Abstract

We demonstrate a delay-line-free electro-optic sampling (EOS) system by using a novel ultrafast laser with a voltage-controlled pulse-delay tuning circuit (PDTC). The digital PDTC was designed as a substitute for a conventional optomechanical delay line in the EOS system, which facilitates the theoretical phase-tuning range of 4π. The maximum delay time, tuning gain, and resolution of the PDTC are 3.6 ns (1.8 periods), 0.54 ns/V, and 0.2 ps, respectively. Arbitrary waveforms generated from microwave synthesizers, electrical pulse generators, and frequency prescalars are successfully sampled by use of this system, with a less than 8% deviation in the results.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. For a review, see T. Gheewaia, “The Josephson technology,” Proc. IEEE 70, 26–34 (1982).
    [CrossRef]
  2. See, for example, F. Capasso, W. T. Tsang, C. G. Bethea, B. F. Levine, “New graded band-gap picosecond phototransistor,” Appl. Phys. Lett. 42, 93–95 (1983).
    [CrossRef]
  3. See, for example, F. Capasso, S. Luryi, W. T. Tsang, C. G. Bethea, B. F. Levine, “New transient electrical polarization phenomena in sawtooth superlattice,” Phys. Rev. Lett. 51, 2318–2321 (1983).
    [CrossRef]
  4. D. H. Auston, “Picosecond photoconductors: physical properties and applications,” in Picosecond Optoelectronic Devices, C. H. Lee, ed. (Academic, Orlando, Fla., 1984), pp. 73–117.
    [CrossRef]
  5. P. Downey, B. Schwartz, “Picosecond photoresponse in 3He+ bombarded InP photoconductors,” Appl. Phys. Lett. 44, 207–209 (1984).
    [CrossRef]
  6. J. A. Valdmanis, G. A. Mourou, C. W. Gabel, “Subpicosecond electrical sampling,” IEEE J. Quantum Electron. QE-19, 664–667 (1983).
    [CrossRef]
  7. G. Mourou, “Subpicosecond electrical sampling,” in Picosecond Optoelectronics, G. A. Mourou, ed., Proc. SPIE439, 142–148 (1983).
    [CrossRef]
  8. J. A. Valdmanis, G. A. Mourou, “Subpicosecond electrical sampling,” in Picosecond Optoelectronic Devices, C. H. Lee, ed. (Academic, Orlando, Fla., 1984), pp. 249–270.
    [CrossRef]
  9. R. C. Alferness, N. P. Economou, L. L. Buhl, “Picosecond optical sampling technique for measuring the speed of fast electro-optic switch/modulators,” Appl. Phys. Lett. 37, 597–599 (1980).
    [CrossRef]
  10. D. H. Auston, A. M. Glass, “Optical generation of intense picosecond electrical pulses,” Appl. Phys. Lett. 20, 398–399 (1972).
    [CrossRef]
  11. P. LeFur, D. H. Auston, “A kilovolt optoelectronic switch and Pockels cell,” Appl. Phys. Lett. 28, 21–23 (1976).
    [CrossRef]
  12. J. A. Valdmanis, G. A. Mourou, C. W. Gabel, “Picosecond electrooptic sampling system,” Appl. Phys. Lett. 41, 211–212 (1982).
    [CrossRef]
  13. J. A. Valdmanis, “Subpicosecond electro-optic sampling,” Ph.D. dissertation (University of Rochester, Rochester, N.Y., 1983).
  14. M. Y. Frankel, J. F. Whitaker, G. A. Mourou, “Optoelectronic transient characterization of ultrafast devices,” IEEE J. Quantum Electron. 28, 2313–2324 (1992).
    [CrossRef]
  15. M. Y. Frankel, J. F. Whitaker, G. A. Mourou, F. W. Smith, A. R. Calawa, “High-voltage picosecond photoconductor switch based on low-temperature-grown GaAs,” IEEE Trans. Electron. Devices 37, 2493–2497 (1990).
    [CrossRef]
  16. K. Yang, G. David, S. V. Robertson, J. F. Whitaker, L. P. B. Katehi, “Electrooptic mapping of near-field distributions in integrated microwave circuits,” IEEE Trans. Microwave Theory Tech. 46, 2338–2343 (1998).
    [CrossRef]
  17. T. Löffler, T. Pfeifer, H. G. Roskos, H. Kurz, D. W. van der Weide, “Stable optoelectronic detection of free-running microwave signals with 150-GHz bandwidth,” Microelectron. Eng. 31, 397–408 (1996).
    [CrossRef]
  18. Q. Wu, X.-C. Zhang, “Free-space electro-optic sampling of terahertz beams,” Appl. Phys. Lett. 67, 3523–3525 (1995).
    [CrossRef]
  19. S.-G. Park, M. R. Melloch, A. M. Weiner, “Analysis of terahertz waveforms measured by photoconductive and electrooptic sampling,” IEEE J. Quantum Electron. 35, 810–819 (1999).
    [CrossRef]
  20. F. Pockels, Lehrbuch der Kristalloptic, (Teubner, Leipzig, 1906).
  21. C. K. Johnson, J. Qian, “Picosecond laser timing by rf phase shifting,” Rev. Sci. Instrum. 61, 1158–1160 (1990).
    [CrossRef]
  22. P. V. Brennan, A. W. Houghton, “Phased array beam steering using phased-locked loops,” Electron. Lett. 26, 165–166 (1990).
    [CrossRef]
  23. G.-R. Lin, T.-S. Hwang, Y.-H. Chuang, S.-C. Wang, C.-L. Pan, “Broad-band (≥20 GHz) laser-diode-based optoelectronic microwave phase shifter,” IEEE Trans. Microwave Theory Tech. 46, 1419–1426 (1998).
    [CrossRef]
  24. G.-R. Lin, Y.-C. Chang, “A DC-voltage-controlled phase-tuning technology for optoelectronic microwave signals,” Microwave Opt. Technol. Lett. 26, 98–100 (2000).
    [CrossRef]
  25. G.-R. Lin, Y.-C. Chang, “Demonstration and optimization of an optoelectronic phase-locked phase shifter for optical microwave signals,” IEEE Photon. Technol. Lett. 12, 1555–1557 (2000).
    [CrossRef]
  26. G.-R. Lin, “Optoelectronic delay-time controller for laser pulses,” Opt. Lett. 25, 799–801 (2000).
    [CrossRef]
  27. H.-H. Wu, G.-R. Lin, C.-L. Pan, “Optoelectronic phase tracking and electrooptic sampling of free-running microwave signals up to 20 GHz in a laser-diode-based system,” IEEE Photon. Technol. Lett. 7, 670–672 (1995).
    [CrossRef]

