Abstract

We present a theoretical discussion and experimental demonstration of what to our knowledge is a novel integrated electro-optic lens and beam deflector fabricated in lithium tantalate. The cylindrical lens collimates Gaussian beams as small as 4 µm in diameter, whereas the independently controlled deflector is capable of scanning the collimated beam through an angular range of nearly 20°.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Mizuuchi, K. Yamamoto, “Highly efficient quasi-phase-matched 2nd-harmonic generation using a 1st-order periodically domain-inverted LiTaO3 wave-guide,” Appl. Phys. Lett. 60, 1283–1285 (1992).
    [CrossRef]
  2. Q. B. Chen, Y. Chiu, D. N. Lambeth, T. E. Schlesinger, D. D. Stancil, “Guided-wave electro-optic beam deflector using domain reversal in LiTaO3,” J. Lightwave Technol. 12, 1401–1404 (1994).
    [CrossRef]
  3. C. Baron, H. Cheng, M. C. Gupta, “Domain inversion in LiTaO3 and LiNbO3 by electric-field application on chemically patterned crystals,” Appl. Phys. Lett. 68, 481–483 (1996).
    [CrossRef]
  4. C. Baron, H. Cheng, M. C. Gupta, “Periodic domain inversion in ion exchanged LiTaO3 by electric field application,” in Nonlinear Frequency Generation and Conversion, M. C. Gupta, W. J. Kozlovsky, D. C. MacPherson, eds., Proc. SPIE2700, 118–121 (1996).
    [CrossRef]
  5. V. Gopalan, M. J. Kawas, M. C. Gupta, T. E. Schlesinger, D. D. Stancil, “Integrated quasi-phase-matched 2nd-harmonic generator and electro-optic scanner on LiTaO3 single-crystals,” IEEE Photon. Technol. Lett. 8, 1704–1706 (1996).
    [CrossRef]
  6. J. Li, H. C. Cheng, M. J. Kawas, D. N. Lambeth, T. E. Schlesinger, D. D. Stancil, “Electro-optic wafer beam deflector in LiTaO3,” IEEE Photon. Technol. Lett. 8, 1486–1488 (1996).
    [CrossRef]
  7. M. Yamada, M. Saitoh, H. Ooki, “Electric-field-induced cylindrical lens; switching and deflection devices composed of the inverted domains in LiNbO3 crystals,” Appl. Phys. Lett. 69, 3659–3661 (1996).
    [CrossRef]
  8. N. Ramanujam, J. J. Burke, “Optimizing KTP and LiTaO3 channel wave-guides for quasi-phase-matched 2nd-harmonic generation with high conversion efficiency,” IEEE J. Quantum. Electron. 33, 152–163 (1997).
    [CrossRef]
  9. M. J. Kawas, T. E. Schlesinger, D. D. Stancil, V. Gopalan, “Electro-optic lens stacks on LiTaO3 by domain inversion,” J. Lightwave Technol. 15, 1716–1719 (1997).
    [CrossRef]
  10. V. Gopalan, T. E. Mitchell, Q. X. Jia, J. M. Robinson, M. J. Kawas, T. E. Schlesinger, D. D. Stancil, “Ferroelectrics as a versatile solid-state platform for integrated-optics,” Integr. Ferroelectr. 22, 985–991 (1998).
    [CrossRef]
  11. J. C. Fang, M. J. Kawas, J. Zou, V. Gopalan, T. E. Schlesinger, D. D. Stancil, “Shape-optimized electrooptic beam scanners: experiment,” IEEE Photon. Technol. Lett. 11, 66–68 (1999).
    [CrossRef]
  12. K. T. Gahagan, V. Gopalan, J. M. Robinson, Q. X. Jia, T. E. Mitchell, M. J. Kawas, T. E. Schlesinger, D. D. Stancil, “Integrated electro-optic lens/scanner in a LiTaO3 single crystal,” Appl. Opt. 38, 1186–1190 (1999).
    [CrossRef]
  13. B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991), pp. 28–30, 99.
  14. Y. Chiu, J. Zou, D. D. Stancil, T. E. Schlesinger, “Shape-optimized electrooptic beam scanners: analysis, design, and simulation,” J. Lightwave Technol. 17, 108–114 (1999).
    [CrossRef]
  15. J. F. Lotspeich, “Electro-optic light-beam deflection,” IEEE Spectrum 5, 45–52 (1968).
    [CrossRef]
  16. J. A. Fleck, J. R. Morris, M. D. Feit, “Time-dependent propagation of high-energy laser-beams through atmosphere,” Appl. Phys. 10, 129–160 (1976).
    [CrossRef]
  17. M. D. Feit, J. A. Fleck, “Light-propagation in graded-index optical fibers,” Appl. Opt. 17, 3990–3998 (1978).
    [CrossRef] [PubMed]
  18. V. Gopalan, M. C. Gupta, “Origin of internal field and visualization of 180-degree domains in congruent LiTaO3 crystals,” J. Appl. Phys. 80, 6099–6106 (1996).
    [CrossRef]
  19. Applied Electro-Optics Corporation, Pittsburgh, Pa.

