Abstract

We describe an interferometric heterodyne vibrometer that uses a laser diode with a triangular modulation frequency. This optical sensor is used to probe a vibrating polished surface. As an illustration of the sensor performance, the control of nonuniform velocity of a linear motor is achieved. The technique can be used over a large bandwidth between a few hertz and several tens of kilohertz. Generalization of the technique to the sensing of frequency vibrations is also demonstrated theoretically.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Johnson, Y. Delapote, “Fiber vibrometer with three-phase fringe-analysis,” Opt. Commun. 101, 1–4 (1993).
    [CrossRef]
  2. G. Beheim, K. Fritsch, “Remote displacement measurement using a laser diode,” Electron. Lett. 21, 93–94 (1995).
    [CrossRef]
  3. R. Quenelle, L. J. Wuerz, “A new microcomputer-controlled laser dimensional measurement and analysis system,” Hewlett-Packard J. 34, 3–13 (1983).
  4. T. Gharbi, A. Courteville, A. Chebbour, “Backscatter-modulated laser diode for low-frequency small-amplitude vibration measurement,” Appl. Opt. 36, 8233–8237 (1997).
    [CrossRef]
  5. A. Chebbour, C. Gorecki, G. Tribillon, “Range finding and velocimetry with directional discrimination using a modulated laser diode michelson interferometer,” Opt. Commun. 111, 1–5 (1994).
    [CrossRef]
  6. A. Chebbour, Ph.D. dissertation, “Mesures inteférometriques de la distance et de la vitesse par modulation continue de la fréquence d’une diode laser” (University of Franche Comté, Besançon, France, 1994).
  7. M. Suematsu, M. Takeda, “Wavelength-shift interferometry for distance measurements using Fourier transform technique for fringe analysis,” Appl. Opt. 30, 4046–4055 (1991).
    [CrossRef] [PubMed]

1997 (1)

1995 (1)

G. Beheim, K. Fritsch, “Remote displacement measurement using a laser diode,” Electron. Lett. 21, 93–94 (1995).
[CrossRef]

1994 (1)

A. Chebbour, C. Gorecki, G. Tribillon, “Range finding and velocimetry with directional discrimination using a modulated laser diode michelson interferometer,” Opt. Commun. 111, 1–5 (1994).
[CrossRef]

1993 (1)

M. Johnson, Y. Delapote, “Fiber vibrometer with three-phase fringe-analysis,” Opt. Commun. 101, 1–4 (1993).
[CrossRef]

1991 (1)

1983 (1)

R. Quenelle, L. J. Wuerz, “A new microcomputer-controlled laser dimensional measurement and analysis system,” Hewlett-Packard J. 34, 3–13 (1983).

Beheim, G.

G. Beheim, K. Fritsch, “Remote displacement measurement using a laser diode,” Electron. Lett. 21, 93–94 (1995).
[CrossRef]

Chebbour, A.

T. Gharbi, A. Courteville, A. Chebbour, “Backscatter-modulated laser diode for low-frequency small-amplitude vibration measurement,” Appl. Opt. 36, 8233–8237 (1997).
[CrossRef]

A. Chebbour, C. Gorecki, G. Tribillon, “Range finding and velocimetry with directional discrimination using a modulated laser diode michelson interferometer,” Opt. Commun. 111, 1–5 (1994).
[CrossRef]

A. Chebbour, Ph.D. dissertation, “Mesures inteférometriques de la distance et de la vitesse par modulation continue de la fréquence d’une diode laser” (University of Franche Comté, Besançon, France, 1994).

Courteville, A.

Delapote, Y.

M. Johnson, Y. Delapote, “Fiber vibrometer with three-phase fringe-analysis,” Opt. Commun. 101, 1–4 (1993).
[CrossRef]

Fritsch, K.

G. Beheim, K. Fritsch, “Remote displacement measurement using a laser diode,” Electron. Lett. 21, 93–94 (1995).
[CrossRef]

Gharbi, T.

Gorecki, C.

A. Chebbour, C. Gorecki, G. Tribillon, “Range finding and velocimetry with directional discrimination using a modulated laser diode michelson interferometer,” Opt. Commun. 111, 1–5 (1994).
[CrossRef]

Johnson, M.

M. Johnson, Y. Delapote, “Fiber vibrometer with three-phase fringe-analysis,” Opt. Commun. 101, 1–4 (1993).
[CrossRef]

Quenelle, R.