2000 (3)

G.-R. Lin, Y.-C. Chang, “A DC-voltage-controlled phase-tuning technology for optoelectronic microwave signals,” Microwave Opt. Technol. Lett. 26, 98–100 (2000).
[CrossRef]

G.-R. Lin, Y.-C. Chang, “Demonstration and optimization of an optoelectronic phase-locked phase shifter for optical microwave signals,” IEEE Photon. Technol. Lett. 12, 1555–1557 (2000).
[CrossRef]

G.-R. Lin, “Optoelectronic delay-time controller for laser pulses,” Opt. Lett. 25, 799–801 (2000).
[CrossRef]

1999 (1)

S.-G. Park, M. R. Melloch, A. M. Weiner, “Analysis of terahertz waveforms measured by photoconductive and electrooptic sampling,” IEEE J. Quantum Electron. 35, 810–819 (1999).
[CrossRef]

1998 (2)

G.-R. Lin, T.-S. Hwang, Y.-H. Chuang, S.-C. Wang, C.-L. Pan, “Broad-band (≥20 GHz) laser-diode-based optoelectronic microwave phase shifter,” IEEE Trans. Microwave Theory Tech. 46, 1419–1426 (1998).
[CrossRef]

K. Yang, G. David, S. V. Robertson, J. F. Whitaker, L. P. B. Katehi, “Electrooptic mapping of near-field distributions in integrated microwave circuits,” IEEE Trans. Microwave Theory Tech. 46, 2338–2343 (1998).
[CrossRef]

1996 (1)

T. Löffler, T. Pfeifer, H. G. Roskos, H. Kurz, D. W. van der Weide, “Stable optoelectronic detection of free-running microwave signals with 150-GHz bandwidth,” Microelectron. Eng. 31, 397–408 (1996).
[CrossRef]

1995 (2)

Q. Wu, X.-C. Zhang, “Free-space electro-optic sampling of terahertz beams,” Appl. Phys. Lett. 67, 3523–3525 (1995).
[CrossRef]

H.-H. Wu, G.-R. Lin, C.-L. Pan, “Optoelectronic phase tracking and electrooptic sampling of free-running microwave signals up to 20 GHz in a laser-diode-based system,” IEEE Photon. Technol. Lett. 7, 670–672 (1995).
[CrossRef]

1992 (1)

M. Y. Frankel, J. F. Whitaker, G. A. Mourou, “Optoelectronic transient characterization of ultrafast devices,” IEEE J. Quantum Electron. 28, 2313–2324 (1992).
[CrossRef]

1990 (3)

M. Y. Frankel, J. F. Whitaker, G. A. Mourou, F. W. Smith, A. R. Calawa, “High-voltage picosecond photoconductor switch based on low-temperature-grown GaAs,” IEEE Trans. Electron. Devices 37, 2493–2497 (1990).
[CrossRef]

C. K. Johnson, J. Qian, “Picosecond laser timing by rf phase shifting,” Rev. Sci. Instrum. 61, 1158–1160 (1990).
[CrossRef]

P. V. Brennan, A. W. Houghton, “Phased array beam steering using phased-locked loops,” Electron. Lett. 26, 165–166 (1990).
[CrossRef]

