Abstract

We report what we believe to be a novel method for fabrication of permanent submicrometer periodic structures by interference laser fields. The new method is holographic lithography combined with laser-induced thermoplastification. The crystalline structures that result from this new method not only can be maintained permanently after the optical field is evacuated but also can be rewritten by exposure of an inteference laser field for the second time. The process of fabrication is rapid, convenient, and effective.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. M. Burns, J.-M. Fournier, J. A. Golovchenko, “Optical matter: crystallization and binding in intense optical field,” Science 249, 749–754 (1990).
    [CrossRef] [PubMed]
  2. W. Hu, H. Q. Li, B. Y. Cheng, J. H. Yang, Z. L. Li, J. R. Xu, D. Z. Zhang, “Planar optical lattice of TiO2 particles,” Opt. Lett. 20, 964–966 (1995).
    [CrossRef]
  3. V. Berger, O. Gauthier-Lafaye, E. Costard, “Photonic band gaps and holography,” J. Appl. Phys. 82, 60–64 (1997).
    [CrossRef]
  4. M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, A. J. Turerfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404, 53–56 (2000).
    [CrossRef] [PubMed]
  5. E. Yablonovitch, T. J. Gmitter, K. M. Leung, “Photonic band gap structure: the face-centered cubic case employing nonspherical atoms,” Phys. Rev. Lett. 67, 2295–2298 (1991).
    [CrossRef] [PubMed]
  6. J. D. Joannopoulos, P. R. Villeneuve, S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386, 143–149 (1997).
    [CrossRef]
  7. S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251–253 (1998).
    [CrossRef]
  8. E. G. J. Wijnhoven, W. L. Vos, “Preparation of photonic crystals made of air spheres in titania,” Science 281, 802–804 (1998).
    [CrossRef]
  9. M. C. Wanke, O. Lehmann, K. Muller, Q. Wen, M. Stuke, “Laser rapid prototyping of photonic band-gap microstructures,” Science 275, 1284–1286 (1997).
    [CrossRef] [PubMed]
  10. Y. S. Chan, C. T. Chan, Z. Y. Liu, “Photonic band gaps in two dimensional photonic quasicrystals,” Phys. Rev. Lett. 80, 956–959 (1998).
    [CrossRef]
  11. M. M. Burns, J.-M. Fournier, J. A. Golovchenko, “Optical binding,” Phys. Rev. Lett. 63, 1233–1236 (1989).
    [CrossRef] [PubMed]

2000 (1)

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, A. J. Turerfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404, 53–56 (2000).
[CrossRef] [PubMed]

1998 (3)

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251–253 (1998).
[CrossRef]

E. G. J. Wijnhoven, W. L. Vos, “Preparation of photonic crystals made of air spheres in titania,” Science 281, 802–804 (1998).
[CrossRef]

Y. S. Chan, C. T. Chan, Z. Y. Liu, “Photonic band gaps in two dimensional photonic quasicrystals,” Phys. Rev. Lett. 80, 956–959 (1998).
[CrossRef]

1997 (3)

M. C. Wanke, O. Lehmann, K. Muller, Q. Wen, M. Stuke, “Laser rapid prototyping of photonic band-gap microstructures,” Science 275, 1284–1286 (1997).
[CrossRef] [PubMed]

V. Berger, O. Gauthier-Lafaye, E. Costard, “Photonic band gaps and holography,” J. Appl. Phys. 82, 60–64 (1997).
[CrossRef]

J. D. Joannopoulos, P. R. Villeneuve, S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386, 143–149 (1997).
[CrossRef]

1995 (1)

1991 (1)

E. Yablonovitch, T. J. Gmitter, K. M. Leung, “Photonic band gap structure: the face-centered cubic case employing nonspherical atoms,” Phys. Rev. Lett. 67, 2295–2298 (1991).
[CrossRef] [PubMed]

1990 (1)

M. M. Burns, J.-M. Fournier, J. A. Golovchenko, “Optical matter: crystallization and binding in intense optical field,” Science 249, 749–754 (1990).
[CrossRef] [PubMed]

1989 (1)

M. M. Burns, J.-M. Fournier, J. A. Golovchenko, “Optical binding,” Phys. Rev. Lett. 63, 1233–1236 (1989).
[CrossRef] [PubMed]

Berger, V.

V. Berger, O. Gauthier-Lafaye, E. Costard, “Photonic band gaps and holography,” J. Appl. Phys. 82, 60–64 (1997).
[CrossRef]

Biswas, R.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251–253 (1998).
[CrossRef]

Bur, J.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251–253 (1998).
[CrossRef]

Burns, M. M.