1999

1998

V. Gopalan, T. E. Mitchell, Q. X. Jia, J. M. Robinson, M. J. Kawas, T. E. Schlesinger, D. D. Stancil, “Ferroelectrics as a versatile solid-state platform for integrated-optics,” Integr. Ferroelectr. 22, 985–991 (1998).
[CrossRef]

1997

N. Ramanujam, J. J. Burke, “Optimizing KTP and LiTaO3 channel wave-guides for quasi-phase-matched 2nd-harmonic generation with high conversion efficiency,” IEEE J. Quantum. Electron. 33, 152–163 (1997).
[CrossRef]

M. J. Kawas, T. E. Schlesinger, D. D. Stancil, V. Gopalan, “Electro-optic lens stacks on LiTaO3 by domain inversion,” J. Lightwave Technol. 15, 1716–1719 (1997).
[CrossRef]

1996

C. Baron, H. Cheng, M. C. Gupta, “Domain inversion in LiTaO3 and LiNbO3 by electric-field application on chemically patterned crystals,” Appl. Phys. Lett. 68, 481–483 (1996).
[CrossRef]

V. Gopalan, M. J. Kawas, M. C. Gupta, T. E. Schlesinger, D. D. Stancil, “Integrated quasi-phase-matched 2nd-harmonic generator and electro-optic scanner on LiTaO3 single-crystals,” IEEE Photon. Technol. Lett. 8, 1704–1706 (1996).
[CrossRef]

J. Li, H. C. Cheng, M. J. Kawas, D. N. Lambeth, T. E. Schlesinger, D. D. Stancil, “Electro-optic wafer beam deflector in LiTaO3,” IEEE Photon. Technol. Lett. 8, 1486–1488 (1996).
[CrossRef]

M. Yamada, M. Saitoh, H. Ooki, “Electric-field-induced cylindrical lens; switching and deflection devices composed of the inverted domains in LiNbO3 crystals,” Appl. Phys. Lett. 69, 3659–3661 (1996).
[CrossRef]

V. Gopalan, M. C. Gupta, “Origin of internal field and visualization of 180-degree domains in congruent LiTaO3 crystals,” J. Appl. Phys. 80, 6099–6106 (1996).
[CrossRef]

1994

Q. B. Chen, Y. Chiu, D. N. Lambeth, T. E. Schlesinger, D. D. Stancil, “Guided-wave electro-optic beam deflector using domain reversal in LiTaO3,” J. Lightwave Technol. 12, 1401–1404 (1994).
[CrossRef]

1992

K. Mizuuchi, K. Yamamoto, “Highly efficient quasi-phase-matched 2nd-harmonic generation using a 1st-order periodically domain-inverted LiTaO3 wave-guide,” Appl. Phys. Lett. 60, 1283–1285 (1992).
[CrossRef]

1978

1976

J. A. Fleck, J. R. Morris, M. D. Feit, “Time-dependent propagation of high-energy laser-beams through atmosphere,” Appl. Phys. 10, 129–160 (1976).
[CrossRef]

1968

J. F. Lotspeich, “Electro-optic light-beam deflection,” IEEE Spectrum 5, 45–52 (1968).
[CrossRef]

Baron, C.