1984 (1)

P. Downey, B. Schwartz, “Picosecond photoresponse in 3He+ bombarded InP photoconductors,” Appl. Phys. Lett. 44, 207–209 (1984).
[CrossRef]

1983 (3)

J. A. Valdmanis, G. A. Mourou, C. W. Gabel, “Subpicosecond electrical sampling,” IEEE J. Quantum Electron. QE-19, 664–667 (1983).
[CrossRef]

See, for example, F. Capasso, W. T. Tsang, C. G. Bethea, B. F. Levine, “New graded band-gap picosecond phototransistor,” Appl. Phys. Lett. 42, 93–95 (1983).
[CrossRef]

See, for example, F. Capasso, S. Luryi, W. T. Tsang, C. G. Bethea, B. F. Levine, “New transient electrical polarization phenomena in sawtooth superlattice,” Phys. Rev. Lett. 51, 2318–2321 (1983).
[CrossRef]

1982 (2)

For a review, see T. Gheewaia, “The Josephson technology,” Proc. IEEE 70, 26–34 (1982).
[CrossRef]

J. A. Valdmanis, G. A. Mourou, C. W. Gabel, “Picosecond electrooptic sampling system,” Appl. Phys. Lett. 41, 211–212 (1982).
[CrossRef]

1980 (1)

R. C. Alferness, N. P. Economou, L. L. Buhl, “Picosecond optical sampling technique for measuring the speed of fast electro-optic switch/modulators,” Appl. Phys. Lett. 37, 597–599 (1980).
[CrossRef]

1976 (1)

P. LeFur, D. H. Auston, “A kilovolt optoelectronic switch and Pockels cell,” Appl. Phys. Lett. 28, 21–23 (1976).
[CrossRef]

1972 (1)

D. H. Auston, A. M. Glass, “Optical generation of intense picosecond electrical pulses,” Appl. Phys. Lett. 20, 398–399 (1972).
[CrossRef]

Alferness, R. C.

R. C. Alferness, N. P. Economou, L. L. Buhl, “Picosecond optical sampling technique for measuring the speed of fast electro-optic switch/modulators,” Appl. Phys. Lett. 37, 597–599 (1980).
[CrossRef]

Auston, D. H.

P. LeFur, D. H. Auston, “A kilovolt optoelectronic switch and Pockels cell,” Appl. Phys. Lett. 28, 21–23 (1976).
[CrossRef]

D. H. Auston, A. M. Glass, “Optical generation of intense picosecond electrical pulses,” Appl. Phys. Lett. 20, 398–399 (1972).
[CrossRef]

D. H. Auston, “Picosecond photoconductors: physical properties and applications,” in Picosecond Optoelectronic Devices, C. H. Lee, ed. (Academic, Orlando, Fla., 1984), pp. 73–117.
[CrossRef]

Bethea, C. G.

See, for example, F. Capasso, W. T. Tsang, C. G. Bethea, B. F. Levine, “New graded band-gap picosecond phototransistor,” Appl. Phys. Lett. 42, 93–95 (1983).
[CrossRef]

See, for example, F. Capasso, S. Luryi, W. T. Tsang, C. G. Bethea, B. F. Levine, “New transient electrical polarization phenomena in sawtooth superlattice,” Phys. Rev. Lett. 51, 2318–2321 (1983).
[CrossRef]

Brennan, P. V.

P. V. Brennan, A. W. Houghton, “Phased array beam steering using phased-locked loops,” Electron. Lett. 26, 165–166 (1990).
[CrossRef]

Buhl, L. L.

R. C. Alferness, N. P. Economou, L. L. Buhl, “Picosecond optical sampling technique for measuring the speed of fast electro-optic switch/modulators,” Appl. Phys. Lett. 37, 597–599 (1980).
[CrossRef]

Calawa, A. R.

M. Y. Frankel, J. F. Whitaker, G. A. Mourou, F. W. Smith, A. R. Calawa, “High-voltage picosecond photoconductor switch based on low-temperature-grown GaAs,” IEEE Trans. Electron. Devices 37, 2493–2497 (1990).
[CrossRef]

Capasso, F.

See, for example, F. Capasso, S. Luryi, W. T. Tsang, C. G. Bethea, B. F. Levine, “New transient electrical polarization phenomena in sawtooth superlattice,” Phys. Rev. Lett. 51, 2318–2321 (1983).
[CrossRef]

See, for example, F. Capasso, W. T. Tsang, C. G. Bethea, B. F. Levine, “New graded band-gap picosecond phototransistor,” Appl. Phys. Lett. 42, 93–95 (1983).
[CrossRef]

Chang, Y.-C.

G.-R. Lin, Y.-C. Chang, “A DC-voltage-controlled phase-tuning technology for optoelectronic microwave signals,” Microwave Opt. Technol. Lett. 26, 98–100 (2000).
[CrossRef]

G.-R. Lin, Y.-C. Chang, “Demonstration and optimization of an optoelectronic phase-locked phase shifter for optical microwave signals,” IEEE Photon. Technol. Lett. 12, 1555–1557 (2000).
[CrossRef]

Chuang, Y.-H.

