Abstract

Illumination intensities that are used to induce scattering and fluorescence in aerosols can be large enough to cause variations in the refractive index. Methods used to calculate the scattering from homogeneous particles may not be valid for these systems. We use the finite-difference time-domain method and an iterative technique to model scattering by microspheres that contain a saturable absorber. We illustrate this technique by calculating the scattering from spheres that contain tryptophan. We show the Mueller scattering matrices along with the internal intensity distributions for different incident intensities. The backscattering increases as the illumination intensity becomes large enough to saturate the absorption in regions of the sphere.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Q. Chowdhury, S. C. Hill, M. M. Mazumder, “Absorptive bistability in a dielectric sphere,” Opt. Commun. 131, 343–346 (1996).
    [CrossRef]
  2. J. Popp, M. H. Fields, R. K. Chang, “Q switching by saturable absorption in microdroplets: elastic scattering and laser emission,” Opt. Lett. 22, 1296–1298 (1997).
    [CrossRef]
  3. J. A. Lock, E. A. Hovenac, “Internal caustic structure of illuminated liquid droplets,” J. Opt. Soc. Am. A 8, 1541–1549 (1991).
    [CrossRef]
  4. N. Velesco, T. Kaiser, G. Schweiger, “Computation of the internal field of a large spherical particle by use of the geometrical-optics approximation,” Appl. Opt. 36, 8724–8727 (1997).
    [CrossRef]
  5. K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302–307 (1966).
    [CrossRef]
  6. A. Taflove, Computational Electrodynamics, The Finite-Difference Time-Domain Method (Artech House, Boston, Mass., 1995).
  7. P. Yang, K. N. Liou, “Finite-difference time-domain method for light scattering by small ice crystals in three-dimensional space,” J. Opt. Soc. Am. A 13, 2072–2085 (1996).
    [CrossRef]
  8. W. B. Sun, Q. Fu, Z. Z. Chen, “Finite-difference time-domain solution of light scattering by dielectric particles with a perfectly matched layer absorbing boundary condition,” Appl. Opt. 38, 3141–3151 (1999).
    [CrossRef]
  9. P. Yang, K. N. Liou, M. I. Mishchenko, B.-C. Gao, “Efficient finite-difference time-domain scheme for light scattering by dielectric particles: application to aerosols,” Appl. Opt. 39, 3727–3737 (2000).
    [CrossRef]
  10. W. B. Sun, Q. Fu, “Finite-difference time-domain solution of light scattering by dielectric particles with large complex refractive indices,” Appl. Opt. 39, 5569–5578 (2000).
    [CrossRef]
  11. R. F. Harrington, Field Computation by Moment Methods (Macmillan, New York, 1968).
  12. B. T. Draine, P. J. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11, 1491–1499 (1994).
    [CrossRef]
  13. R. M. Joseph, A. Taflove, “FDTD Maxwell’s equations models for nonlinear electrodynamics and optics,” IEEE Trans. Antennas Propag. 45, 364–374 (1997).
    [CrossRef]
  14. R. W. Ziolkowski, “The incorporation of microscopic material models into the FDTD approach for ultrafast optical pulse simulations,” IEEE Trans. Antennas Propag. 45, 375–391 (1997).
    [CrossRef]
  15. W. Forysiak, J. V. Moloney, E. M. Wright, “Nonlinear focusing of femtosecond pulses as a result of self-reflection from a saturable absorber,” Opt. Lett. 22, 239–241 (1997).
    [CrossRef] [PubMed]
  16. A. S. Nagra, R. A. York, “FDTD analysis of wave propagation in nonlinear absorbing and gain media,” IEEE Trans. Antennas Propag. 46, 334–340 (1998).
    [CrossRef]
  17. R. G. Pinnick, S. C. Hill, P. Nachman, J. D. Pendleton, G. L. Fernandez, M. W. Mayo, J. G. Bruno, “Fluorescence particle counter for detecting airborne bacteria and other biological particles,” Aerosol Sci. Technol. 23, 653–664 (1995).
    [CrossRef]
  18. P. P. Hairston, J. Ho, F. R. Quant, “Design of an instrument for real-time detection of bioaerosols using simultaneous measurement of particle aerodynamic size and intrinsic fluorescence,” J. Aerosol Sci. 28, 471–482 (1997).
    [CrossRef] [PubMed]
  19. M. Seaver, J. D. Eversole, J. J. Hardgrove, W. K. Cary, D. C. Roselle, “Size and fluorescence measurements for field detection of biological aerosols,” Aerosol Sci. Technol. 30, 174–185 (1999).
    [CrossRef]
  20. Y. L. Pan, S. Holler, R. K. Chang, S. C. Hill, R. G. Pinnick, S. Niles, J. R. Bottiger, “Single-shot fluorescence spectra of individual micrometer-sized bioaerosols illuminated by a 351- or 266-nm ultraviolet laser,” Opt. Lett. 24, 116–118 (1999).
    [CrossRef]
  21. F. L. Reyes, T. H. Jeys, N. R. Newbury, C. A. Primmerman, G. S. Rowe, A. Sanchez, “Bio-aerosol fluorescence sensor,” Field Analyt. Chem. Technol. 3, 240–248 (1999).
    [CrossRef]
  22. J. D. Eversole, J. J. Hardgrove, W. K. Cary, D. P. Choulas, M. Seaver, “Continuous rapid biological aerosol detection with the use of UV fluorescence: outdoor test results,” Field Analyt. Chem. Technol. 3, 249–259 (1999).
    [CrossRef]
  23. P. H. Kaye, J. E. Barton, E. Hirst, J. M. Clark, “Simultaneous light scattering and intrinsic fluorescence measurement for the classification of airborne particles,” Appl. Opt. 39, 3738–3745 (2000).
    [CrossRef]
  24. S. C. Hill, R. G. Pinnick, S. Niles, Y. Pan, S. Holler, R. K. Chang, J. R. Bottiger, B. T. Chen, C.-S. Orr, G. Feather, “Real-time measurement of fluorescence spectra from single airborne biological particles,” Field Analyt. Chem. Technol. 3, 221–239 (1999).
    [CrossRef]
  25. S. Holler, Y. Pan, R. K. Chang, J. R. Bottiger, S. C. Hill, D. B. Hillis, “Two-dimensional angular light scattering for the characterization of airborne microparticles,” Opt. Lett. 23, 1489–1491 (1998).
    [CrossRef]
  26. G. Videen, W. Sun, Q. Fu, D. R. Secker, R. Greenaway, P. H. Kaye, E. Hirst, D. Bartley, “Light scattering from deformed droplets and droplets with inclusion. II. Theoretical treatment,” Appl. Opt. 39, 5031–5039 (2000).
    [CrossRef]
  27. D. R. Secker, R. Greenaway, P. H. Kaye, E. Hirst, D. Bartley, G. Videen, “Light scattering from deformed droplets and droplets with inclusion. I. Experimental results,” Appl. Opt. 39, 5023–5030 (2000).
    [CrossRef]
  28. S. Holler, J.-C. Auger, B. Stout, Y. Pan, J. Bottiger, R. Chang, G. Videen, “Observations and calculations of light scattering from clusters of spheres,” Appl. Opt. 39, 6873–6887 (2000).
    [CrossRef]
  29. W. G. Murrell, “Chemical composition of spores and spore structures,” in The Bacterial SporeA. Hurst, G. W. Gould, eds. (Academic, New York, 1969), Chap. 7, pp. 218–231, Table III, p. 221.
  30. W. Leupacher, A. Penzkofer, “Refractive index measurement of absorbing condensed media,” Appl. Opt. 23, 1554–1558 (1984).
    [CrossRef]
  31. Our use of the term intensity (W/cm2) follows common usage in research in light scattering by particles. Unfortunately, it may be confusing to those used to the term irradiance (W/m2).
  32. From m2 = ∊, where ∊ is the relative complex permittivity, and from γ = σ(Nupper - Nlower), where γ is the absorption per unit length for the intensity of a wave propagating in the medium. See, e.g., A. Yariv, Quantum Electronics, 3rd ed. (Wiley, New York, 1989), pp. 162–163, 203.
  33. J.-P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994).
    [CrossRef]
  34. C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983), pp. 82–101.
  35. P. W. Barber, S. C. Hill, Light Scattering by Particles: Computational Methods (World Scientific, Singapore, 1990), pp. 205–210.
  36. Ref. 35, pp. 212, 214–215.
  37. S. C. Hill, V. Boutou, J. Yu, S. Ramstein, J.-P. Wolf, Y.-L. Pan, S. Holler, R. K. Chang, “Enhanced backward-directed multi-photon-excited fluorescence from dielectric microcavities,” Phys. Rev. Lett. 85, 54–57 (2000).
    [CrossRef] [PubMed]

