometry: a new dimension in clinical chemistry,” Clin. Chem. (Winston–Salem, N.C.) 38, 1623–1631 (1992).

Hare, J.

Harris, R. D.

Haus, H. A.

J.-P. Laine, B. E. Little, H. A. Haus, “Etch-eroded fiber coupler for whispering-gallery-mode excitation in high-Q silica microspheres,” IEEE Photon. Technol. Lett. 11, 1429–1430 (1999).
[CrossRef]

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998–1005 (1997).
[CrossRef]

Heebner, J. E.

Ho, S. T.

S. C. Hagness, D. Rafizadeh, S. T. Ho, A. Taflove, “FDTD microcavity simulations: design and experimental realization of waveguide-coupled single-mode ring and whispering-gallery-mode disk resonators,” J. Lightwave Technol. 15, 2154–2165 (1997).
[CrossRef]

D. Rafizadeh, J. P. Zhang, S. C. Hagness, A. Taflove, K. A. Stair, S. T. Ho, R. C. Tiberio, “Waveguide-coupled AlGaAs/GaAs microcavity ring and disk resonators with high finesse and 21.6-nm free spectral range,” Opt. Lett. 22, 1244–1246 (1997).
[CrossRef] [PubMed]

Hoekstra, H. J.

F. C. Blom, D. R. van Dijk, H. J. Hoekstra, A. Driessen, Th. J. A. Popma, “Experimental study of integrated-optics microcavity resonators: toward an all-optical switching device,” Appl. Phys. Lett. 71, 747–749 (1997).

Hollberg, L.

V. V. Vassiliev, V. L. Velichansky, V. S. Ilchenko, M. L. Gorodetsky, L. Hollberg, A. V. Yarovitsky, “Narrow-line-width diode laser with a high-Q microsphere resonator,” Opt. Commun. 158, 305–312 (1998).
[CrossRef]

Hollenbach, U.

Hutcheon, R. J.

Ilchenko, V. S.

V. V. Vassiliev, V. L. Velichansky, V. S. Ilchenko, M. L. Gorodetsky, L. Hollberg, A. V. Yarovitsky, “Narrow-line-width diode laser with a high-Q microsphere resonator,” Opt. Commun. 158, 305–312 (1998).
[CrossRef]

D. W. Vernooy, V. S. Ilchenko, H. Mabuchi, E. W. Streed, H. J. Kimble, “High-Q measurements of fused-silica microspheres in the near infrared,” Opt. Lett. 23, 247–249 (1998).
[CrossRef]

M. L. Gorodetsky, A. A. Savchenkov, V. S. Ilchenko, “Ultimate Q of optical microsphere resonators,” Opt. Lett. 21, 453–455 (1996).
[CrossRef] [PubMed]

V. B. Braginsky, M. L. Gorodetsky, V. S. Ilchenko, “Quality-factor and nonlinear properties of optical whispering-gallery modes,” Phys. Lett. A. 137, 393–397 (1989).
[CrossRef]

V. B. Braginsky, V. S. Ilchenko, “Properties of optical dielectric microresonators,” Sov. Phys. Dokl. 32, 306–307 (1987).

Ingenhoff, J.

Kimble, H. J.

Knight, J. C.

Kolomenskii, A. A.

Laine, J.-P.

J.-P. Laine, B. E. Little, H. A. Haus, “Etch-eroded fiber coupler for whispering-gallery-mode excitation in high-Q silica microspheres,” IEEE Photon. Technol. Lett. 11, 1429–1430 (1999).
[CrossRef]

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998–1005 (1997).
[CrossRef]

Lefevre, V.

Lenz, G.

C. K. Madsen, G. Lenz, “Optical all-pass filters for phase response design with applications for dispersion compensation,” IEEE Photon. Technol. Lett. 10, 994–996 (1998).
[CrossRef]

Leventhal, D. K.

Levi, A. F. J.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
[CrossRef]

Ligler, F. S.