G.-R. Lin, T.-S. Hwang, Y.-H. Chuang, S.-C. Wang, C.-L. Pan, “Broad-band (≥20 GHz) laser-diode-based optoelectronic microwave phase shifter,” IEEE Trans. Microwave Theory Tech. 46, 1419–1426 (1998).
[CrossRef]

David, G.

K. Yang, G. David, S. V. Robertson, J. F. Whitaker, L. P. B. Katehi, “Electrooptic mapping of near-field distributions in integrated microwave circuits,” IEEE Trans. Microwave Theory Tech. 46, 2338–2343 (1998).
[CrossRef]

Downey, P.

P. Downey, B. Schwartz, “Picosecond photoresponse in 3He+ bombarded InP photoconductors,” Appl. Phys. Lett. 44, 207–209 (1984).
[CrossRef]

Economou, N. P.

R. C. Alferness, N. P. Economou, L. L. Buhl, “Picosecond optical sampling technique for measuring the speed of fast electro-optic switch/modulators,” Appl. Phys. Lett. 37, 597–599 (1980).
[CrossRef]

Frankel, M. Y.

M. Y. Frankel, J. F. Whitaker, G. A. Mourou, “Optoelectronic transient characterization of ultrafast devices,” IEEE J. Quantum Electron. 28, 2313–2324 (1992).
[CrossRef]

M. Y. Frankel, J. F. Whitaker, G. A. Mourou, F. W. Smith, A. R. Calawa, “High-voltage picosecond photoconductor switch based on low-temperature-grown GaAs,” IEEE Trans. Electron. Devices 37, 2493–2497 (1990).
[CrossRef]

Gabel, C. W.

J. A. Valdmanis, G. A. Mourou, C. W. Gabel, “Subpicosecond electrical sampling,” IEEE J. Quantum Electron. QE-19, 664–667 (1983).
[CrossRef]

J. A. Valdmanis, G. A. Mourou, C. W. Gabel, “Picosecond electrooptic sampling system,” Appl. Phys. Lett. 41, 211–212 (1982).
[CrossRef]

Gheewaia, T.

For a review, see T. Gheewaia, “The Josephson technology,” Proc. IEEE 70, 26–34 (1982).
[CrossRef]

Glass, A. M.

D. H. Auston, A. M. Glass, “Optical generation of intense picosecond electrical pulses,” Appl. Phys. Lett. 20, 398–399 (1972).
[CrossRef]

Houghton, A. W.

P. V. Brennan, A. W. Houghton, “Phased array beam steering using phased-locked loops,” Electron. Lett. 26, 165–166 (1990).
[CrossRef]

Hwang, T.-S.

G.-R. Lin, T.-S. Hwang, Y.-H. Chuang, S.-C. Wang, C.-L. Pan, “Broad-band (≥20 GHz) laser-diode-based optoelectronic microwave phase shifter,” IEEE Trans. Microwave Theory Tech. 46, 1419–1426 (1998).
[CrossRef]

Johnson, C. K.

C. K. Johnson, J. Qian, “Picosecond laser timing by rf phase shifting,” Rev. Sci. Instrum. 61, 1158–1160 (1990).
[CrossRef]

Katehi, L. P. B.

K. Yang, G. David, S. V. Robertson, J. F. Whitaker, L. P. B. Katehi, “Electrooptic mapping of near-field distributions in integrated microwave circuits,” IEEE Trans. Microwave Theory Tech. 46, 2338–2343 (1998).
[CrossRef]

Kurz, H.

T. Löffler, T. Pfeifer, H. G. Roskos, H. Kurz, D. W. van der Weide, “Stable optoelectronic detection of free-running microwave signals with 150-GHz bandwidth,” Microelectron. Eng. 31, 397–408 (1996).
[CrossRef]

LeFur, P.

P. LeFur, D. H. Auston, “A kilovolt optoelectronic switch and Pockels cell,” Appl. Phys. Lett. 28, 21–23 (1976).
[CrossRef]

Levine, B. F.

See, for example, F. Capasso, W. T. Tsang, C. G. Bethea, B. F. Levine, “New graded band-gap picosecond phototransistor,” Appl. Phys. Lett. 42, 93–95 (1983).
[CrossRef]

See, for example, F. Capasso, S. Luryi, W. T. Tsang, C. G. Bethea, B. F. Levine, “New transient electrical polarization phenomena in sawtooth superlattice,” Phys. Rev. Lett. 51, 2318–2321 (1983).
[CrossRef]

Lin, G.-R.