R. Quenelle, L. J. Wuerz, “A new microcomputer-controlled laser dimensional measurement and analysis system,” Hewlett-Packard J. 34, 3–13 (1983).

Suematsu, M.

Takeda, M.

Tribillon, G.

A. Chebbour, C. Gorecki, G. Tribillon, “Range finding and velocimetry with directional discrimination using a modulated laser diode michelson interferometer,” Opt. Commun. 111, 1–5 (1994).
[CrossRef]

Wuerz, L. J.

R. Quenelle, L. J. Wuerz, “A new microcomputer-controlled laser dimensional measurement and analysis system,” Hewlett-Packard J. 34, 3–13 (1983).

Appl. Opt. (2)

Electron. Lett. (1)

G. Beheim, K. Fritsch, “Remote displacement measurement using a laser diode,” Electron. Lett. 21, 93–94 (1995).
[CrossRef]

Hewlett-Packard J. (1)

R. Quenelle, L. J. Wuerz, “A new microcomputer-controlled laser dimensional measurement and analysis system,” Hewlett-Packard J. 34, 3–13 (1983).

Opt. Commun. (2)

A. Chebbour, C. Gorecki, G. Tribillon, “Range finding and velocimetry with directional discrimination using a modulated laser diode michelson interferometer,” Opt. Commun. 111, 1–5 (1994).
[CrossRef]

M. Johnson, Y. Delapote, “Fiber vibrometer with three-phase fringe-analysis,” Opt. Commun. 101, 1–4 (1993).
[CrossRef]

Other (1)

A. Chebbour, Ph.D. dissertation, “Mesures inteférometriques de la distance et de la vitesse par modulation continue de la fréquence d’une diode laser” (University of Franche Comté, Besançon, France, 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

System arrangement of the interferometric heterodyne vibrometer. The filtered interference beat signal captured by the photodiode is directly digitized with an analog-to-digital card for the signal processing performance. M1 and M2, mirrors.

Fig. 2
Fig. 2

(a) Example of a digitized interference signal as a function of time delivered by the photodiode obtained for D = 200 mm. (b) Positive components of the Fourier spectra corresponding to the upper interference signal. (c) Noncorrected continuous (unwrapping) phase during the two interference ramps signal, where the corresponding slopes look the same.

Fig. 3
Fig. 3

Velocity effects on the interference beat signal, arising differently according to the moving target direction. (a) V = ±2.30 mm/s, D = 230 mm; (b) V = -2.30 mm/s, D = 230 mm. (c) Positive components of Fourier spectra from signal of (a). (d) Positive components of Fourier spectra from signal of (b). (e) Noncorrected continuous phase corresponding to the signal of (a). (f) Noncorrected continuous phase corresponding to the signal (b). The continuous phase’s slopes allow for easy direction discrimination, unlike the FFT technique with which the moving direction remains ambiguous.

Fig. 4
Fig. 4

(a) Nonuniform velocity effects on the interference beat signal. The effects appear more pronounced on the up ramp, because of the low fringe frequencies. (b) Positive components of Fourier spectra of the signal shown in (a). It is clearly shown that at this stage the linear motor presents practically two different frequencies corresponding to the velocities V1 = 11.84 mm/s and V2 = 13.03 mm/s.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

It=I0t1+γtcosΔφt,
νt=ν0+2fmtΔν,
Δφt=arccosIt-I0tγtI0t.
Δφt=4πΔν/cfmDt+φ0,
Δφt=2πfbt+φ0,
fb=2Δν/cfmD.
fb1=fb-2V/λ,
fb1=fb+2V/λ,
fb1=fb-2v2/λ, fb2=fb-2v1/λ,
fb1=fb+2v1/λ, fb2=fb+2v2/λ.
V2-V1=fb2-fb1λ/2,
V2-V1=fb2-fb1λ/2.
V1=fb1-fb2λ/4,
V2=fb2-fb1λ/4.
fb1=fb-2 VNλ,  fb1=fb+2 VNλ,fb2=fb-2 VN-1λ,  fb2=fb+2 VN-1λ,fbi=fb-2 VN-i+1λ,  fbi=fb+2 VN+i-1λ,fbN=fb-2 V1λ,  fb2=fb+2 V1λ,
VN-i+1=fbi-fbiλ/4.
VN-i+2-VN-i+1=fbi-fbi-1λ/2.

Metrics