Abstract

High-density optical data storage requires high-numerical-aperture (NA) lenses and short wavelengths. But, with increasing NA and decreasing wavelength, the depth of focus (DOF) decreases rapidly. We propose to use pure-phase superresolution apodizers to optimize the axial intensity distribution and extend the DOF of an optical pickup. With this kind of apodizer, the expected DOF can be 2–4.88 times greater than that of the original system, and the spot size will be smaller than that of the original system.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Takeda, M. Furuki, H. Yamatsu, “Deep UV mastering using an all-solid-state 266 nm laser,” Jpn. J. Appl. Phys. 38, 1837–1838 (1999).
    [CrossRef]
  2. W. T. Welford, “Use of annular aperture to increase focal depth,” J. Opt. Soc. Am. A 50, 749–753 (1960).
  3. J. Ojeda-Castaneda, P. Andres, A. Diaz, “Annular apodizers for low sensitivity to defocus and to spherical aberration,” Opt. Lett. 11, 487–489 (1986).
    [CrossRef] [PubMed]
  4. J. Ojeda-Castaneda, L. R. Berriel-Valdos, E. Montes, “Spatial filter for increasing the depth of focus,” Opt. Lett. 10, 520–522 (1985).
    [CrossRef] [PubMed]
  5. J. Ojeda-Castaneda, L. R. Berriel-Valdos, “Arbitrarily high focal depth with finite apertures,” Opt. Lett. 13, 183–185 (1988).
    [CrossRef] [PubMed]
  6. G. Indebetouw, H. Bai, “Imaging with Fresnel zone pupil masks: extended depth of field,” Appl. Opt. 23, 4299–4302 (1984).
    [CrossRef] [PubMed]
  7. J. Ojeda-Castaneda, L. R. Berriel-Valdos, E. L. Montes, “Line-spread function relatively insensitive to defocus,” Opt. Lett. 8, 458–460 (1983).
    [CrossRef] [PubMed]
  8. J. T. McCrickerd, “Coherent processing and depth of focus of annular aperture imagery,” Appl. Opt. 10, 2226–2230 (1971).
    [CrossRef] [PubMed]
  9. G. Hausler, “A method to increase the depth of focus by two step image processing,” Opt. Commun. 6, 38–42 (1972).
    [CrossRef]
  10. R. J. Pieper, A. Korpel, “Image processing for extended depth of field,” Appl. Opt. 22, 1449–1453 (1983).
    [CrossRef] [PubMed]
  11. J. Ojeda-Castaneda, A. Diaz, “High focal depth by quasibifocus,” Appl. Opt. 27, 4163–4165 (1988).
    [CrossRef]
  12. S. Sanyal, A. Ghosh, “High focal depth with a quasi-bifocus birefringent lens,” Appl. Opt. 39, 2321–2325 (2000).
    [CrossRef]
  13. G. G. Yang, “An optical pickup using a diffractive optical element for a high-density optical disc,” Opt. Commun. 159, 19–22 (1999).
    [CrossRef]
  14. H. Ando, “Phase-shifting apodizer of three or more portions,” Jpn. J. Appl. Phys. 31, 557–567 (1992).
    [CrossRef]
  15. T. R. M. Sales, G. M. Morris, “Fundamental limits of optical superresolution,” Opt. Lett. 22, 582–584 (1997).
    [CrossRef] [PubMed]
  16. T. R. M. Sales, G. M. Morris, “Diffractive superresolution elements,” J. Opt. Soc. Am. A 14, 1637–1646 (1997).
    [CrossRef]

2000 (1)

1999 (2)

M. Takeda, M. Furuki, H. Yamatsu, “Deep UV mastering using an all-solid-state 266 nm laser,” Jpn. J. Appl. Phys. 38, 1837–1838 (1999).
[CrossRef]

G. G. Yang, “An optical pickup using a diffractive optical element for a high-density optical disc,” Opt. Commun. 159, 19–22 (1999).
[CrossRef]

1997 (2)

1992 (1)

H. Ando, “Phase-shifting apodizer of three or more portions,” Jpn. J. Appl. Phys. 31, 557–567 (1992).
[CrossRef]

1988 (2)

1986 (1)

1985 (1)

1984 (1)

1983 (2)

1972 (1)

G. Hausler, “A method to increase the depth of focus by two step image processing,” Opt. Commun. 6, 38–42 (1972).
[CrossRef]

1971 (1)

1960 (1)

W. T. Welford, “Use of annular aperture to increase focal depth,” J. Opt. Soc. Am. A 50, 749–753 (1960).

Ando, H.

H. Ando, “Phase-shifting apodizer of three or more portions,” Jpn. J. Appl. Phys. 31, 557–567 (1992).
[CrossRef]

Andres, P.

Bai, H.

Berriel-Valdos, L. R.

Diaz, A.

Furuki, M.