C. Baron, H. Cheng, M. C. Gupta, “Domain inversion in LiTaO3 and LiNbO3 by electric-field application on chemically patterned crystals,” Appl. Phys. Lett. 68, 481–483 (1996).
[CrossRef]

C. Baron, H. Cheng, M. C. Gupta, “Periodic domain inversion in ion exchanged LiTaO3 by electric field application,” in Nonlinear Frequency Generation and Conversion, M. C. Gupta, W. J. Kozlovsky, D. C. MacPherson, eds., Proc. SPIE2700, 118–121 (1996).
[CrossRef]

Burke, J. J.

N. Ramanujam, J. J. Burke, “Optimizing KTP and LiTaO3 channel wave-guides for quasi-phase-matched 2nd-harmonic generation with high conversion efficiency,” IEEE J. Quantum. Electron. 33, 152–163 (1997).
[CrossRef]

Chen, Q. B.

Q. B. Chen, Y. Chiu, D. N. Lambeth, T. E. Schlesinger, D. D. Stancil, “Guided-wave electro-optic beam deflector using domain reversal in LiTaO3,” J. Lightwave Technol. 12, 1401–1404 (1994).
[CrossRef]

Cheng, H.

C. Baron, H. Cheng, M. C. Gupta, “Domain inversion in LiTaO3 and LiNbO3 by electric-field application on chemically patterned crystals,” Appl. Phys. Lett. 68, 481–483 (1996).
[CrossRef]

C. Baron, H. Cheng, M. C. Gupta, “Periodic domain inversion in ion exchanged LiTaO3 by electric field application,” in Nonlinear Frequency Generation and Conversion, M. C. Gupta, W. J. Kozlovsky, D. C. MacPherson, eds., Proc. SPIE2700, 118–121 (1996).
[CrossRef]

Cheng, H. C.

J. Li, H. C. Cheng, M. J. Kawas, D. N. Lambeth, T. E. Schlesinger, D. D. Stancil, “Electro-optic wafer beam deflector in LiTaO3,” IEEE Photon. Technol. Lett. 8, 1486–1488 (1996).
[CrossRef]

Chiu, Y.

Y. Chiu, J. Zou, D. D. Stancil, T. E. Schlesinger, “Shape-optimized electrooptic beam scanners: analysis, design, and simulation,” J. Lightwave Technol. 17, 108–114 (1999).
[CrossRef]

Q. B. Chen, Y. Chiu, D. N. Lambeth, T. E. Schlesinger, D. D. Stancil, “Guided-wave electro-optic beam deflector using domain reversal in LiTaO3,” J. Lightwave Technol. 12, 1401–1404 (1994).
[CrossRef]

Fang, J. C.

J. C. Fang, M. J. Kawas, J. Zou, V. Gopalan, T. E. Schlesinger, D. D. Stancil, “Shape-optimized electrooptic beam scanners: experiment,” IEEE Photon. Technol. Lett. 11, 66–68 (1999).
[CrossRef]

Feit, M. D.

M. D. Feit, J. A. Fleck, “Light-propagation in graded-index optical fibers,” Appl. Opt. 17, 3990–3998 (1978).
[CrossRef] [PubMed]

J. A. Fleck, J. R. Morris, M. D. Feit, “Time-dependent propagation of high-energy laser-beams through atmosphere,” Appl. Phys. 10, 129–160 (1976).
[CrossRef]

Fleck, J. A.

M. D. Feit, J. A. Fleck, “Light-propagation in graded-index optical fibers,” Appl. Opt. 17, 3990–3998 (1978).
[CrossRef] [PubMed]

J. A. Fleck, J. R. Morris, M. D. Feit, “Time-dependent propagation of high-energy laser-beams through atmosphere,” Appl. Phys. 10, 129–160 (1976).
[CrossRef]

Gahagan, K. T.

Gopalan, V.