2000 (7)

P. Yang, K. N. Liou, M. I. Mishchenko, B.-C. Gao, “Efficient finite-difference time-domain scheme for light scattering by dielectric particles: application to aerosols,” Appl. Opt. 39, 3727–3737 (2000).
[CrossRef]

W. B. Sun, Q. Fu, “Finite-difference time-domain solution of light scattering by dielectric particles with large complex refractive indices,” Appl. Opt. 39, 5569–5578 (2000).
[CrossRef]

P. H. Kaye, J. E. Barton, E. Hirst, J. M. Clark, “Simultaneous light scattering and intrinsic fluorescence measurement for the classification of airborne particles,” Appl. Opt. 39, 3738–3745 (2000).
[CrossRef]

G. Videen, W. Sun, Q. Fu, D. R. Secker, R. Greenaway, P. H. Kaye, E. Hirst, D. Bartley, “Light scattering from deformed droplets and droplets with inclusion. II. Theoretical treatment,” Appl. Opt. 39, 5031–5039 (2000).
[CrossRef]

D. R. Secker, R. Greenaway, P. H. Kaye, E. Hirst, D. Bartley, G. Videen, “Light scattering from deformed droplets and droplets with inclusion. I. Experimental results,” Appl. Opt. 39, 5023–5030 (2000).
[CrossRef]

S. Holler, J.-C. Auger, B. Stout, Y. Pan, J. Bottiger, R. Chang, G. Videen, “Observations and calculations of light scattering from clusters of spheres,” Appl. Opt. 39, 6873–6887 (2000).
[CrossRef]

S. C. Hill, V. Boutou, J. Yu, S. Ramstein, J.-P. Wolf, Y.-L. Pan, S. Holler, R. K. Chang, “Enhanced backward-directed multi-photon-excited fluorescence from dielectric microcavities,” Phys. Rev. Lett. 85, 54–57 (2000).
[CrossRef] [PubMed]

1999 (6)

S. C. Hill, R. G. Pinnick, S. Niles, Y. Pan, S. Holler, R. K. Chang, J. R. Bottiger, B. T. Chen, C.-S. Orr, G. Feather, “Real-time measurement of fluorescence spectra from single airborne biological particles,” Field Analyt. Chem. Technol. 3, 221–239 (1999).
[CrossRef]

W. B. Sun, Q. Fu, Z. Z. Chen, “Finite-difference time-domain solution of light scattering by dielectric particles with a perfectly matched layer absorbing boundary condition,” Appl. Opt. 38, 3141–3151 (1999).
[CrossRef]