C. A. Rowe, L. M. Tender, M. K. Feldstein, J. P. Golden, S. B. Scruggs, B. D. MacCraith, J. J. Cras, F. S. Ligler, “Array biosensor for simultaneous identification of bacterial, viral, and protein analytes,” Anal. Chem. 71, 3846–3852 (1999).
[CrossRef] [PubMed]

Lin, H.-B.

A. J. Campillo, J. D. Eversole, H.-B. Lin, “Cavity quantum electrodynamic enhancement of stimulated emission in micro-droplets,” Phys. Rev. Lett. 67, 437–440 (1991).
[CrossRef] [PubMed]

Little, B. E.

B. E. Little, S. T. Chu, “Toward very large-scale integrated photonics,” Opt. Photon. News 11, 24–29 (2000).
[CrossRef]

J.-P. Laine, B. E. Little, H. A. Haus, “Etch-eroded fiber coupler for whispering-gallery-mode excitation in high-Q silica microspheres,” IEEE Photon. Technol. Lett. 11, 1429–1430 (1999).
[CrossRef]

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998–1005 (1997).
[CrossRef]

B. E. Little, S. T. Chu, “Estimating surface-roughness loss and output coupling in microdisk resonators,” Opt. Lett. 21, 1390–1392 (1996).
[CrossRef] [PubMed]

Liu, C. T.

Logan, R. A.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
[CrossRef]

Luff, B. J.

Lukosz, W.

W. Lukosz, “Principles and sensitivities of integrated optical and surface plasmon sensors for direct affinity sensing and immunosensing,” Biosens. Bioelectron. 6, 215–225 (1991).
[CrossRef]

Mabuchi, H.

MacCraith, B. D.

C. A. Rowe, L. M. Tender, M. K. Feldstein, J. P. Golden, S. B. Scruggs, B. D. MacCraith, J. J. Cras, F. S. Ligler, “Array biosensor for simultaneous identification of bacterial, viral, and protein analytes,” Anal. Chem. 71, 3846–3852 (1999).
[CrossRef] [PubMed]

Madsen, C. K.

C. K. Madsen, G. Lenz, “Optical all-pass filters for phase response design with applications for dispersion compensation,” IEEE Photon. Technol. Lett. 10, 994–996 (1998).
[CrossRef]

McCall, S. L.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
[CrossRef]

Owen, J. F.

R. E. Benner, P. W. Barber, J. F. Owen, R. K. Chang, “Observation of structure resonances in the fluorescence spectra from microspheres,” Phys. Rev. Lett. 44, 475–478 (1980).
[CrossRef]

Painter, O.

M. Cai, O. Painter, K. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-galley mode system,” Phys. Rev. Lett. 85, 74–77 (2000).
[CrossRef] [PubMed]

Pavlin, J. A.

G. W. Christopher, T. J. Cielak, J. A. Pavlin, E. M. Eitzen, “Biological warfare, a historical perspective,” J. Am. Med. Assoc. 278, 412–417 (1997).
[CrossRef]

Pearton, S. J.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
[CrossRef]

Piehler, J.

Pollard, A.

J. W. Hall, A. Pollard, “Near-infrared spectrophotometry: a new dimension in clinical chemistry,” Clin. Chem. (Winston–Salem, N.C.) 38, 1623–1631 (1992).

Popma, Th. J. A.

F. C. Blom, D. R. van Dijk, H. J. Hoekstra, A. Driessen, Th. J. A. Popma, “Experimental study of integrated-optics microcavity resonators: toward an all-optical switching device,” Appl. Phys. Lett. 71, 747–749 (1997).

Popp, J.

Puppels, G. J.

B. L. N. Salmaso, G. J. Puppels, P. J. Caspers, R. Floris, R. Wever, J. Greve, “Resonance Raman microspectroscopic characterization of eosinophilic peroxidase in human eosinophilic granulocytes,” Biophys. J. 67, 436–446 (1994).
[CrossRef] [PubMed]

Rafizadeh, D.