G.-R. Lin, Y.-C. Chang, “Demonstration and optimization of an optoelectronic phase-locked phase shifter for optical microwave signals,” IEEE Photon. Technol. Lett. 12, 1555–1557 (2000).
[CrossRef]

G.-R. Lin, “Optoelectronic delay-time controller for laser pulses,” Opt. Lett. 25, 799–801 (2000).
[CrossRef]

G.-R. Lin, Y.-C. Chang, “A DC-voltage-controlled phase-tuning technology for optoelectronic microwave signals,” Microwave Opt. Technol. Lett. 26, 98–100 (2000).
[CrossRef]

G.-R. Lin, T.-S. Hwang, Y.-H. Chuang, S.-C. Wang, C.-L. Pan, “Broad-band (≥20 GHz) laser-diode-based optoelectronic microwave phase shifter,” IEEE Trans. Microwave Theory Tech. 46, 1419–1426 (1998).
[CrossRef]

H.-H. Wu, G.-R. Lin, C.-L. Pan, “Optoelectronic phase tracking and electrooptic sampling of free-running microwave signals up to 20 GHz in a laser-diode-based system,” IEEE Photon. Technol. Lett. 7, 670–672 (1995).
[CrossRef]

Löffler, T.

T. Löffler, T. Pfeifer, H. G. Roskos, H. Kurz, D. W. van der Weide, “Stable optoelectronic detection of free-running microwave signals with 150-GHz bandwidth,” Microelectron. Eng. 31, 397–408 (1996).
[CrossRef]

Luryi, S.

See, for example, F. Capasso, S. Luryi, W. T. Tsang, C. G. Bethea, B. F. Levine, “New transient electrical polarization phenomena in sawtooth superlattice,” Phys. Rev. Lett. 51, 2318–2321 (1983).
[CrossRef]

Melloch, M. R.

S.-G. Park, M. R. Melloch, A. M. Weiner, “Analysis of terahertz waveforms measured by photoconductive and electrooptic sampling,” IEEE J. Quantum Electron. 35, 810–819 (1999).
[CrossRef]

Mourou, G.

G. Mourou, “Subpicosecond electrical sampling,” in Picosecond Optoelectronics, G. A. Mourou, ed., Proc. SPIE439, 142–148 (1983).
[CrossRef]

Mourou, G. A.

M. Y. Frankel, J. F. Whitaker, G. A. Mourou, “Optoelectronic transient characterization of ultrafast devices,” IEEE J. Quantum Electron. 28, 2313–2324 (1992).
[CrossRef]

M. Y. Frankel, J. F. Whitaker, G. A. Mourou, F. W. Smith, A. R. Calawa, “High-voltage picosecond photoconductor switch based on low-temperature-grown GaAs,” IEEE Trans. Electron. Devices 37, 2493–2497 (1990).
[CrossRef]

J. A. Valdmanis, G. A. Mourou, C. W. Gabel, “Subpicosecond electrical sampling,” IEEE J. Quantum Electron. QE-19, 664–667 (1983).
[CrossRef]

J. A. Valdmanis, G. A. Mourou, C. W. Gabel, “Picosecond electrooptic sampling system,” Appl. Phys. Lett. 41, 211–212 (1982).
[CrossRef]

J. A. Valdmanis, G. A. Mourou, “Subpicosecond electrical sampling,” in Picosecond Optoelectronic Devices, C. H. Lee, ed. (Academic, Orlando, Fla., 1984), pp. 249–270.
[CrossRef]

Pan, C.-L.

G.-R. Lin, T.-S. Hwang, Y.-H. Chuang, S.-C. Wang, C.-L. Pan, “Broad-band (≥20 GHz) laser-diode-based optoelectronic microwave phase shifter,” IEEE Trans. Microwave Theory Tech. 46, 1419–1426 (1998).
[CrossRef]

H.-H. Wu, G.-R. Lin, C.-L. Pan, “Optoelectronic phase tracking and electrooptic sampling of free-running microwave signals up to 20 GHz in a laser-diode-based system,” IEEE Photon. Technol. Lett. 7, 670–672 (1995).
[CrossRef]

Park, S.-G.

S.-G. Park, M. R. Melloch, A. M. Weiner, “Analysis of terahertz waveforms measured by photoconductive and electrooptic sampling,” IEEE J. Quantum Electron. 35, 810–819 (1999).
[CrossRef]

Pfeifer, T.

T. Löffler, T. Pfeifer, H. G. Roskos, H. Kurz, D. W. van der Weide, “Stable optoelectronic detection of free-running microwave signals with 150-GHz bandwidth,” Microelectron. Eng. 31, 397–408 (1996).
[CrossRef]

Pockels, F.

F. Pockels, Lehrbuch der Kristalloptic, (Teubner, Leipzig, 1906).

Qian, J.

C. K. Johnson, J. Qian, “Picosecond laser timing by rf phase shifting,” Rev. Sci. Instrum. 61, 1158–1160 (1990).
[CrossRef]

Robertson, S. V.

K. Yang, G. David, S. V. Robertson, J. F. Whitaker, L. P. B. Katehi, “Electrooptic mapping of near-field distributions in integrated microwave circuits,” IEEE Trans. Microwave Theory Tech. 46, 2338–2343 (1998).
[CrossRef]

Roskos, H. G.