K. T. Gahagan, V. Gopalan, J. M. Robinson, Q. X. Jia, T. E. Mitchell, M. J. Kawas, T. E. Schlesinger, D. D. Stancil, “Integrated electro-optic lens/scanner in a LiTaO3 single crystal,” Appl. Opt. 38, 1186–1190 (1999).
[CrossRef]

J. C. Fang, M. J. Kawas, J. Zou, V. Gopalan, T. E. Schlesinger, D. D. Stancil, “Shape-optimized electrooptic beam scanners: experiment,” IEEE Photon. Technol. Lett. 11, 66–68 (1999).
[CrossRef]

V. Gopalan, T. E. Mitchell, Q. X. Jia, J. M. Robinson, M. J. Kawas, T. E. Schlesinger, D. D. Stancil, “Ferroelectrics as a versatile solid-state platform for integrated-optics,” Integr. Ferroelectr. 22, 985–991 (1998).
[CrossRef]

M. J. Kawas, T. E. Schlesinger, D. D. Stancil, V. Gopalan, “Electro-optic lens stacks on LiTaO3 by domain inversion,” J. Lightwave Technol. 15, 1716–1719 (1997).
[CrossRef]

V. Gopalan, M. C. Gupta, “Origin of internal field and visualization of 180-degree domains in congruent LiTaO3 crystals,” J. Appl. Phys. 80, 6099–6106 (1996).
[CrossRef]

V. Gopalan, M. J. Kawas, M. C. Gupta, T. E. Schlesinger, D. D. Stancil, “Integrated quasi-phase-matched 2nd-harmonic generator and electro-optic scanner on LiTaO3 single-crystals,” IEEE Photon. Technol. Lett. 8, 1704–1706 (1996).
[CrossRef]

Gupta, M. C.

V. Gopalan, M. J. Kawas, M. C. Gupta, T. E. Schlesinger, D. D. Stancil, “Integrated quasi-phase-matched 2nd-harmonic generator and electro-optic scanner on LiTaO3 single-crystals,” IEEE Photon. Technol. Lett. 8, 1704–1706 (1996).
[CrossRef]

V. Gopalan, M. C. Gupta, “Origin of internal field and visualization of 180-degree domains in congruent LiTaO3 crystals,” J. Appl. Phys. 80, 6099–6106 (1996).
[CrossRef]

C. Baron, H. Cheng, M. C. Gupta, “Domain inversion in LiTaO3 and LiNbO3 by electric-field application on chemically patterned crystals,” Appl. Phys. Lett. 68, 481–483 (1996).
[CrossRef]

C. Baron, H. Cheng, M. C. Gupta, “Periodic domain inversion in ion exchanged LiTaO3 by electric field application,” in Nonlinear Frequency Generation and Conversion, M. C. Gupta, W. J. Kozlovsky, D. C. MacPherson, eds., Proc. SPIE2700, 118–121 (1996).
[CrossRef]

Jia, Q. X.

K. T. Gahagan, V. Gopalan, J. M. Robinson, Q. X. Jia, T. E. Mitchell, M. J. Kawas, T. E. Schlesinger, D. D. Stancil, “Integrated electro-optic lens/scanner in a LiTaO3 single crystal,” Appl. Opt. 38, 1186–1190 (1999).
[CrossRef]

V. Gopalan, T. E. Mitchell, Q. X. Jia, J. M. Robinson, M. J. Kawas, T. E. Schlesinger, D. D. Stancil, “Ferroelectrics as a versatile solid-state platform for integrated-optics,” Integr. Ferroelectr. 22, 985–991 (1998).
[CrossRef]

Kawas, M. J.

K. T. Gahagan, V. Gopalan, J. M. Robinson, Q. X. Jia, T. E. Mitchell, M. J. Kawas, T. E. Schlesinger, D. D. Stancil, “Integrated electro-optic lens/scanner in a LiTaO3 single crystal,” Appl. Opt. 38, 1186–1190 (1999).
[CrossRef]

J. C. Fang, M. J. Kawas, J. Zou, V. Gopalan, T. E. Schlesinger, D. D. Stancil, “Shape-optimized electrooptic beam scanners: experiment,” IEEE Photon. Technol. Lett. 11, 66–68 (1999).
[CrossRef]

V. Gopalan, T. E. Mitchell, Q. X. Jia, J. M. Robinson, M. J. Kawas, T. E. Schlesinger, D. D. Stancil, “Ferroelectrics as a versatile solid-state platform for integrated-optics,” Integr. Ferroelectr. 22, 985–991 (1998).
[CrossRef]

