Abstract

We present what to our knowledge is a novel optical electric-power-sensing system that uses a cascade of a Faraday cell and a Pockels cell. According to Jones-matrix analysis, the electric-power information is contained in the intensity of the emerging light. An instantaneous ac electric-power signal has been observed in real time, and the active power has been measured in the 0–1-kW range. The experimental results are in good agreement with the theoretical analysis and prove the feasibility of the optical sensing system.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Zhao, J. Chen, S. Qiao, “Optical method for measuring electric power,” in Automated Optical Inspection for Industry, F. Y. Wu, S. Ye, eds., Proc. SPIE2899, 589–593 (1996).
    [CrossRef]
  2. R. Yao, X. Cui, C. Li, “Theoretical and experimental research on optical electric power sensing system,” Proc. Chin. Soc. Electr. Eng. 19, 12–14 (1999).
  3. A. Yariv, Optical Electronics in Modern Communications, 5th ed. (Oxford U. Press, Oxford, 1997), pp. 17–30.

1999 (1)

R. Yao, X. Cui, C. Li, “Theoretical and experimental research on optical electric power sensing system,” Proc. Chin. Soc. Electr. Eng. 19, 12–14 (1999).

Chen, J.

J. Zhao, J. Chen, S. Qiao, “Optical method for measuring electric power,” in Automated Optical Inspection for Industry, F. Y. Wu, S. Ye, eds., Proc. SPIE2899, 589–593 (1996).
[CrossRef]

Cui, X.

R. Yao, X. Cui, C. Li, “Theoretical and experimental research on optical electric power sensing system,” Proc. Chin. Soc. Electr. Eng. 19, 12–14 (1999).

Li, C.

R. Yao, X. Cui, C. Li, “Theoretical and experimental research on optical electric power sensing system,” Proc. Chin. Soc. Electr. Eng. 19, 12–14 (1999).

Qiao, S.

J. Zhao, J. Chen, S. Qiao, “Optical method for measuring electric power,” in Automated Optical Inspection for Industry, F. Y. Wu, S. Ye, eds., Proc. SPIE2899, 589–593 (1996).
[CrossRef]

Yao, R.

R. Yao, X. Cui, C. Li, “Theoretical and experimental research on optical electric power sensing system,” Proc. Chin. Soc. Electr. Eng. 19, 12–14 (1999).

Yariv, A.

A. Yariv, Optical Electronics in Modern Communications, 5th ed. (Oxford U. Press, Oxford, 1997), pp. 17–30.

Zhao, J.

J. Zhao, J. Chen, S. Qiao, “Optical method for measuring electric power,” in Automated Optical Inspection for Industry, F. Y. Wu, S. Ye, eds., Proc. SPIE2899, 589–593 (1996).
[CrossRef]

Proc. Chin. Soc. Electr. Eng. (1)

R. Yao, X. Cui, C. Li, “Theoretical and experimental research on optical electric power sensing system,” Proc. Chin. Soc. Electr. Eng. 19, 12–14 (1999).

Other (2)

A. Yariv, Optical Electronics in Modern Communications, 5th ed. (Oxford U. Press, Oxford, 1997), pp. 17–30.

J. Zhao, J. Chen, S. Qiao, “Optical method for measuring electric power,” in Automated Optical Inspection for Industry, F. Y. Wu, S. Ye, eds., Proc. SPIE2899, 589–593 (1996).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Principal optical geometry of the optical electric-power-sensing system using a Faraday cell and a Pockels cell: QW, quarter-wave plate.

Fig. 2
Fig. 2

Experimental setup of the optical electric power sensing system: LD, laser diode; P, polarizer; MO, Faraday cell; EO, Pockels cell; QW, quarter-wave plate; PBS, polarization beam splitter; PDs, photodiodes; T, voltage regulator; W, wattmeter; Z L , load; A, amperemeter; Vs, voltometer.

Fig. 3
Fig. 3

Waveforms of optical electric-power-sensing signals for an inductive load Z L = (8.1 + j10.9)Ω; the observed signals oscillate at 100 Hz.

Fig. 4
Fig. 4

dc output voltages of the optical electric-power-sensing system measured as a function of wattmeter-indicated active power P for the resistant and inductive loads, together with the best-fit linear lines.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

TH=cos θ-sin θsin θcos θ,
TE=cosγ/2-j sinγ/2-j sinγ/2cosγ/2,
TQW=121-j-j1,
Ji=Ii211,
I2cos θ-sin θcosγ2-sinγ2-jcos θ+sin θcosγ2+sinγ2cos θ+sin θcosγ2-sinγ2-jcos θ-sin θcosγ2+sinγ2.
Iox=|Jox|2=Ii1+sin γ sin 2θ/2,
Ioy=|Joy|2=Ii1-sin γ sin 2θ/2,
Iod=Iox-Ioy=Ii sin γ sin 2θ.
Iod2γθIi.
ut=2U sin ωt, it=2I sinωt-ϕ,
Iod2k1k2utitIi=2k1k2UI cos ϕ-UI cos2ωt-ϕIi=2k1k2P-S cos2ωt-ϕIi,
uod=k3Iod=2k1k2k3P-S cos2ωt-ϕIi,

Metrics