M. Seaver, J. D. Eversole, J. J. Hardgrove, W. K. Cary, D. C. Roselle, “Size and fluorescence measurements for field detection of biological aerosols,” Aerosol Sci. Technol. 30, 174–185 (1999).
[CrossRef]

Y. L. Pan, S. Holler, R. K. Chang, S. C. Hill, R. G. Pinnick, S. Niles, J. R. Bottiger, “Single-shot fluorescence spectra of individual micrometer-sized bioaerosols illuminated by a 351- or 266-nm ultraviolet laser,” Opt. Lett. 24, 116–118 (1999).
[CrossRef]

F. L. Reyes, T. H. Jeys, N. R. Newbury, C. A. Primmerman, G. S. Rowe, A. Sanchez, “Bio-aerosol fluorescence sensor,” Field Analyt. Chem. Technol. 3, 240–248 (1999).
[CrossRef]

J. D. Eversole, J. J. Hardgrove, W. K. Cary, D. P. Choulas, M. Seaver, “Continuous rapid biological aerosol detection with the use of UV fluorescence: outdoor test results,” Field Analyt. Chem. Technol. 3, 249–259 (1999).
[CrossRef]

1998 (2)

A. S. Nagra, R. A. York, “FDTD analysis of wave propagation in nonlinear absorbing and gain media,” IEEE Trans. Antennas Propag. 46, 334–340 (1998).
[CrossRef]

S. Holler, Y. Pan, R. K. Chang, J. R. Bottiger, S. C. Hill, D. B. Hillis, “Two-dimensional angular light scattering for the characterization of airborne microparticles,” Opt. Lett. 23, 1489–1491 (1998).
[CrossRef]

1997 (6)

P. P. Hairston, J. Ho, F. R. Quant, “Design of an instrument for real-time detection of bioaerosols using simultaneous measurement of particle aerodynamic size and intrinsic fluorescence,” J. Aerosol Sci. 28, 471–482 (1997).
[CrossRef] [PubMed]

R. M. Joseph, A. Taflove, “FDTD Maxwell’s equations models for nonlinear electrodynamics and optics,” IEEE Trans. Antennas Propag. 45, 364–374 (1997).
[CrossRef]

R. W. Ziolkowski, “The incorporation of microscopic material models into the FDTD approach for ultrafast optical pulse simulations,” IEEE Trans. Antennas Propag. 45, 375–391 (1997).
[CrossRef]

W. Forysiak, J. V. Moloney, E. M. Wright, “Nonlinear focusing of femtosecond pulses as a result of self-reflection from a saturable absorber,” Opt. Lett. 22, 239–241 (1997).
[CrossRef] [PubMed]

J. Popp, M. H. Fields, R. K. Chang, “Q switching by saturable absorption in microdroplets: elastic scattering and laser emission,” Opt. Lett. 22, 1296–1298 (1997).
[CrossRef]

N. Velesco, T. Kaiser, G. Schweiger, “Computation of the internal field of a large spherical particle by use of the geometrical-optics approximation,” Appl. Opt. 36, 8724–8727 (1997).
[CrossRef]

1996 (2)

D. Q. Chowdhury, S. C. Hill, M. M. Mazumder, “Absorptive bistability in a dielectric sphere,” Opt. Commun. 131, 343–346 (1996).
[CrossRef]

P. Yang, K. N. Liou, “Finite-difference time-domain method for light scattering by small ice crystals in three-dimensional space,” J. Opt. Soc. Am. A 13, 2072–2085 (1996).
[CrossRef]

1995 (1)

R. G. Pinnick, S. C. Hill, P. Nachman, J. D. Pendleton, G. L. Fernandez, M. W. Mayo, J. G. Bruno, “Fluorescence particle counter for detecting airborne bacteria and other biological particles,” Aerosol Sci. Technol. 23, 653–664 (1995).
[CrossRef]

1994 (2)

B. T. Draine, P. J. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11, 1491–1499 (1994).
[CrossRef]

J.-P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994).
[CrossRef]

1991 (1)

1984 (1)

1966 (1)

K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302–307 (1966).
[CrossRef]

Auger, J.-C.

Barber, P. W.

P. W. Barber, S. C. Hill, Light Scattering by Particles: Computational Methods (World Scientific, Singapore, 1990), pp. 205–210.

Bartley, D.

Barton, J. E.

Berenger, J.-P.

J.-P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994).
[CrossRef]

Bohren, C. F.

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983), pp. 82–101.

Bottiger, J.

Bottiger, J. R.

Boutou, V.

S. C. Hill, V. Boutou, J. Yu, S. Ramstein, J.-P. Wolf, Y.-L. Pan, S. Holler, R. K. Chang, “Enhanced backward-directed multi-photon-excited fluorescence from dielectric microcavities,” Phys. Rev. Lett. 85, 54–57 (2000).
[CrossRef] [PubMed]

Bruno, J. G.

R. G. Pinnick, S. C. Hill, P. Nachman, J. D. Pendleton, G. L. Fernandez, M. W. Mayo, J. G. Bruno, “Fluorescence particle counter for detecting airborne bacteria and other biological particles,” Aerosol Sci. Technol. 23, 653–664 (1995).
[CrossRef]

Cary, W. K.

M. Seaver, J. D. Eversole, J. J. Hardgrove, W. K. Cary, D. C. Roselle, “Size and fluorescence measurements for field detection of biological aerosols,” Aerosol Sci. Technol. 30, 174–185 (1999).
[CrossRef]

J. D. Eversole, J. J. Hardgrove, W. K. Cary, D. P. Choulas, M. Seaver, “Continuous rapid biological aerosol detection with the use of UV fluorescence: outdoor test results,” Field Analyt. Chem. Technol. 3, 249–259 (1999).
[CrossRef]

Chang, R.