M. J. Kawas, T. E. Schlesinger, D. D. Stancil, V. Gopalan, “Electro-optic lens stacks on LiTaO3 by domain inversion,” J. Lightwave Technol. 15, 1716–1719 (1997).
[CrossRef]

J. Li, H. C. Cheng, M. J. Kawas, D. N. Lambeth, T. E. Schlesinger, D. D. Stancil, “Electro-optic wafer beam deflector in LiTaO3,” IEEE Photon. Technol. Lett. 8, 1486–1488 (1996).
[CrossRef]

V. Gopalan, M. J. Kawas, M. C. Gupta, T. E. Schlesinger, D. D. Stancil, “Integrated quasi-phase-matched 2nd-harmonic generator and electro-optic scanner on LiTaO3 single-crystals,” IEEE Photon. Technol. Lett. 8, 1704–1706 (1996).
[CrossRef]

Lambeth, D. N.

J. Li, H. C. Cheng, M. J. Kawas, D. N. Lambeth, T. E. Schlesinger, D. D. Stancil, “Electro-optic wafer beam deflector in LiTaO3,” IEEE Photon. Technol. Lett. 8, 1486–1488 (1996).
[CrossRef]

Q. B. Chen, Y. Chiu, D. N. Lambeth, T. E. Schlesinger, D. D. Stancil, “Guided-wave electro-optic beam deflector using domain reversal in LiTaO3,” J. Lightwave Technol. 12, 1401–1404 (1994).
[CrossRef]

Li, J.

J. Li, H. C. Cheng, M. J. Kawas, D. N. Lambeth, T. E. Schlesinger, D. D. Stancil, “Electro-optic wafer beam deflector in LiTaO3,” IEEE Photon. Technol. Lett. 8, 1486–1488 (1996).
[CrossRef]

Lotspeich, J. F.

J. F. Lotspeich, “Electro-optic light-beam deflection,” IEEE Spectrum 5, 45–52 (1968).
[CrossRef]

Mitchell, T. E.

K. T. Gahagan, V. Gopalan, J. M. Robinson, Q. X. Jia, T. E. Mitchell, M. J. Kawas, T. E. Schlesinger, D. D. Stancil, “Integrated electro-optic lens/scanner in a LiTaO3 single crystal,” Appl. Opt. 38, 1186–1190 (1999).
[CrossRef]

V. Gopalan, T. E. Mitchell, Q. X. Jia, J. M. Robinson, M. J. Kawas, T. E. Schlesinger, D. D. Stancil, “Ferroelectrics as a versatile solid-state platform for integrated-optics,” Integr. Ferroelectr. 22, 985–991 (1998).
[CrossRef]

Mizuuchi, K.

K. Mizuuchi, K. Yamamoto, “Highly efficient quasi-phase-matched 2nd-harmonic generation using a 1st-order periodically domain-inverted LiTaO3 wave-guide,” Appl. Phys. Lett. 60, 1283–1285 (1992).
[CrossRef]

Morris, J. R.

J. A. Fleck, J. R. Morris, M. D. Feit, “Time-dependent propagation of high-energy laser-beams through atmosphere,” Appl. Phys. 10, 129–160 (1976).
[CrossRef]

Ooki, H.

M. Yamada, M. Saitoh, H. Ooki, “Electric-field-induced cylindrical lens; switching and deflection devices composed of the inverted domains in LiNbO3 crystals,” Appl. Phys. Lett. 69, 3659–3661 (1996).
[CrossRef]

Ramanujam, N.

N. Ramanujam, J. J. Burke, “Optimizing KTP and LiTaO3 channel wave-guides for quasi-phase-matched 2nd-harmonic generation with high conversion efficiency,” IEEE J. Quantum. Electron. 33, 152–163 (1997).
[CrossRef]

Robinson, J. M.