S. C. Hagness, D. Rafizadeh, S. T. Ho, A. Taflove, “FDTD microcavity simulations: design and experimental realization of waveguide-coupled single-mode ring and whispering-gallery-mode disk resonators,” J. Lightwave Technol. 15, 2154–2165 (1997).
[CrossRef]

D. Rafizadeh, J. P. Zhang, S. C. Hagness, A. Taflove, K. A. Stair, S. T. Ho, R. C. Tiberio, “Waveguide-coupled AlGaAs/GaAs microcavity ring and disk resonators with high finesse and 21.6-nm free spectral range,” Opt. Lett. 22, 1244–1246 (1997).
[CrossRef] [PubMed]

Ramsey, J. M.

Rayleigh, L.

L. Rayleigh, “The problem of the whispering gallery,” Philos. Mag. 20, 1001–1004 (1910).
[CrossRef]

Robertson, G. N.

Rowe, C. A.

C. A. Rowe, L. M. Tender, M. K. Feldstein, J. P. Golden, S. B. Scruggs, B. D. MacCraith, J. J. Cras, F. S. Ligler, “Array biosensor for simultaneous identification of bacterial, viral, and protein analytes,” Anal. Chem. 71, 3846–3852 (1999).
[CrossRef] [PubMed]

Salmaso, B. L. N.

B. L. N. Salmaso, G. J. Puppels, P. J. Caspers, R. Floris, R. Wever, J. Greve, “Resonance Raman microspectroscopic characterization of eosinophilic peroxidase in human eosinophilic granulocytes,” Biophys. J. 67, 436–446 (1994).
[CrossRef] [PubMed]

Sandoghdar, V.

Savchenkov, A. A.

Schiffrin, D. J.

Schiller, S.

Schuessler, H. A.

Schulze, H. G.

We obtained the value σ = 2 × 10-16 cm2 by converting the measured value of the optical density to an absorption cross section. See H. G. Schulze, L. S. Greek, C. J. Barbosa, M. W. Blades, B. B. Gorzalka, R. F. B. Turner, “Measurement of some small molecule and peptide neurotransmitters in-vitro using a fiber-optics probe with pulsed ultraviolet resonance Raman spectroscopy,” J. Neurosci. Methods 92, 15–24 (1999). These authors measure an optical density of the order of 0.5 at a wavelength of 205 nm for a 1-cm path length through a 10-µM solution of dopamine. An optical density of 0.5 implies that the quantity αL is of the order of unity, where α is the absorption cross section and L is the path length, or that α is of the order of 1/cm. The absorption coefficient can be represented as α = Nσ, where N is the molecular number density and σ is the absorption cross section. Recall that a 1-M solution contains 6 × 1023 molecules/l, or 6 × 1020 molecules/ml. Thus a 10-µM solution contains 6 × 1015 molecules/ml or a number density of molecules of N = 6 × 1015 cm-3. The molecular absorption cross section is thus given by σ = 2 × 10-16 cm2 for dopamine.

Scruggs, S. B.

C. A. Rowe, L. M. Tender, M. K. Feldstein, J. P. Golden, S. B. Scruggs, B. D. MacCraith, J. J. Cras, F. S. Ligler, “Array biosensor for simultaneous identification of bacterial, viral, and protein analytes,” Anal. Chem. 71, 3846–3852 (1999).
[CrossRef] [PubMed]

Slusher, R. E.

Y. Yamamoto, R. E. Slusher, “Optical processes in microcavities,” Phys. Today 46, 66–74 (1993).
[CrossRef]

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
[CrossRef]

Stair, K. A.

Streed, E. W.

Taflove, A.