T. Löffler, T. Pfeifer, H. G. Roskos, H. Kurz, D. W. van der Weide, “Stable optoelectronic detection of free-running microwave signals with 150-GHz bandwidth,” Microelectron. Eng. 31, 397–408 (1996).
[CrossRef]

Schwartz, B.

P. Downey, B. Schwartz, “Picosecond photoresponse in 3He+ bombarded InP photoconductors,” Appl. Phys. Lett. 44, 207–209 (1984).
[CrossRef]

Smith, F. W.

M. Y. Frankel, J. F. Whitaker, G. A. Mourou, F. W. Smith, A. R. Calawa, “High-voltage picosecond photoconductor switch based on low-temperature-grown GaAs,” IEEE Trans. Electron. Devices 37, 2493–2497 (1990).
[CrossRef]

Tsang, W. T.

See, for example, F. Capasso, S. Luryi, W. T. Tsang, C. G. Bethea, B. F. Levine, “New transient electrical polarization phenomena in sawtooth superlattice,” Phys. Rev. Lett. 51, 2318–2321 (1983).
[CrossRef]

See, for example, F. Capasso, W. T. Tsang, C. G. Bethea, B. F. Levine, “New graded band-gap picosecond phototransistor,” Appl. Phys. Lett. 42, 93–95 (1983).
[CrossRef]

Valdmanis, J. A.

J. A. Valdmanis, G. A. Mourou, C. W. Gabel, “Subpicosecond electrical sampling,” IEEE J. Quantum Electron. QE-19, 664–667 (1983).
[CrossRef]

J. A. Valdmanis, G. A. Mourou, C. W. Gabel, “Picosecond electrooptic sampling system,” Appl. Phys. Lett. 41, 211–212 (1982).
[CrossRef]

J. A. Valdmanis, “Subpicosecond electro-optic sampling,” Ph.D. dissertation (University of Rochester, Rochester, N.Y., 1983).

J. A. Valdmanis, G. A. Mourou, “Subpicosecond electrical sampling,” in Picosecond Optoelectronic Devices, C. H. Lee, ed. (Academic, Orlando, Fla., 1984), pp. 249–270.
[CrossRef]

van der Weide, D. W.

T. Löffler, T. Pfeifer, H. G. Roskos, H. Kurz, D. W. van der Weide, “Stable optoelectronic detection of free-running microwave signals with 150-GHz bandwidth,” Microelectron. Eng. 31, 397–408 (1996).
[CrossRef]

Wang, S.-C.

G.-R. Lin, T.-S. Hwang, Y.-H. Chuang, S.-C. Wang, C.-L. Pan, “Broad-band (≥20 GHz) laser-diode-based optoelectronic microwave phase shifter,” IEEE Trans. Microwave Theory Tech. 46, 1419–1426 (1998).
[CrossRef]

Weiner, A. M.

S.-G. Park, M. R. Melloch, A. M. Weiner, “Analysis of terahertz waveforms measured by photoconductive and electrooptic sampling,” IEEE J. Quantum Electron. 35, 810–819 (1999).
[CrossRef]

Whitaker, J. F.

K. Yang, G. David, S. V. Robertson, J. F. Whitaker, L. P. B. Katehi, “Electrooptic mapping of near-field distributions in integrated microwave circuits,” IEEE Trans. Microwave Theory Tech. 46, 2338–2343 (1998).
[CrossRef]

M. Y. Frankel, J. F. Whitaker, G. A. Mourou, “Optoelectronic transient characterization of ultrafast devices,” IEEE J. Quantum Electron. 28, 2313–2324 (1992).
[CrossRef]

M. Y. Frankel, J. F. Whitaker, G. A. Mourou, F. W. Smith, A. R. Calawa, “High-voltage picosecond photoconductor switch based on low-temperature-grown GaAs,” IEEE Trans. Electron. Devices 37, 2493–2497 (1990).
[CrossRef]

Wu, H.-H.

H.-H. Wu, G.-R. Lin, C.-L. Pan, “Optoelectronic phase tracking and electrooptic sampling of free-running microwave signals up to 20 GHz in a laser-diode-based system,” IEEE Photon. Technol. Lett. 7, 670–672 (1995).
[CrossRef]

Wu, Q.

Q. Wu, X.-C. Zhang, “Free-space electro-optic sampling of terahertz beams,” Appl. Phys. Lett. 67, 3523–3525 (1995).
[CrossRef]

Yang, K.

K. Yang, G. David, S. V. Robertson, J. F. Whitaker, L. P. B. Katehi, “Electrooptic mapping of near-field distributions in integrated microwave circuits,” IEEE Trans. Microwave Theory Tech. 46, 2338–2343 (1998).
[CrossRef]

Zhang, X.-C.