K. T. Gahagan, V. Gopalan, J. M. Robinson, Q. X. Jia, T. E. Mitchell, M. J. Kawas, T. E. Schlesinger, D. D. Stancil, “Integrated electro-optic lens/scanner in a LiTaO3 single crystal,” Appl. Opt. 38, 1186–1190 (1999).
[CrossRef]

V. Gopalan, T. E. Mitchell, Q. X. Jia, J. M. Robinson, M. J. Kawas, T. E. Schlesinger, D. D. Stancil, “Ferroelectrics as a versatile solid-state platform for integrated-optics,” Integr. Ferroelectr. 22, 985–991 (1998).
[CrossRef]

Saitoh, M.

M. Yamada, M. Saitoh, H. Ooki, “Electric-field-induced cylindrical lens; switching and deflection devices composed of the inverted domains in LiNbO3 crystals,” Appl. Phys. Lett. 69, 3659–3661 (1996).
[CrossRef]

Saleh, B. E. A.

B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991), pp. 28–30, 99.

Schlesinger, T. E.

J. C. Fang, M. J. Kawas, J. Zou, V. Gopalan, T. E. Schlesinger, D. D. Stancil, “Shape-optimized electrooptic beam scanners: experiment,” IEEE Photon. Technol. Lett. 11, 66–68 (1999).
[CrossRef]

Y. Chiu, J. Zou, D. D. Stancil, T. E. Schlesinger, “Shape-optimized electrooptic beam scanners: analysis, design, and simulation,” J. Lightwave Technol. 17, 108–114 (1999).
[CrossRef]

K. T. Gahagan, V. Gopalan, J. M. Robinson, Q. X. Jia, T. E. Mitchell, M. J. Kawas, T. E. Schlesinger, D. D. Stancil, “Integrated electro-optic lens/scanner in a LiTaO3 single crystal,” Appl. Opt. 38, 1186–1190 (1999).
[CrossRef]

V. Gopalan, T. E. Mitchell, Q. X. Jia, J. M. Robinson, M. J. Kawas, T. E. Schlesinger, D. D. Stancil, “Ferroelectrics as a versatile solid-state platform for integrated-optics,” Integr. Ferroelectr. 22, 985–991 (1998).
[CrossRef]

M. J. Kawas, T. E. Schlesinger, D. D. Stancil, V. Gopalan, “Electro-optic lens stacks on LiTaO3 by domain inversion,” J. Lightwave Technol. 15, 1716–1719 (1997).
[CrossRef]

J. Li, H. C. Cheng, M. J. Kawas, D. N. Lambeth, T. E. Schlesinger, D. D. Stancil, “Electro-optic wafer beam deflector in LiTaO3,” IEEE Photon. Technol. Lett. 8, 1486–1488 (1996).
[CrossRef]

V. Gopalan, M. J. Kawas, M. C. Gupta, T. E. Schlesinger, D. D. Stancil, “Integrated quasi-phase-matched 2nd-harmonic generator and electro-optic scanner on LiTaO3 single-crystals,” IEEE Photon. Technol. Lett. 8, 1704–1706 (1996).
[CrossRef]

Q. B. Chen, Y. Chiu, D. N. Lambeth, T. E. Schlesinger, D. D. Stancil, “Guided-wave electro-optic beam deflector using domain reversal in LiTaO3,” J. Lightwave Technol. 12, 1401–1404 (1994).
[CrossRef]

Stancil, D. D.

K. T. Gahagan, V. Gopalan, J. M. Robinson, Q. X. Jia, T. E. Mitchell, M. J. Kawas, T. E. Schlesinger, D. D. Stancil, “Integrated electro-optic lens/scanner in a LiTaO3 single crystal,” Appl. Opt. 38, 1186–1190 (1999).
[CrossRef]

J. C. Fang, M. J. Kawas, J. Zou, V. Gopalan, T. E. Schlesinger, D. D. Stancil, “Shape-optimized electrooptic beam scanners: experiment,” IEEE Photon. Technol. Lett. 11, 66–68 (1999).
[CrossRef]

Y. Chiu, J. Zou, D. D. Stancil, T. E. Schlesinger, “Shape-optimized electrooptic beam scanners: analysis, design, and simulation,” J. Lightwave Technol. 17, 108–114 (1999).
[CrossRef]

V. Gopalan, T. E. Mitchell, Q. X. Jia, J. M. Robinson, M. J. Kawas, T. E. Schlesinger, D. D. Stancil, “Ferroelectrics as a versatile solid-state platform for integrated-optics,” Integr. Ferroelectr. 22, 985–991 (1998).
[CrossRef]