D. Rafizadeh, J. P. Zhang, S. C. Hagness, A. Taflove, K. A. Stair, S. T. Ho, R. C. Tiberio, “Waveguide-coupled AlGaAs/GaAs microcavity ring and disk resonators with high finesse and 21.6-nm free spectral range,” Opt. Lett. 22, 1244–1246 (1997).
[CrossRef] [PubMed]

S. C. Hagness, D. Rafizadeh, S. T. Ho, A. Taflove, “FDTD microcavity simulations: design and experimental realization of waveguide-coupled single-mode ring and whispering-gallery-mode disk resonators,” J. Lightwave Technol. 15, 2154–2165 (1997).
[CrossRef]

A. Taflove, S. C. Hagness, Computational Electrodynamics, The Finite-Difference Time-Domain Method (Artech House, Boston, Mass., 2000).

Tender, L. M.

C. A. Rowe, L. M. Tender, M. K. Feldstein, J. P. Golden, S. B. Scruggs, B. D. MacCraith, J. J. Cras, F. S. Ligler, “Array biosensor for simultaneous identification of bacterial, viral, and protein analytes,” Anal. Chem. 71, 3846–3852 (1999).
[CrossRef] [PubMed]

Tiberio, R. C.

Turner, R. F. B.

We obtained the value σ = 2 × 10-16 cm2 by converting the measured value of the optical density to an absorption cross section. See H. G. Schulze, L. S. Greek, C. J. Barbosa, M. W. Blades, B. B. Gorzalka, R. F. B. Turner, “Measurement of some small molecule and peptide neurotransmitters in-vitro using a fiber-optics probe with pulsed ultraviolet resonance Raman spectroscopy,” J. Neurosci. Methods 92, 15–24 (1999). These authors measure an optical density of the order of 0.5 at a wavelength of 205 nm for a 1-cm path length through a 10-µM solution of dopamine. An optical density of 0.5 implies that the quantity αL is of the order of unity, where α is the absorption cross section and L is the path length, or that α is of the order of 1/cm. The absorption coefficient can be represented as α = Nσ, where N is the molecular number density and σ is the absorption cross section. Recall that a 1-M solution contains 6 × 1023 molecules/l, or 6 × 1020 molecules/ml. Thus a 10-µM solution contains 6 × 1015 molecules/ml or a number density of molecules of N = 6 × 1015 cm-3. The molecular absorption cross section is thus given by σ = 2 × 10-16 cm2 for dopamine.

Vahala, K.

M. Cai, O. Painter, K. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-galley mode system,” Phys. Rev. Lett. 85, 74–77 (2000).
[CrossRef] [PubMed]

van Dijk, D. R.

F. C. Blom, D. R. van Dijk, H. J. Hoekstra, A. Driessen, Th. J. A. Popma, “Experimental study of integrated-optics microcavity resonators: toward an all-optical switching device,” Appl. Phys. Lett. 71, 747–749 (1997).

Vassiliev, V. V.

V. V. Vassiliev, V. L. Velichansky, V. S. Ilchenko, M. L. Gorodetsky, L. Hollberg, A. V. Yarovitsky, “Narrow-line-width diode laser with a high-Q microsphere resonator,” Opt. Commun. 158, 305–312 (1998).
[CrossRef]

Velichansky, V. L.

V. V. Vassiliev, V. L. Velichansky, V. S. Ilchenko, M. L. Gorodetsky, L. Hollberg, A. V. Yarovitsky, “Narrow-line-width diode laser with a high-Q microsphere resonator,” Opt. Commun. 158, 305–312 (1998).
[CrossRef]

Vernooy, D. W.

Wever, R.

B. L. N. Salmaso, G. J. Puppels, P. J. Caspers, R. Floris, R. Wever, J. Greve, “Resonance Raman microspectroscopic characterization of eosinophilic peroxidase in human eosinophilic granulocytes,” Biophys. J. 67, 436–446 (1994).
[CrossRef] [PubMed]

Whitten, W. B.

Wilkinson, J. S.

Wilson, R.

Yamamoto, Y.

Y. Yamamoto, R. E. Slusher, “Optical processes in microcavities,” Phys. Today 46, 66–74 (1993).
[CrossRef]

Yarovitsky, A. V.