Chang, R. K.

S. C. Hill, V. Boutou, J. Yu, S. Ramstein, J.-P. Wolf, Y.-L. Pan, S. Holler, R. K. Chang, “Enhanced backward-directed multi-photon-excited fluorescence from dielectric microcavities,” Phys. Rev. Lett. 85, 54–57 (2000).
[CrossRef] [PubMed]

S. C. Hill, R. G. Pinnick, S. Niles, Y. Pan, S. Holler, R. K. Chang, J. R. Bottiger, B. T. Chen, C.-S. Orr, G. Feather, “Real-time measurement of fluorescence spectra from single airborne biological particles,” Field Analyt. Chem. Technol. 3, 221–239 (1999).
[CrossRef]

Y. L. Pan, S. Holler, R. K. Chang, S. C. Hill, R. G. Pinnick, S. Niles, J. R. Bottiger, “Single-shot fluorescence spectra of individual micrometer-sized bioaerosols illuminated by a 351- or 266-nm ultraviolet laser,” Opt. Lett. 24, 116–118 (1999).
[CrossRef]

S. Holler, Y. Pan, R. K. Chang, J. R. Bottiger, S. C. Hill, D. B. Hillis, “Two-dimensional angular light scattering for the characterization of airborne microparticles,” Opt. Lett. 23, 1489–1491 (1998).
[CrossRef]

J. Popp, M. H. Fields, R. K. Chang, “Q switching by saturable absorption in microdroplets: elastic scattering and laser emission,” Opt. Lett. 22, 1296–1298 (1997).
[CrossRef]

Chen, B. T.

S. C. Hill, R. G. Pinnick, S. Niles, Y. Pan, S. Holler, R. K. Chang, J. R. Bottiger, B. T. Chen, C.-S. Orr, G. Feather, “Real-time measurement of fluorescence spectra from single airborne biological particles,” Field Analyt. Chem. Technol. 3, 221–239 (1999).
[CrossRef]

Chen, Z. Z.

Choulas, D. P.

J. D. Eversole, J. J. Hardgrove, W. K. Cary, D. P. Choulas, M. Seaver, “Continuous rapid biological aerosol detection with the use of UV fluorescence: outdoor test results,” Field Analyt. Chem. Technol. 3, 249–259 (1999).
[CrossRef]

Chowdhury, D. Q.

D. Q. Chowdhury, S. C. Hill, M. M. Mazumder, “Absorptive bistability in a dielectric sphere,” Opt. Commun. 131, 343–346 (1996).
[CrossRef]

Clark, J. M.

Draine, B. T.

Eversole, J. D.

J. D. Eversole, J. J. Hardgrove, W. K. Cary, D. P. Choulas, M. Seaver, “Continuous rapid biological aerosol detection with the use of UV fluorescence: outdoor test results,” Field Analyt. Chem. Technol. 3, 249–259 (1999).
[CrossRef]

M. Seaver, J. D. Eversole, J. J. Hardgrove, W. K. Cary, D. C. Roselle, “Size and fluorescence measurements for field detection of biological aerosols,” Aerosol Sci. Technol. 30, 174–185 (1999).
[CrossRef]

Feather, G.

S. C. Hill, R. G. Pinnick, S. Niles, Y. Pan, S. Holler, R. K. Chang, J. R. Bottiger, B. T. Chen, C.-S. Orr, G. Feather, “Real-time measurement of fluorescence spectra from single airborne biological particles,” Field Analyt. Chem. Technol. 3, 221–239 (1999).
[CrossRef]

Fernandez, G. L.

R. G. Pinnick, S. C. Hill, P. Nachman, J. D. Pendleton, G. L. Fernandez, M. W. Mayo, J. G. Bruno, “Fluorescence particle counter for detecting airborne bacteria and other biological particles,” Aerosol Sci. Technol. 23, 653–664 (1995).
[CrossRef]

Fields, M. H.

Flatau, P. J.

Forysiak, W.

Fu, Q.

Gao, B.-C.

Greenaway, R.

Hairston, P. P.

P. P. Hairston, J. Ho, F. R. Quant, “Design of an instrument for real-time detection of bioaerosols using simultaneous measurement of particle aerodynamic size and intrinsic fluorescence,” J. Aerosol Sci. 28, 471–482 (1997).
[CrossRef] [PubMed]

Hardgrove, J. J.

M. Seaver, J. D. Eversole, J. J. Hardgrove, W. K. Cary, D. C. Roselle, “Size and fluorescence measurements for field detection of biological aerosols,” Aerosol Sci. Technol. 30, 174–185 (1999).
[CrossRef]

J. D. Eversole, J. J. Hardgrove, W. K. Cary, D. P. Choulas, M. Seaver, “Continuous rapid biological aerosol detection with the use of UV fluorescence: outdoor test results,” Field Analyt. Chem. Technol. 3, 249–259 (1999).
[CrossRef]

Harrington, R. F.

R. F. Harrington, Field Computation by Moment Methods (Macmillan, New York, 1968).

Hill, S. C.