M. J. Kawas, T. E. Schlesinger, D. D. Stancil, V. Gopalan, “Electro-optic lens stacks on LiTaO3 by domain inversion,” J. Lightwave Technol. 15, 1716–1719 (1997).
[CrossRef]

J. Li, H. C. Cheng, M. J. Kawas, D. N. Lambeth, T. E. Schlesinger, D. D. Stancil, “Electro-optic wafer beam deflector in LiTaO3,” IEEE Photon. Technol. Lett. 8, 1486–1488 (1996).
[CrossRef]

V. Gopalan, M. J. Kawas, M. C. Gupta, T. E. Schlesinger, D. D. Stancil, “Integrated quasi-phase-matched 2nd-harmonic generator and electro-optic scanner on LiTaO3 single-crystals,” IEEE Photon. Technol. Lett. 8, 1704–1706 (1996).
[CrossRef]

Q. B. Chen, Y. Chiu, D. N. Lambeth, T. E. Schlesinger, D. D. Stancil, “Guided-wave electro-optic beam deflector using domain reversal in LiTaO3,” J. Lightwave Technol. 12, 1401–1404 (1994).
[CrossRef]

Teich, M. C.

B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991), pp. 28–30, 99.

Yamada, M.

M. Yamada, M. Saitoh, H. Ooki, “Electric-field-induced cylindrical lens; switching and deflection devices composed of the inverted domains in LiNbO3 crystals,” Appl. Phys. Lett. 69, 3659–3661 (1996).
[CrossRef]

Yamamoto, K.

K. Mizuuchi, K. Yamamoto, “Highly efficient quasi-phase-matched 2nd-harmonic generation using a 1st-order periodically domain-inverted LiTaO3 wave-guide,” Appl. Phys. Lett. 60, 1283–1285 (1992).
[CrossRef]

Zou, J.

Y. Chiu, J. Zou, D. D. Stancil, T. E. Schlesinger, “Shape-optimized electrooptic beam scanners: analysis, design, and simulation,” J. Lightwave Technol. 17, 108–114 (1999).
[CrossRef]

J. C. Fang, M. J. Kawas, J. Zou, V. Gopalan, T. E. Schlesinger, D. D. Stancil, “Shape-optimized electrooptic beam scanners: experiment,” IEEE Photon. Technol. Lett. 11, 66–68 (1999).
[CrossRef]

Appl. Opt.

Appl. Phys.

J. A. Fleck, J. R. Morris, M. D. Feit, “Time-dependent propagation of high-energy laser-beams through atmosphere,” Appl. Phys. 10, 129–160 (1976).
[CrossRef]

Appl. Phys. Lett.

K. Mizuuchi, K. Yamamoto, “Highly efficient quasi-phase-matched 2nd-harmonic generation using a 1st-order periodically domain-inverted LiTaO3 wave-guide,” Appl. Phys. Lett. 60, 1283–1285 (1992).
[CrossRef]

C. Baron, H. Cheng, M. C. Gupta, “Domain inversion in LiTaO3 and LiNbO3 by electric-field application on chemically patterned crystals,” Appl. Phys. Lett. 68, 481–483 (1996).
[CrossRef]

M. Yamada, M. Saitoh, H. Ooki, “Electric-field-induced cylindrical lens; switching and deflection devices composed of the inverted domains in LiNbO3 crystals,” Appl. Phys. Lett. 69, 3659–3661 (1996).
[CrossRef]

IEEE J. Quantum. Electron.

N. Ramanujam, J. J. Burke, “Optimizing KTP and LiTaO3 channel wave-guides for quasi-phase-matched 2nd-harmonic generation with high conversion efficiency,” IEEE J. Quantum. Electron. 33, 152–163 (1997).
[CrossRef]

IEEE Photon. Technol. Lett.