V. V. Vassiliev, V. L. Velichansky, V. S. Ilchenko, M. L. Gorodetsky, L. Hollberg, A. V. Yarovitsky, “Narrow-line-width diode laser with a high-Q microsphere resonator,” Opt. Commun. 158, 305–312 (1998).
[CrossRef]

Yee, K. S.

K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302–307 (1966).
[CrossRef]

Zhang, J. P.

Anal. Chem. (1)

C. A. Rowe, L. M. Tender, M. K. Feldstein, J. P. Golden, S. B. Scruggs, B. D. MacCraith, J. J. Cras, F. S. Ligler, “Array biosensor for simultaneous identification of bacterial, viral, and protein analytes,” Anal. Chem. 71, 3846–3852 (1999).
[CrossRef] [PubMed]

Appl. Opt. (3)

Appl. Phys. Lett. (2)

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
[CrossRef]

F. C. Blom, D. R. van Dijk, H. J. Hoekstra, A. Driessen, Th. J. A. Popma, “Experimental study of integrated-optics microcavity resonators: toward an all-optical switching device,” Appl. Phys. Lett. 71, 747–749 (1997).

Biophys. J. (1)

B. L. N. Salmaso, G. J. Puppels, P. J. Caspers, R. Floris, R. Wever, J. Greve, “Resonance Raman microspectroscopic characterization of eosinophilic peroxidase in human eosinophilic granulocytes,” Biophys. J. 67, 436–446 (1994).
[CrossRef] [PubMed]

Biosens. Bioelectron. (1)

W. Lukosz, “Principles and sensitivities of integrated optical and surface plasmon sensors for direct affinity sensing and immunosensing,” Biosens. Bioelectron. 6, 215–225 (1991).
[CrossRef]

Clin. Chem. (Winston–Salem, N.C.) (1)

J. W. Hall, A. Pollard, “Near-infrared spectrophotometry: a new dimension in clinical chemistry,” Clin. Chem. (Winston–Salem, N.C.) 38, 1623–1631 (1992).

IEEE Photon. Technol. Lett. (2)

C. K. Madsen, G. Lenz, “Optical all-pass filters for phase response design with applications for dispersion compensation,” IEEE Photon. Technol. Lett. 10, 994–996 (1998).
[CrossRef]

J.-P. Laine, B. E. Little, H. A. Haus, “Etch-eroded fiber coupler for whispering-gallery-mode excitation in high-Q silica microspheres,” IEEE Photon. Technol. Lett. 11, 1429–1430 (1999).
[CrossRef]

IEEE Trans. Antennas Propag. (1)

K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302–307 (1966).
[CrossRef]

J. Am. Med. Assoc. (1)

G. W. Christopher, T. J. Cielak, J. A. Pavlin, E. M. Eitzen, “Biological warfare, a historical perspective,” J. Am. Med. Assoc. 278, 412–417 (1997).
[CrossRef]

J. Lightwave Technol. (3)

B. J. Luff, J. S. Wilkinson, J. Piehler, U. Hollenbach, J. Ingenhoff, N. Fabricius, “Integrated optical Mach-Zehnder biosensor,” J. Lightwave Technol. 16, 583–592 (1998).
[CrossRef]

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998–1005 (1997).
[CrossRef]

S. C. Hagness, D. Rafizadeh, S. T. Ho, A. Taflove, “FDTD microcavity simulations: design and experimental realization of waveguide-coupled single-mode ring and whispering-gallery-mode disk resonators,” J. Lightwave Technol. 15, 2154–2165 (1997).
[CrossRef]