S. C. Hill, V. Boutou, J. Yu, S. Ramstein, J.-P. Wolf, Y.-L. Pan, S. Holler, R. K. Chang, “Enhanced backward-directed multi-photon-excited fluorescence from dielectric microcavities,” Phys. Rev. Lett. 85, 54–57 (2000).
[CrossRef] [PubMed]

S. C. Hill, R. G. Pinnick, S. Niles, Y. Pan, S. Holler, R. K. Chang, J. R. Bottiger, B. T. Chen, C.-S. Orr, G. Feather, “Real-time measurement of fluorescence spectra from single airborne biological particles,” Field Analyt. Chem. Technol. 3, 221–239 (1999).
[CrossRef]

Y. L. Pan, S. Holler, R. K. Chang, S. C. Hill, R. G. Pinnick, S. Niles, J. R. Bottiger, “Single-shot fluorescence spectra of individual micrometer-sized bioaerosols illuminated by a 351- or 266-nm ultraviolet laser,” Opt. Lett. 24, 116–118 (1999).
[CrossRef]

S. Holler, Y. Pan, R. K. Chang, J. R. Bottiger, S. C. Hill, D. B. Hillis, “Two-dimensional angular light scattering for the characterization of airborne microparticles,” Opt. Lett. 23, 1489–1491 (1998).
[CrossRef]

D. Q. Chowdhury, S. C. Hill, M. M. Mazumder, “Absorptive bistability in a dielectric sphere,” Opt. Commun. 131, 343–346 (1996).
[CrossRef]

R. G. Pinnick, S. C. Hill, P. Nachman, J. D. Pendleton, G. L. Fernandez, M. W. Mayo, J. G. Bruno, “Fluorescence particle counter for detecting airborne bacteria and other biological particles,” Aerosol Sci. Technol. 23, 653–664 (1995).
[CrossRef]

P. W. Barber, S. C. Hill, Light Scattering by Particles: Computational Methods (World Scientific, Singapore, 1990), pp. 205–210.

Hillis, D. B.

Hirst, E.

Ho, J.

P. P. Hairston, J. Ho, F. R. Quant, “Design of an instrument for real-time detection of bioaerosols using simultaneous measurement of particle aerodynamic size and intrinsic fluorescence,” J. Aerosol Sci. 28, 471–482 (1997).
[CrossRef] [PubMed]

Holler, S.

S. Holler, J.-C. Auger, B. Stout, Y. Pan, J. Bottiger, R. Chang, G. Videen, “Observations and calculations of light scattering from clusters of spheres,” Appl. Opt. 39, 6873–6887 (2000).
[CrossRef]

S. C. Hill, V. Boutou, J. Yu, S. Ramstein, J.-P. Wolf, Y.-L. Pan, S. Holler, R. K. Chang, “Enhanced backward-directed multi-photon-excited fluorescence from dielectric microcavities,” Phys. Rev. Lett. 85, 54–57 (2000).
[CrossRef] [PubMed]

S. C. Hill, R. G. Pinnick, S. Niles, Y. Pan, S. Holler, R. K. Chang, J. R. Bottiger, B. T. Chen, C.-S. Orr, G. Feather, “Real-time measurement of fluorescence spectra from single airborne biological particles,” Field Analyt. Chem. Technol. 3, 221–239 (1999).
[CrossRef]

Y. L. Pan, S. Holler, R. K. Chang, S. C. Hill, R. G. Pinnick, S. Niles, J. R. Bottiger, “Single-shot fluorescence spectra of individual micrometer-sized bioaerosols illuminated by a 351- or 266-nm ultraviolet laser,” Opt. Lett. 24, 116–118 (1999).
[CrossRef]

S. Holler, Y. Pan, R. K. Chang, J. R. Bottiger, S. C. Hill, D. B. Hillis, “Two-dimensional angular light scattering for the characterization of airborne microparticles,” Opt. Lett. 23, 1489–1491 (1998).
[CrossRef]

Hovenac, E. A.

Huffman, D. R.

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983), pp. 82–101.

Jeys, T. H.

F. L. Reyes, T. H. Jeys, N. R. Newbury, C. A. Primmerman, G. S. Rowe, A. Sanchez, “Bio-aerosol fluorescence sensor,” Field Analyt. Chem. Technol. 3, 240–248 (1999).
[CrossRef]

Joseph, R. M.

R. M. Joseph, A. Taflove, “FDTD Maxwell’s equations models for nonlinear electrodynamics and optics,” IEEE Trans. Antennas Propag. 45, 364–374 (1997).
[CrossRef]

Kaiser, T.

Kaye, P. H.

Leupacher, W.

Liou, K. N.

Lock, J. A.

Mayo, M. W.

R. G. Pinnick, S. C. Hill, P. Nachman, J. D. Pendleton, G. L. Fernandez, M. W. Mayo, J. G. Bruno, “Fluorescence particle counter for detecting airborne bacteria and other biological particles,” Aerosol Sci. Technol. 23, 653–664 (1995).
[CrossRef]

Mazumder, M. M.

D. Q. Chowdhury, S. C. Hill, M. M. Mazumder, “Absorptive bistability in a dielectric sphere,” Opt. Commun. 131, 343–346 (1996).
[CrossRef]

Mishchenko, M. I.

Moloney, J. V.

Murrell, W. G.

W. G. Murrell, “Chemical composition of spores and spore structures,” in The Bacterial SporeA. Hurst, G. W. Gould, eds. (Academic, New York, 1969), Chap. 7, pp. 218–231, Table III, p. 221.

Nachman, P.

R. G. Pinnick, S. C. Hill, P. Nachman, J. D. Pendleton, G. L. Fernandez, M. W. Mayo, J. G. Bruno, “Fluorescence particle counter for detecting airborne bacteria and other biological particles,” Aerosol Sci. Technol. 23, 653–664 (1995).
[CrossRef]

Nagra, A. S.

A. S. Nagra, R. A. York, “FDTD analysis of wave propagation in nonlinear absorbing and gain media,” IEEE Trans. Antennas Propag. 46, 334–340 (1998).
[CrossRef]

Newbury, N. R.

F. L. Reyes, T. H. Jeys, N. R. Newbury, C. A. Primmerman, G. S. Rowe, A. Sanchez, “Bio-aerosol fluorescence sensor,” Field Analyt. Chem. Technol. 3, 240–248 (1999).
[CrossRef]

Niles, S.