M. M. Burns, J.-M. Fournier, J. A. Golovchenko, “Optical matter: crystallization and binding in intense optical field,” Science 249, 749–754 (1990).
[CrossRef] [PubMed]

M. M. Burns, J.-M. Fournier, J. A. Golovchenko, “Optical binding,” Phys. Rev. Lett. 63, 1233–1236 (1989).
[CrossRef] [PubMed]

Campbell, M.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, A. J. Turerfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404, 53–56 (2000).
[CrossRef] [PubMed]

Chan, C. T.

Y. S. Chan, C. T. Chan, Z. Y. Liu, “Photonic band gaps in two dimensional photonic quasicrystals,” Phys. Rev. Lett. 80, 956–959 (1998).
[CrossRef]

Chan, Y. S.

Y. S. Chan, C. T. Chan, Z. Y. Liu, “Photonic band gaps in two dimensional photonic quasicrystals,” Phys. Rev. Lett. 80, 956–959 (1998).
[CrossRef]

Cheng, B. Y.

Costard, E.

V. Berger, O. Gauthier-Lafaye, E. Costard, “Photonic band gaps and holography,” J. Appl. Phys. 82, 60–64 (1997).
[CrossRef]

Denning, R. G.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, A. J. Turerfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404, 53–56 (2000).
[CrossRef] [PubMed]

Fan, S.

J. D. Joannopoulos, P. R. Villeneuve, S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386, 143–149 (1997).
[CrossRef]

Fleming, J. G.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251–253 (1998).
[CrossRef]

Fournier, J.-M.

M. M. Burns, J.-M. Fournier, J. A. Golovchenko, “Optical matter: crystallization and binding in intense optical field,” Science 249, 749–754 (1990).
[CrossRef] [PubMed]

M. M. Burns, J.-M. Fournier, J. A. Golovchenko, “Optical binding,” Phys. Rev. Lett. 63, 1233–1236 (1989).
[CrossRef] [PubMed]

Gauthier-Lafaye, O.

V. Berger, O. Gauthier-Lafaye, E. Costard, “Photonic band gaps and holography,” J. Appl. Phys. 82, 60–64 (1997).
[CrossRef]

Gmitter, T. J.

E. Yablonovitch, T. J. Gmitter, K. M. Leung, “Photonic band gap structure: the face-centered cubic case employing nonspherical atoms,” Phys. Rev. Lett. 67, 2295–2298 (1991).
[CrossRef] [PubMed]

Golovchenko, J. A.

M. M. Burns, J.-M. Fournier, J. A. Golovchenko, “Optical matter: crystallization and binding in intense optical field,” Science 249, 749–754 (1990).
[CrossRef] [PubMed]

M. M. Burns, J.-M. Fournier, J. A. Golovchenko, “Optical binding,” Phys. Rev. Lett. 63, 1233–1236 (1989).
[CrossRef] [PubMed]

Harrison, M. T.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, A. J. Turerfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404, 53–56 (2000).
[CrossRef] [PubMed]

Hetherington, D. L.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251–253 (1998).
[CrossRef]

Ho, K. M.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251–253 (1998).
[CrossRef]

Hu, W.

Joannopoulos, J. D.

J. D. Joannopoulos, P. R. Villeneuve, S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386, 143–149 (1997).
[CrossRef]

Kurtz, S. R.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251–253 (1998).
[CrossRef]

Lehmann, O.

M. C. Wanke, O. Lehmann, K. Muller, Q. Wen, M. Stuke, “Laser rapid prototyping of photonic band-gap microstructures,” Science 275, 1284–1286 (1997).
[CrossRef] [PubMed]

Leung, K. M.

E. Yablonovitch, T. J. Gmitter, K. M. Leung, “Photonic band gap structure: the face-centered cubic case employing nonspherical atoms,” Phys. Rev. Lett. 67, 2295–2298 (1991).
[CrossRef] [PubMed]

Li, H. Q.

Li, Z. L.

Lin, S. Y.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251–253 (1998).
[CrossRef]

Liu, Z. Y.

Y. S. Chan, C. T. Chan, Z. Y. Liu, “Photonic band gaps in two dimensional photonic quasicrystals,” Phys. Rev. Lett. 80, 956–959 (1998).
[CrossRef]

Muller, K.

M. C. Wanke, O. Lehmann, K. Muller, Q. Wen, M. Stuke, “Laser rapid prototyping of photonic band-gap microstructures,” Science 275, 1284–1286 (1997).
[CrossRef] [PubMed]

Sharp, D. N.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, A. J. Turerfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404, 53–56 (2000).
[CrossRef] [PubMed]

Sigalas, M. M.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251–253 (1998).
[CrossRef]

Smith, B. K.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251–253 (1998).
[CrossRef]

Stuke, M.