Q. Wu, X.-C. Zhang, “Free-space electro-optic sampling of terahertz beams,” Appl. Phys. Lett. 67, 3523–3525 (1995).
[CrossRef]

Appl. Phys. Lett. (7)

P. Downey, B. Schwartz, “Picosecond photoresponse in 3He+ bombarded InP photoconductors,” Appl. Phys. Lett. 44, 207–209 (1984).
[CrossRef]

R. C. Alferness, N. P. Economou, L. L. Buhl, “Picosecond optical sampling technique for measuring the speed of fast electro-optic switch/modulators,” Appl. Phys. Lett. 37, 597–599 (1980).
[CrossRef]

D. H. Auston, A. M. Glass, “Optical generation of intense picosecond electrical pulses,” Appl. Phys. Lett. 20, 398–399 (1972).
[CrossRef]

P. LeFur, D. H. Auston, “A kilovolt optoelectronic switch and Pockels cell,” Appl. Phys. Lett. 28, 21–23 (1976).
[CrossRef]

J. A. Valdmanis, G. A. Mourou, C. W. Gabel, “Picosecond electrooptic sampling system,” Appl. Phys. Lett. 41, 211–212 (1982).
[CrossRef]

See, for example, F. Capasso, W. T. Tsang, C. G. Bethea, B. F. Levine, “New graded band-gap picosecond phototransistor,” Appl. Phys. Lett. 42, 93–95 (1983).
[CrossRef]

Q. Wu, X.-C. Zhang, “Free-space electro-optic sampling of terahertz beams,” Appl. Phys. Lett. 67, 3523–3525 (1995).
[CrossRef]

Electron. Lett. (1)

P. V. Brennan, A. W. Houghton, “Phased array beam steering using phased-locked loops,” Electron. Lett. 26, 165–166 (1990).
[CrossRef]

IEEE J. Quantum Electron. (3)

S.-G. Park, M. R. Melloch, A. M. Weiner, “Analysis of terahertz waveforms measured by photoconductive and electrooptic sampling,” IEEE J. Quantum Electron. 35, 810–819 (1999).
[CrossRef]

M. Y. Frankel, J. F. Whitaker, G. A. Mourou, “Optoelectronic transient characterization of ultrafast devices,” IEEE J. Quantum Electron. 28, 2313–2324 (1992).
[CrossRef]

J. A. Valdmanis, G. A. Mourou, C. W. Gabel, “Subpicosecond electrical sampling,” IEEE J. Quantum Electron. QE-19, 664–667 (1983).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

G.-R. Lin, Y.-C. Chang, “Demonstration and optimization of an optoelectronic phase-locked phase shifter for optical microwave signals,” IEEE Photon. Technol. Lett. 12, 1555–1557 (2000).
[CrossRef]

H.-H. Wu, G.-R. Lin, C.-L. Pan, “Optoelectronic phase tracking and electrooptic sampling of free-running microwave signals up to 20 GHz in a laser-diode-based system,” IEEE Photon. Technol. Lett. 7, 670–672 (1995).
[CrossRef]

IEEE Trans. Electron. Devices (1)

M. Y. Frankel, J. F. Whitaker, G. A. Mourou, F. W. Smith, A. R. Calawa, “High-voltage picosecond photoconductor switch based on low-temperature-grown GaAs,” IEEE Trans. Electron. Devices 37, 2493–2497 (1990).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (2)

K. Yang, G. David, S. V. Robertson, J. F. Whitaker, L. P. B. Katehi, “Electrooptic mapping of near-field distributions in integrated microwave circuits,” IEEE Trans. Microwave Theory Tech. 46, 2338–2343 (1998).
[CrossRef]

G.-R. Lin, T.-S. Hwang, Y.-H. Chuang, S.-C. Wang, C.-L. Pan, “Broad-band (≥20 GHz) laser-diode-based optoelectronic microwave phase shifter,” IEEE Trans. Microwave Theory Tech. 46, 1419–1426 (1998).
[CrossRef]

Microelectron. Eng. (1)

T. Löffler, T. Pfeifer, H. G. Roskos, H. Kurz, D. W. van der Weide, “Stable optoelectronic detection of free-running microwave signals with 150-GHz bandwidth,” Microelectron. Eng. 31, 397–408 (1996).
[CrossRef]

Microwave Opt. Technol. Lett. (1)

G.-R. Lin, Y.-C. Chang, “A DC-voltage-controlled phase-tuning technology for optoelectronic microwave signals,” Microwave Opt. Technol. Lett. 26, 98–100 (2000).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. Lett. (1)

See, for example, F. Capasso, S. Luryi, W. T. Tsang, C. G. Bethea, B. F. Levine, “New transient electrical polarization phenomena in sawtooth superlattice,” Phys. Rev. Lett. 51, 2318–2321 (1983).
[CrossRef]

Proc. IEEE (1)

For a review, see T. Gheewaia, “The Josephson technology,” Proc. IEEE 70, 26–34 (1982).
[CrossRef]

Rev. Sci. Instrum. (1)