M. Takeda, M. Furuki, H. Yamatsu, “Deep UV mastering using an all-solid-state 266 nm laser,” Jpn. J. Appl. Phys. 38, 1837–1838 (1999).
[CrossRef]

Ghosh, A.

Hausler, G.

G. Hausler, “A method to increase the depth of focus by two step image processing,” Opt. Commun. 6, 38–42 (1972).
[CrossRef]

Indebetouw, G.

Korpel, A.

McCrickerd, J. T.

Montes, E.

Montes, E. L.

Morris, G. M.

Ojeda-Castaneda, J.

Pieper, R. J.

Sales, T. R. M.

Sanyal, S.

Takeda, M.

M. Takeda, M. Furuki, H. Yamatsu, “Deep UV mastering using an all-solid-state 266 nm laser,” Jpn. J. Appl. Phys. 38, 1837–1838 (1999).
[CrossRef]

Welford, W. T.

W. T. Welford, “Use of annular aperture to increase focal depth,” J. Opt. Soc. Am. A 50, 749–753 (1960).

Yamatsu, H.

M. Takeda, M. Furuki, H. Yamatsu, “Deep UV mastering using an all-solid-state 266 nm laser,” Jpn. J. Appl. Phys. 38, 1837–1838 (1999).
[CrossRef]

Yang, G. G.

G. G. Yang, “An optical pickup using a diffractive optical element for a high-density optical disc,” Opt. Commun. 159, 19–22 (1999).
[CrossRef]

Appl. Opt. (5)

J. Opt. Soc. Am. A (2)

T. R. M. Sales, G. M. Morris, “Diffractive superresolution elements,” J. Opt. Soc. Am. A 14, 1637–1646 (1997).
[CrossRef]

W. T. Welford, “Use of annular aperture to increase focal depth,” J. Opt. Soc. Am. A 50, 749–753 (1960).

Jpn. J. Appl. Phys. (2)

M. Takeda, M. Furuki, H. Yamatsu, “Deep UV mastering using an all-solid-state 266 nm laser,” Jpn. J. Appl. Phys. 38, 1837–1838 (1999).
[CrossRef]

H. Ando, “Phase-shifting apodizer of three or more portions,” Jpn. J. Appl. Phys. 31, 557–567 (1992).
[CrossRef]

Opt. Commun. (2)

G. Hausler, “A method to increase the depth of focus by two step image processing,” Opt. Commun. 6, 38–42 (1972).
[CrossRef]

G. G. Yang, “An optical pickup using a diffractive optical element for a high-density optical disc,” Opt. Commun. 159, 19–22 (1999).
[CrossRef]

Opt. Lett. (5)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

System setup.

Fig. 2
Fig. 2

Structure of the apodizer.

Fig. 3
Fig. 3

Axial intensity distribution of the optimized and the original systems.

Fig. 4
Fig. 4

Relation among the inner radius, the outer radius, the HWR, the Strehl ratio, and the RSI.

Fig. 5
Fig. 5

DOF versus inner radius b for the optimized systems.

Fig. 6
Fig. 6

Defocusing characteristics of the optimized systems.

Fig. 7
Fig. 7

Three-dimensional intensity distribution of the original system.

Fig. 8
Fig. 8

Three-dimensional intensity distribution of the optimized system with an inner radius b = 0.

Fig. 9
Fig. 9

Three-dimensional intensity of the optimized system with an inner radius b = 0.3.

Fig. 10
Fig. 10

Three-dimensional intensity distribution of the optimized system with an inner radius b = 0.35.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

Gρ, u=2 j=1Nexpiϕjj-1rj rgrJ0ρr×exp-1/2iur2dr,
ρ=2π/λNAR,
u=2π/λNA2Z,
Gρ, u=2 j=1Nexpiϕjj-1rj rJ0ρr×exp-1/2iur2dr,
Gρ, 0=2 j=1Nexpiϕjj-1rj rJ0ρrdr=2ρj=1NexpiϕjrjJlρrj-rj-1J1ρrj-1.
Gρ, 0=2ρJ1ρ-2aJ1aρ-bJ1bρ.
S=Gab0, 0/Ga=b=00, 02=1-2a2-b22.
Gρ, 0=1-2a2-b2+ρ2a4-b44-18,
HWR=1-2a2-b21-2a4-b41/2.
G0, u=2 j=1Nexpiϕjj-1rj r exp-1/2iur2dr=2iu(exp-1/2iu-1-2exp-1/2iua2-exp-1/2iub2).
Iu=|G0, u|2=10+16 sinu4a2-b2×sinu4cosu41-a2-b2-8 cosu2a2-b2-2 cosu24u2.
Iu=10+16 sinu41-S1/22×sinu4cosu41-2b2-1-S1/22-8 cosu21-S1/22-2 cosu24u2.
J1z=z2n=0-1nz/22nn!n+1!=2.0z4-4z43+2.7z45-0.89z47+0.18z49-.

Metrics