M. C. Wanke, O. Lehmann, K. Muller, Q. Wen, M. Stuke, “Laser rapid prototyping of photonic band-gap microstructures,” Science 275, 1284–1286 (1997).
[CrossRef] [PubMed]

Turerfield, A. J.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, A. J. Turerfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404, 53–56 (2000).
[CrossRef] [PubMed]

Villeneuve, P. R.

J. D. Joannopoulos, P. R. Villeneuve, S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386, 143–149 (1997).
[CrossRef]

Vos, W. L.

E. G. J. Wijnhoven, W. L. Vos, “Preparation of photonic crystals made of air spheres in titania,” Science 281, 802–804 (1998).
[CrossRef]

Wanke, M. C.

M. C. Wanke, O. Lehmann, K. Muller, Q. Wen, M. Stuke, “Laser rapid prototyping of photonic band-gap microstructures,” Science 275, 1284–1286 (1997).
[CrossRef] [PubMed]

Wen, Q.

M. C. Wanke, O. Lehmann, K. Muller, Q. Wen, M. Stuke, “Laser rapid prototyping of photonic band-gap microstructures,” Science 275, 1284–1286 (1997).
[CrossRef] [PubMed]

Wijnhoven, E. G. J.

E. G. J. Wijnhoven, W. L. Vos, “Preparation of photonic crystals made of air spheres in titania,” Science 281, 802–804 (1998).
[CrossRef]

Xu, J. R.

Yablonovitch, E.

E. Yablonovitch, T. J. Gmitter, K. M. Leung, “Photonic band gap structure: the face-centered cubic case employing nonspherical atoms,” Phys. Rev. Lett. 67, 2295–2298 (1991).
[CrossRef] [PubMed]

Yang, J. H.

Zhang, D. Z.

Zubrzycki, W.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251–253 (1998).
[CrossRef]

J. Appl. Phys. (1)

V. Berger, O. Gauthier-Lafaye, E. Costard, “Photonic band gaps and holography,” J. Appl. Phys. 82, 60–64 (1997).
[CrossRef]

Nature (3)

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, A. J. Turerfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404, 53–56 (2000).
[CrossRef] [PubMed]

J. D. Joannopoulos, P. R. Villeneuve, S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386, 143–149 (1997).
[CrossRef]

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251–253 (1998).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. Lett. (3)

E. Yablonovitch, T. J. Gmitter, K. M. Leung, “Photonic band gap structure: the face-centered cubic case employing nonspherical atoms,” Phys. Rev. Lett. 67, 2295–2298 (1991).
[CrossRef] [PubMed]

Y. S. Chan, C. T. Chan, Z. Y. Liu, “Photonic band gaps in two dimensional photonic quasicrystals,” Phys. Rev. Lett. 80, 956–959 (1998).
[CrossRef]

M. M. Burns, J.-M. Fournier, J. A. Golovchenko, “Optical binding,” Phys. Rev. Lett. 63, 1233–1236 (1989).
[CrossRef] [PubMed]

Science (3)

M. M. Burns, J.-M. Fournier, J. A. Golovchenko, “Optical matter: crystallization and binding in intense optical field,” Science 249, 749–754 (1990).
[CrossRef] [PubMed]

E. G. J. Wijnhoven, W. L. Vos, “Preparation of photonic crystals made of air spheres in titania,” Science 281, 802–804 (1998).
[CrossRef]

M. C. Wanke, O. Lehmann, K. Muller, Q. Wen, M. Stuke, “Laser rapid prototyping of photonic band-gap microstructures,” Science 275, 1284–1286 (1997).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the experimental setup for (A) parallel stripes, (B) hexagonal periodicity, and (C) tetragonal periodicity.

Fig. 2
Fig. 2

Photographs of submicrometer structures created by holography: (a) hexagonal structure, (b) tetragonal structure, (c) parallel stripes.

Fig. 3
Fig. 3

Diffraction pattern of the corresponding fabricated structures in Fig. 2: (a) hexagonal structure, (b) tetragonal structure, (c) parallel stripes.

Fig. 4
Fig. 4

Transmission spectrum of two representative polymers: A, P(MMA-co-MAZ); B, PGMAS-19.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Ir=j=13Ejrexpikj·r×j=13Ej*rexp-ikj·r=3|E|2+Ei*·Ejexpik1-k2·r+expik1-k3·r+expik2-k3·r,
d=λ2 sinθ/2.
d=λ3 sinθ/2,

Metrics