Y. L. Pan, S. Holler, R. K. Chang, S. C. Hill, R. G. Pinnick, S. Niles, J. R. Bottiger, “Single-shot fluorescence spectra of individual micrometer-sized bioaerosols illuminated by a 351- or 266-nm ultraviolet laser,” Opt. Lett. 24, 116–118 (1999).
[CrossRef]

S. C. Hill, R. G. Pinnick, S. Niles, Y. Pan, S. Holler, R. K. Chang, J. R. Bottiger, B. T. Chen, C.-S. Orr, G. Feather, “Real-time measurement of fluorescence spectra from single airborne biological particles,” Field Analyt. Chem. Technol. 3, 221–239 (1999).
[CrossRef]

Orr, C.-S.

S. C. Hill, R. G. Pinnick, S. Niles, Y. Pan, S. Holler, R. K. Chang, J. R. Bottiger, B. T. Chen, C.-S. Orr, G. Feather, “Real-time measurement of fluorescence spectra from single airborne biological particles,” Field Analyt. Chem. Technol. 3, 221–239 (1999).
[CrossRef]

Pan, Y.

Pan, Y. L.

Pan, Y.-L.

S. C. Hill, V. Boutou, J. Yu, S. Ramstein, J.-P. Wolf, Y.-L. Pan, S. Holler, R. K. Chang, “Enhanced backward-directed multi-photon-excited fluorescence from dielectric microcavities,” Phys. Rev. Lett. 85, 54–57 (2000).
[CrossRef] [PubMed]

Pendleton, J. D.

R. G. Pinnick, S. C. Hill, P. Nachman, J. D. Pendleton, G. L. Fernandez, M. W. Mayo, J. G. Bruno, “Fluorescence particle counter for detecting airborne bacteria and other biological particles,” Aerosol Sci. Technol. 23, 653–664 (1995).
[CrossRef]

Penzkofer, A.

Pinnick, R. G.

Y. L. Pan, S. Holler, R. K. Chang, S. C. Hill, R. G. Pinnick, S. Niles, J. R. Bottiger, “Single-shot fluorescence spectra of individual micrometer-sized bioaerosols illuminated by a 351- or 266-nm ultraviolet laser,” Opt. Lett. 24, 116–118 (1999).
[CrossRef]

S. C. Hill, R. G. Pinnick, S. Niles, Y. Pan, S. Holler, R. K. Chang, J. R. Bottiger, B. T. Chen, C.-S. Orr, G. Feather, “Real-time measurement of fluorescence spectra from single airborne biological particles,” Field Analyt. Chem. Technol. 3, 221–239 (1999).
[CrossRef]

R. G. Pinnick, S. C. Hill, P. Nachman, J. D. Pendleton, G. L. Fernandez, M. W. Mayo, J. G. Bruno, “Fluorescence particle counter for detecting airborne bacteria and other biological particles,” Aerosol Sci. Technol. 23, 653–664 (1995).
[CrossRef]

Popp, J.

Primmerman, C. A.

F. L. Reyes, T. H. Jeys, N. R. Newbury, C. A. Primmerman, G. S. Rowe, A. Sanchez, “Bio-aerosol fluorescence sensor,” Field Analyt. Chem. Technol. 3, 240–248 (1999).
[CrossRef]

Quant, F. R.

P. P. Hairston, J. Ho, F. R. Quant, “Design of an instrument for real-time detection of bioaerosols using simultaneous measurement of particle aerodynamic size and intrinsic fluorescence,” J. Aerosol Sci. 28, 471–482 (1997).
[CrossRef] [PubMed]

Ramstein, S.

S. C. Hill, V. Boutou, J. Yu, S. Ramstein, J.-P. Wolf, Y.-L. Pan, S. Holler, R. K. Chang, “Enhanced backward-directed multi-photon-excited fluorescence from dielectric microcavities,” Phys. Rev. Lett. 85, 54–57 (2000).
[CrossRef] [PubMed]

Reyes, F. L.

F. L. Reyes, T. H. Jeys, N. R. Newbury, C. A. Primmerman, G. S. Rowe, A. Sanchez, “Bio-aerosol fluorescence sensor,” Field Analyt. Chem. Technol. 3, 240–248 (1999).
[CrossRef]

Roselle, D. C.

M. Seaver, J. D. Eversole, J. J. Hardgrove, W. K. Cary, D. C. Roselle, “Size and fluorescence measurements for field detection of biological aerosols,” Aerosol Sci. Technol. 30, 174–185 (1999).
[CrossRef]

Rowe, G. S.

F. L. Reyes, T. H. Jeys, N. R. Newbury, C. A. Primmerman, G. S. Rowe, A. Sanchez, “Bio-aerosol fluorescence sensor,” Field Analyt. Chem. Technol. 3, 240–248 (1999).
[CrossRef]

Sanchez, A.

F. L. Reyes, T. H. Jeys, N. R. Newbury, C. A. Primmerman, G. S. Rowe, A. Sanchez, “Bio-aerosol fluorescence sensor,” Field Analyt. Chem. Technol. 3, 240–248 (1999).
[CrossRef]

Schweiger, G.

Seaver, M.

J. D. Eversole, J. J. Hardgrove, W. K. Cary, D. P. Choulas, M. Seaver, “Continuous rapid biological aerosol detection with the use of UV fluorescence: outdoor test results,” Field Analyt. Chem. Technol. 3, 249–259 (1999).
[CrossRef]

M. Seaver, J. D. Eversole, J. J. Hardgrove, W. K. Cary, D. C. Roselle, “Size and fluorescence measurements for field detection of biological aerosols,” Aerosol Sci. Technol. 30, 174–185 (1999).
[CrossRef]

Secker, D. R.