V. Gopalan, M. J. Kawas, M. C. Gupta, T. E. Schlesinger, D. D. Stancil, “Integrated quasi-phase-matched 2nd-harmonic generator and electro-optic scanner on LiTaO3 single-crystals,” IEEE Photon. Technol. Lett. 8, 1704–1706 (1996).
[CrossRef]

J. Li, H. C. Cheng, M. J. Kawas, D. N. Lambeth, T. E. Schlesinger, D. D. Stancil, “Electro-optic wafer beam deflector in LiTaO3,” IEEE Photon. Technol. Lett. 8, 1486–1488 (1996).
[CrossRef]

J. C. Fang, M. J. Kawas, J. Zou, V. Gopalan, T. E. Schlesinger, D. D. Stancil, “Shape-optimized electrooptic beam scanners: experiment,” IEEE Photon. Technol. Lett. 11, 66–68 (1999).
[CrossRef]

IEEE Spectrum

J. F. Lotspeich, “Electro-optic light-beam deflection,” IEEE Spectrum 5, 45–52 (1968).
[CrossRef]

Integr. Ferroelectr.

V. Gopalan, T. E. Mitchell, Q. X. Jia, J. M. Robinson, M. J. Kawas, T. E. Schlesinger, D. D. Stancil, “Ferroelectrics as a versatile solid-state platform for integrated-optics,” Integr. Ferroelectr. 22, 985–991 (1998).
[CrossRef]

J. Appl. Phys.

V. Gopalan, M. C. Gupta, “Origin of internal field and visualization of 180-degree domains in congruent LiTaO3 crystals,” J. Appl. Phys. 80, 6099–6106 (1996).
[CrossRef]

J. Lightwave Technol.

Y. Chiu, J. Zou, D. D. Stancil, T. E. Schlesinger, “Shape-optimized electrooptic beam scanners: analysis, design, and simulation,” J. Lightwave Technol. 17, 108–114 (1999).
[CrossRef]

M. J. Kawas, T. E. Schlesinger, D. D. Stancil, V. Gopalan, “Electro-optic lens stacks on LiTaO3 by domain inversion,” J. Lightwave Technol. 15, 1716–1719 (1997).
[CrossRef]

Q. B. Chen, Y. Chiu, D. N. Lambeth, T. E. Schlesinger, D. D. Stancil, “Guided-wave electro-optic beam deflector using domain reversal in LiTaO3,” J. Lightwave Technol. 12, 1401–1404 (1994).
[CrossRef]

Other

C. Baron, H. Cheng, M. C. Gupta, “Periodic domain inversion in ion exchanged LiTaO3 by electric field application,” in Nonlinear Frequency Generation and Conversion, M. C. Gupta, W. J. Kozlovsky, D. C. MacPherson, eds., Proc. SPIE2700, 118–121 (1996).
[CrossRef]

Applied Electro-Optics Corporation, Pittsburgh, Pa.

B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991), pp. 28–30, 99.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Diagram of a single biconvex lens of diameter D and radius of curvature R. (b) Lens power per unit length for a biconvex lens as a function of the ratio of the radius of curvature to diameter. (c) Diagram of the ferroelectric domain structure for the electro-optic lens portion of the integrated device.

Fig. 2
Fig. 2

BPM simulation of integrated device shown collimating a 4-µm beam with the lens, then deflecting through an angle of ∼10°. From the superimposed ferroelectric domain boundaries (white lines), the split-horn design variation on a classical horn-shaped scanner can be seen.

Fig. 3
Fig. 3

Diagram of the ferroelectric device test apparatus.

Fig. 4
Fig. 4

(a) Ray matrix diagram for analysis of lens performance. The input waist is located a distance d i from the entrance face of the crystal. A transfer matrix M is calculated from known device geometry. (b) Measured values of output beam waist versus d i (circles) plotted with a theoretical fit from ray matrix calculations.

Fig. 5
Fig. 5

Measured deflection angle versus applied voltage for the scanner component of the integrated device.

Fig. 6
Fig. 6

Representative beam profiles as a function of applied voltage for selected voltage levels.

Tables (1)

Tables Icon

Table 1 Dimensions of Lenslets in the Collimating Lens Stack

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

nE=ne±Δn=ne-1/2ne3r33 pˆ·E,
ϕl=4ΔnneD21CC-C2-1/41/2,
D=2rww01+sz021/2,
θ=n02r33 E L/D,

Metrics