J. Neurosci. Methods (1)

We obtained the value σ = 2 × 10-16 cm2 by converting the measured value of the optical density to an absorption cross section. See H. G. Schulze, L. S. Greek, C. J. Barbosa, M. W. Blades, B. B. Gorzalka, R. F. B. Turner, “Measurement of some small molecule and peptide neurotransmitters in-vitro using a fiber-optics probe with pulsed ultraviolet resonance Raman spectroscopy,” J. Neurosci. Methods 92, 15–24 (1999). These authors measure an optical density of the order of 0.5 at a wavelength of 205 nm for a 1-cm path length through a 10-µM solution of dopamine. An optical density of 0.5 implies that the quantity αL is of the order of unity, where α is the absorption cross section and L is the path length, or that α is of the order of 1/cm. The absorption coefficient can be represented as α = Nσ, where N is the molecular number density and σ is the absorption cross section. Recall that a 1-M solution contains 6 × 1023 molecules/l, or 6 × 1020 molecules/ml. Thus a 10-µM solution contains 6 × 1015 molecules/ml or a number density of molecules of N = 6 × 1015 cm-3. The molecular absorption cross section is thus given by σ = 2 × 10-16 cm2 for dopamine.

Opt. Commun. (1)

V. V. Vassiliev, V. L. Velichansky, V. S. Ilchenko, M. L. Gorodetsky, L. Hollberg, A. V. Yarovitsky, “Narrow-line-width diode laser with a high-Q microsphere resonator,” Opt. Commun. 158, 305–312 (1998).
[CrossRef]

Opt. Lett. (11)

J. C. Knight, H. S. T. Driver, R. J. Hutcheon, G. N. Robertson, “Core-resonance capillary-fiber whispering-gallery-mode laser,” Opt. Lett. 17, 1280–1282 (1992).
[CrossRef] [PubMed]

J. Popp, M. H. Fields, R. K. Chang, “Q-switching by saturable absorption in microdroplets: elastic scattering and laser emission,” Opt. Lett. 22, 1296–1298 (1997).
[CrossRef]

S. Schiller, R. L. Byer, “High-resolution spectroscopy of whispering gallery modes in large dielectric spheres,” Opt. Lett. 16, 1138–1140 (1991).
[CrossRef] [PubMed]

B. J. Luff, R. D. Harris, J. S. Wilkinson, R. Wilson, D. J. Schiffrin, “Integrated-optical directional coupler biosensor,” Opt. Lett. 21, 618–620 (1996).
[CrossRef] [PubMed]

J. E. Heebner, R. W. Boyd, “Enhanced all-optical switching by use of a nonlinear fiber ring resonator,” Opt. Lett. 24, 847–849 (1999).
[CrossRef]

B. E. Little, S. T. Chu, “Estimating surface-roughness loss and output coupling in microdisk resonators,” Opt. Lett. 21, 1390–1392 (1996).
[CrossRef] [PubMed]

D. W. Vernooy, V. S. Ilchenko, H. Mabuchi, E. W. Streed, H. J. Kimble, “High-Q measurements of fused-silica microspheres in the near infrared,” Opt. Lett. 23, 247–249 (1998).
[CrossRef]

M. L. Gorodetsky, A. A. Savchenkov, V. S. Ilchenko, “Ultimate Q of optical microsphere resonators,” Opt. Lett. 21, 453–455 (1996).
[CrossRef] [PubMed]

D. Rafizadeh, J. P. Zhang, S. C. Hagness, A. Taflove, K. A. Stair, S. T. Ho, R. C. Tiberio, “Waveguide-coupled AlGaAs/GaAs microcavity ring and disk resonators with high finesse and 21.6-nm free spectral range,” Opt. Lett. 22, 1244–1246 (1997).
[CrossRef] [PubMed]

S. Arnold, C. T. Liu, W. B. Whitten, J. M. Ramsey, “Room-temperature microparticle-based persistent spectral hole burning memory,” Opt. Lett. 16, 420–422 (1991).
[CrossRef] [PubMed]

N. Dubreuil, J. C. Knight, D. K. Leventhal, V. Sandoghdar, J. Hare, V. Lefevre, “Eroded monomode optical fiber for whispering-gallery mode excitation in fused-silica microspheres,” Opt. Lett. 20, 813–815 (1995).
[CrossRef] [PubMed]

Opt. Photon. News (1)