C. K. Johnson, J. Qian, “Picosecond laser timing by rf phase shifting,” Rev. Sci. Instrum. 61, 1158–1160 (1990).
[CrossRef]

Other (5)

D. H. Auston, “Picosecond photoconductors: physical properties and applications,” in Picosecond Optoelectronic Devices, C. H. Lee, ed. (Academic, Orlando, Fla., 1984), pp. 73–117.
[CrossRef]

F. Pockels, Lehrbuch der Kristalloptic, (Teubner, Leipzig, 1906).

G. Mourou, “Subpicosecond electrical sampling,” in Picosecond Optoelectronics, G. A. Mourou, ed., Proc. SPIE439, 142–148 (1983).
[CrossRef]

J. A. Valdmanis, G. A. Mourou, “Subpicosecond electrical sampling,” in Picosecond Optoelectronic Devices, C. H. Lee, ed. (Academic, Orlando, Fla., 1984), pp. 249–270.
[CrossRef]

J. A. Valdmanis, “Subpicosecond electro-optic sampling,” Ph.D. dissertation (University of Rochester, Rochester, N.Y., 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Principle of the offset-frequency type (or unsynchronized) electro-optic sampling regime.

Fig. 2
Fig. 2

Principle of the non-offset-frequency type (or synchronized) electro-optic sampling regime.

Fig. 3
Fig. 3

Block diagram of an OMDL for control of the optical path as well as the delay time of optical pulses.

Fig. 4
Fig. 4

Measurement of distortion induced by the transverse displacement in the probe site of an optical beam on the sample that is due to the misalignment of the OMDL movable axis.

Fig. 5
Fig. 5

Circuit diagram of an OEPLL phase shifter.

Fig. 6
Fig. 6

Schematic diagram of a modified delay-line-free EOS system with a PDTC-controlled picosecond laser source: LPF, loop filter; PD, photodiode; FD, frequency detector; PCS, photoconductive switch; HWP, half-wave plate; QWP, quarter-wave plate; PBS, polarizing beam splitter; LIA, lock-in amplifier; GPIB, general-purpose interface bus; EOP, electro-optic probe.

Fig. 7
Fig. 7

Simplified PDTC-based EOS system with only one PDTC module.

Fig. 8
Fig. 8

Relationship between the delay time of the PDTC-controlled laser pulse and the controlling voltage (V REF).

Fig. 9
Fig. 9

Optical pulse train controlled by the PDTC for a variety of V REF.

Fig. 10
Fig. 10

Phase-tuning (as well as the delay-time) response of the PDTC plotted as a function of scan time with a tuning speed of 1 point/s.

Fig. 11
Fig. 11

EOS waveform (solid curve) of an amplified microwave signal at a frequency of 500 MHz generated from a phase-locked VCO2. The dashed curve illustrates the same waveform measured with a high-speed sampling oscilloscope.

Fig. 12
Fig. 12

Measured distortion of the modified EOS system and the phase-tuning error of the PDTC plotted as a function of delay time (as well as phase shift).

Fig. 13
Fig. 13

Waveform of the signal output from a microwave step recovery diode measured with a sampling oscilloscope (solid curve) and a delay-line-free EOS system (dotted curve).

Fig. 14
Fig. 14

Spectrum of the measured signal measured with the sampling oscilloscope and the delay-line-free EOS system, respectively.

Fig. 15
Fig. 15

Waveform of a frequency-prescaled microwave signal measured by use of (a) the delay-line-free EOS technique and (b) the sampling oscilloscope.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

Vdsθis-θds=Kd,
VcsVds=Fs,
θosθds=1N.
θe=θIF-θVCO+ΦVCON+Φ1/N,
θIF=ΦFRO-θGSLD+ΦOEHM+ΦBuf,
θGSLD=MθVCO+MΦVCO+MΦAMP+Φcomb+ΦLD,
θVCO=Kdθe+NsΦPD-VREFFsKo/s+ΦVCO.
θVCO=KdΦFRO-MθVCO-MΦVCO-MΦAMP-Φcomb-ΦLD+ΦOEHM+ΦBuf-θVCON-ΦVCON-Φ1/N+NSΦPD-VREFFsKo/s+ΦVCO= ΦFRO-M+1/NΦVCO-MΦAMP-Φcomb-ΦLD+ΦOEHM+ΦBufKd+NsΦPD-VREFFsKo/s+ΦVCO1+M+1/NKdFsKo/sΦFRO-M+1/NΦVCO+ΦSYSTEM-VREFKdKdFsKo/s1+M+1/NKdFsKo/s+ΦVCO1+M+1/NKdFsKo/s=ΦFRO+Φsystem-VREFKdKdFsKo/s1+M+1/NKdFsKo/s+1-M+1/NKdFsKo/s1+M+1/NKdFsKo/s ΦVCO=ΦPLL-VREFFsKo/s1+M+1/NKdFsKo/sΦPLL-VREFRPDTCΦPLL-ΔθVCO,
tp=vtfreptΔτ-1,

Metrics