Stout, B.

Sun, W.

Sun, W. B.

Taflove, A.

R. M. Joseph, A. Taflove, “FDTD Maxwell’s equations models for nonlinear electrodynamics and optics,” IEEE Trans. Antennas Propag. 45, 364–374 (1997).
[CrossRef]

A. Taflove, Computational Electrodynamics, The Finite-Difference Time-Domain Method (Artech House, Boston, Mass., 1995).

Velesco, N.

Videen, G.

Wolf, J.-P.

S. C. Hill, V. Boutou, J. Yu, S. Ramstein, J.-P. Wolf, Y.-L. Pan, S. Holler, R. K. Chang, “Enhanced backward-directed multi-photon-excited fluorescence from dielectric microcavities,” Phys. Rev. Lett. 85, 54–57 (2000).
[CrossRef] [PubMed]

Wright, E. M.

Yang, P.

Yariv, A.

From m2 = ∊, where ∊ is the relative complex permittivity, and from γ = σ(Nupper - Nlower), where γ is the absorption per unit length for the intensity of a wave propagating in the medium. See, e.g., A. Yariv, Quantum Electronics, 3rd ed. (Wiley, New York, 1989), pp. 162–163, 203.

Yee, K. S.

K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302–307 (1966).
[CrossRef]

York, R. A.

A. S. Nagra, R. A. York, “FDTD analysis of wave propagation in nonlinear absorbing and gain media,” IEEE Trans. Antennas Propag. 46, 334–340 (1998).
[CrossRef]

Yu, J.

S. C. Hill, V. Boutou, J. Yu, S. Ramstein, J.-P. Wolf, Y.-L. Pan, S. Holler, R. K. Chang, “Enhanced backward-directed multi-photon-excited fluorescence from dielectric microcavities,” Phys. Rev. Lett. 85, 54–57 (2000).
[CrossRef] [PubMed]

Ziolkowski, R. W.

R. W. Ziolkowski, “The incorporation of microscopic material models into the FDTD approach for ultrafast optical pulse simulations,” IEEE Trans. Antennas Propag. 45, 375–391 (1997).
[CrossRef]

Aerosol Sci. Technol. (2)

R. G. Pinnick, S. C. Hill, P. Nachman, J. D. Pendleton, G. L. Fernandez, M. W. Mayo, J. G. Bruno, “Fluorescence particle counter for detecting airborne bacteria and other biological particles,” Aerosol Sci. Technol. 23, 653–664 (1995).
[CrossRef]

M. Seaver, J. D. Eversole, J. J. Hardgrove, W. K. Cary, D. C. Roselle, “Size and fluorescence measurements for field detection of biological aerosols,” Aerosol Sci. Technol. 30, 174–185 (1999).
[CrossRef]

Appl. Opt. (9)

G. Videen, W. Sun, Q. Fu, D. R. Secker, R. Greenaway, P. H. Kaye, E. Hirst, D. Bartley, “Light scattering from deformed droplets and droplets with inclusion. II. Theoretical treatment,” Appl. Opt. 39, 5031–5039 (2000).
[CrossRef]

D. R. Secker, R. Greenaway, P. H. Kaye, E. Hirst, D. Bartley, G. Videen, “Light scattering from deformed droplets and droplets with inclusion. I. Experimental results,” Appl. Opt. 39, 5023–5030 (2000).
[CrossRef]

S. Holler, J.-C. Auger, B. Stout, Y. Pan, J. Bottiger, R. Chang, G. Videen, “Observations and calculations of light scattering from clusters of spheres,” Appl. Opt. 39, 6873–6887 (2000).
[CrossRef]

P. H. Kaye, J. E. Barton, E. Hirst, J. M. Clark, “Simultaneous light scattering and intrinsic fluorescence measurement for the classification of airborne particles,” Appl. Opt. 39, 3738–3745 (2000).
[CrossRef]

W. Leupacher, A. Penzkofer, “Refractive index measurement of absorbing condensed media,” Appl. Opt. 23, 1554–1558 (1984).
[CrossRef]

N. Velesco, T. Kaiser, G. Schweiger, “Computation of the internal field of a large spherical particle by use of the geometrical-optics approximation,” Appl. Opt. 36, 8724–8727 (1997).
[CrossRef]

W. B. Sun, Q. Fu, Z. Z. Chen, “Finite-difference time-domain solution of light scattering by dielectric particles with a perfectly matched layer absorbing boundary condition,” Appl. Opt. 38, 3141–3151 (1999).
[CrossRef]

P. Yang, K. N. Liou, M. I. Mishchenko, B.-C. Gao, “Efficient finite-difference time-domain scheme for light scattering by dielectric particles: application to aerosols,” Appl. Opt. 39, 3727–3737 (2000).
[CrossRef]

W. B. Sun, Q. Fu, “Finite-difference time-domain solution of light scattering by dielectric particles with large complex refractive indices,” Appl. Opt. 39, 5569–5578 (2000).
[CrossRef]

Field Analyt. Chem. Technol. (3)

S. C. Hill, R. G. Pinnick, S. Niles, Y. Pan, S. Holler, R. K. Chang, J. R. Bottiger, B. T. Chen, C.-S. Orr, G. Feather, “Real-time measurement of fluorescence spectra from single airborne biological particles,” Field Analyt. Chem. Technol. 3, 221–239 (1999).
[CrossRef]

F. L. Reyes, T. H. Jeys, N. R. Newbury, C. A. Primmerman, G. S. Rowe, A. Sanchez, “Bio-aerosol fluorescence sensor,” Field Analyt. Chem. Technol. 3, 240–248 (1999).
[CrossRef]