B. E. Little, S. T. Chu, “Toward very large-scale integrated photonics,” Opt. Photon. News 11, 24–29 (2000).
[CrossRef]

Philos. Mag. (1)

L. Rayleigh, “The problem of the whispering gallery,” Philos. Mag. 20, 1001–1004 (1910).
[CrossRef]

Phys. Lett. A. (1)

V. B. Braginsky, M. L. Gorodetsky, V. S. Ilchenko, “Quality-factor and nonlinear properties of optical whispering-gallery modes,” Phys. Lett. A. 137, 393–397 (1989).
[CrossRef]

Phys. Rev. Lett. (3)

R. E. Benner, P. W. Barber, J. F. Owen, R. K. Chang, “Observation of structure resonances in the fluorescence spectra from microspheres,” Phys. Rev. Lett. 44, 475–478 (1980).
[CrossRef]

A. J. Campillo, J. D. Eversole, H.-B. Lin, “Cavity quantum electrodynamic enhancement of stimulated emission in micro-droplets,” Phys. Rev. Lett. 67, 437–440 (1991).
[CrossRef] [PubMed]

M. Cai, O. Painter, K. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-galley mode system,” Phys. Rev. Lett. 85, 74–77 (2000).
[CrossRef] [PubMed]

Phys. Today (1)

Y. Yamamoto, R. E. Slusher, “Optical processes in microcavities,” Phys. Today 46, 66–74 (1993).
[CrossRef]

Sov. Phys. Dokl. (1)

V. B. Braginsky, V. S. Ilchenko, “Properties of optical dielectric microresonators,” Sov. Phys. Dokl. 32, 306–307 (1987).

Other (3)

Note that, in the absence of absorption, the buildup factor B is related to the finesse ℱ often used to describe optical resonators through the relation B = (2/π)ℱ.

It should be noted that buildup factors as large as 109 have been observed, although in geometries less complicated than that of the proposed biosensor. See, for example, Ref. 25.

A. Taflove, S. C. Hagness, Computational Electrodynamics, The Finite-Difference Time-Domain Method (Artech House, Boston, Mass., 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Geometry of the biosensor. Light from an optical waveguide is weakly coupled (with coupling coefficients r and t) to a whispering-gallery mode of a high-finesse disk resonator. The presence of biological materials near the surface of the disk leads to a dramatic change in the transfer characteristics of the device. (b) Alternative design of the biosensor that could be used to monitor the presence of biological materials through an induced change in the refractive index of the disk material.

Fig. 2
Fig. 2

Buildup factor B for the device shown in Fig. 1(a) plotted against the single-pass absorption A = -ln τ for several values of the coupling coefficient R = r 2.

Fig. 3
Fig. 3

Resonator transmission T = |E 3/E 1|2 for the device shown in Fig. 1(a) plotted against the single-pass absorption A = -ln τ for several values of the coupling coefficient R = r 2.

Fig. 4
Fig. 4

Resonator transmission T = |E 3/E 1|2 plotted against the single-pass phase shift Δϕ for several values of the coupling coefficient R = r 2 for the balanced, four-port device shown in Fig. 1(b).

Fig. 5
Fig. 5

Simulation of the field distribution in the region of the disk and waveguide, both in the (a) absence and (b) presence of an absorbing particle.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

E3=rE1+itE2,
E4=rE2+itE1,
E2=τ expiϕE4.
E2E1=itτ expiϕ1-rτ expiϕ.
B=I2I1=E2E12=1-τ2τ21-2rτ cosϕ+r2τ2.
Bmax=1+τ1-r
E3E1=expiπ+στ-r exp-iϕ1-rτ expiϕ.
I3I1=E3E12=τ2-2rτ cos ϕ+r21-2rτ cos ϕ+r2τ2.
A=-ln R.
dT/dA=B,
T5=I5I1=1-r221-2r2 cos ϕ+r4=11+4r21-r22 sin2 12ϕ,
T3=I3I1=1-T5.
fabs=4B.
fabs=1-TB.

Metrics