J. D. Eversole, J. J. Hardgrove, W. K. Cary, D. P. Choulas, M. Seaver, “Continuous rapid biological aerosol detection with the use of UV fluorescence: outdoor test results,” Field Analyt. Chem. Technol. 3, 249–259 (1999).
[CrossRef]

IEEE Trans. Antennas Propag. (4)

K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302–307 (1966).
[CrossRef]

A. S. Nagra, R. A. York, “FDTD analysis of wave propagation in nonlinear absorbing and gain media,” IEEE Trans. Antennas Propag. 46, 334–340 (1998).
[CrossRef]

R. M. Joseph, A. Taflove, “FDTD Maxwell’s equations models for nonlinear electrodynamics and optics,” IEEE Trans. Antennas Propag. 45, 364–374 (1997).
[CrossRef]

R. W. Ziolkowski, “The incorporation of microscopic material models into the FDTD approach for ultrafast optical pulse simulations,” IEEE Trans. Antennas Propag. 45, 375–391 (1997).
[CrossRef]

J. Aerosol Sci. (1)

P. P. Hairston, J. Ho, F. R. Quant, “Design of an instrument for real-time detection of bioaerosols using simultaneous measurement of particle aerodynamic size and intrinsic fluorescence,” J. Aerosol Sci. 28, 471–482 (1997).
[CrossRef] [PubMed]

J. Comput. Phys. (1)

J.-P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994).
[CrossRef]

J. Opt. Soc. Am. A (3)

Opt. Commun. (1)

D. Q. Chowdhury, S. C. Hill, M. M. Mazumder, “Absorptive bistability in a dielectric sphere,” Opt. Commun. 131, 343–346 (1996).
[CrossRef]

Opt. Lett. (4)

Phys. Rev. Lett. (1)

S. C. Hill, V. Boutou, J. Yu, S. Ramstein, J.-P. Wolf, Y.-L. Pan, S. Holler, R. K. Chang, “Enhanced backward-directed multi-photon-excited fluorescence from dielectric microcavities,” Phys. Rev. Lett. 85, 54–57 (2000).
[CrossRef] [PubMed]

Other (8)

W. G. Murrell, “Chemical composition of spores and spore structures,” in The Bacterial SporeA. Hurst, G. W. Gould, eds. (Academic, New York, 1969), Chap. 7, pp. 218–231, Table III, p. 221.

Our use of the term intensity (W/cm2) follows common usage in research in light scattering by particles. Unfortunately, it may be confusing to those used to the term irradiance (W/m2).

From m2 = ∊, where ∊ is the relative complex permittivity, and from γ = σ(Nupper - Nlower), where γ is the absorption per unit length for the intensity of a wave propagating in the medium. See, e.g., A. Yariv, Quantum Electronics, 3rd ed. (Wiley, New York, 1989), pp. 162–163, 203.

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983), pp. 82–101.

P. W. Barber, S. C. Hill, Light Scattering by Particles: Computational Methods (World Scientific, Singapore, 1990), pp. 205–210.

Ref. 35, pp. 212, 214–215.

A. Taflove, Computational Electrodynamics, The Finite-Difference Time-Domain Method (Artech House, Boston, Mass., 1995).

R. F. Harrington, Field Computation by Moment Methods (Macmillan, New York, 1968).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Scattering matrix elements for homogeneous spheres calculated with the FDTD method and Mie theory. The parameters are x = 12.566, m r = 1.53 (when not illuminated), m i = 0.06248, corresponding to 5% tryptophan when the incident wavelength is 0.266 nm. The parameters used for tryptophan are σ = 2 × 10-17 cm2, τ f = 3 × 10-9 s, and a molecular weight of 204. The sphere has a density 1 g/cm3, and the concentration is N t = 1.48 × 1021 molecules/cm3. Then A = σλN t /4π = 6.27 × 10-2, and B = στ f /2πℏc/λ = 8.06 × 10-8. For the FDTD calculations, the sphere is inscribed in a cube having 83 × 83 × 83 volume elements.

Fig. 2
Fig. 2

Scattering matrix elements for spheres calculated by the FDTD method with different values of the incident intensity (105, 106, 107, and 108 W/cm2). The sphere has x = 12.566 and m r = 1.53, and when unilluminated is homogeneous with m i = 0.06248 (corresponding to 50% tryptophan when the incident wavelength is 0.266 nm).

Fig. 3
Fig. 3

Scattering matrix element for the sphere shown in Fig. 2, except m i = 0.006248 when unilluminated (corresponding to 5% tryptophan when the incident wavelength is 0.266 nm).

Fig. 4
Fig. 4

Internal field distributions (right column) and imaginary part of the refractive index (left column) for spheres initially with m i = 0.06246 (as with 50% tryptophan) and illuminated with plane waves (moving from left to right) having intensities of 105 W/cm2 (top row), 106 W/cm2 (second row), 107 W/cm2 (third row), and 108 W/cm2 (bottom row). Other parameters are as in Fig. 2.

Fig. 5
Fig. 5

Internal field and refractive-index distributions as in Fig. 4, but with the initial m i = 0.006246.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

Nt=N0+Nf.
dNfdt=keIr, tN0-kfNf,
kf=1τf,
keIr, t=1τex=σω Ir, t,
NfN0=keIr, tkf.
N0=Nt1+keIr, t/kf.
mi=σλfNlower-Nupper4π,
Nlower=N0,
Nupper=0,
mir, t=σλfN04π=σλfNt/4π1+keIr, t/kf.
mir, t=A1+BIr, t,
A=σλfNt4π,
B=kekf=στfω.
mirj, k=A1+BIrj, k-1,

Metrics