Abstract

A technique is presented by which holograms can be recorded when an object or scene is scanned with an optically heterodyned Fresnel zone pattern. The experimental setup, based on optical scanning holography, is described and experimental results are presented. We apply the scanning holography technique to three-dimensional reflective objects for the first time to our knowledge and address the unique requirements for such a system. We discuss holographic recording and numerical image reconstruction using a system point-spread function (PSF) approach. We demonstrate numerical image reconstruction of experimentally recorded holograms by two techniques: deconvolution with a simulated PSF and an experimentally acquired PSF.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Hutchinson, C. W. Trussell, T. H. Allik, S. J. Hamlin, J. C. McCarthy, M. Jack, “Multifunction laser radar II,” in Laser Radar Technology and Applications V, G. W. Kamerman, U. N. Singh, C. Werner, V. V. Molebny, eds., Proc. SPIE4035, 248–253 (2000).
    [CrossRef]
  2. C. L. Smithpeter, R. O. Nellums, S. M. Lebien, G. Studor, “A miniature, high-resolution laser radar operating at video rates,” in Laser Radar Technology and Applications V, G. W. Kamerman, U. N. Singh, C. Werner, V. V. Molebny, eds., Proc. SPIE4035, 279–286 (2000).
    [CrossRef]
  3. A. V. Jelalian, Laser Radar Systems (Artech House, Boston, Mass., 1991).
  4. T.-C. Poon, B. W. Schilling, M. H. Wu, K. Shinoda, Y. Suzuki, “Real-time two-dimensional holographic imaging by using an electron-beam-addressed spatial light modulator,” Opt. Lett. 18, 63–65 (1993).
    [CrossRef] [PubMed]
  5. Y. Takaki, H. Kawai, H. Ohzu, “Hybrid holographic microscopy free of conjugate and zero-order images,” Appl. Opt. 38, 4990–4996 (1999).
    [CrossRef]
  6. B. D. Duncan, T.-C. Poon, “Gaussian beam analysis of optical scanning holography,” J. Opt. Soc. Am. A 9, 229–236 (1992).
    [CrossRef]
  7. T.-C. Poon, A. Korpel, “Optical transfer function of an acousto-optic heterodyne image processor,” Opt. Lett. 4, 317–319 (1979).
    [CrossRef] [PubMed]
  8. T.-C. Poon, “Scanning holography and two-dimensional image processing by acousto-optic two-pupil synthesis,” J. Opt. Soc. Am. A 2, 521–527 (1985).
    [CrossRef]
  9. T.-C. Poon, T. Kim, “Optical image recognition of three-dimensional objects,” Appl. Opt. 38, 370–381 (1999).
    [CrossRef]
  10. B. W. Schilling, T.-C. Poon, G. Indebetouw, B. Storrie, M. H. Wu, K. Shinoda, Y. Suzuki, “Three-dimensional holographic fluorescence microscopy,” Opt. Lett. 22, 1506–1508 (1997).
    [CrossRef]
  11. B. W. Schilling, “Three-dimensional fluorescence microscopy by optical scanning holography,” Ph.D. dissertation (Bradley Department of Electrical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Va., 1997).
  12. B. W. Schilling, T.-C. Poon, “Real-time preprocessing of holographic information,” Opt. Eng. 34, 3174–3179 (1995).
    [CrossRef]
  13. B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991).
    [CrossRef]
  14. C. J. Kuo, H. T. Chang, “Resolution studies for electronic holography,” Opt. Eng. 34, 1352–1357 (1995).
    [CrossRef]
  15. T.-C. Poon, K. B. Doh, B. W. Schilling, K. Shinoda, Y. Suzuki, M. H. Wu, “Holographic three-dimensional display using an electron-beam-addressed spatial light modulator,” Opt. Rev. 4, 567–571 (1997).
    [CrossRef]
  16. J. S. Walker, Fast Fourier Transforms (CRC Press, Boston, Mass., 1991).

1999 (2)

1997 (2)

T.-C. Poon, K. B. Doh, B. W. Schilling, K. Shinoda, Y. Suzuki, M. H. Wu, “Holographic three-dimensional display using an electron-beam-addressed spatial light modulator,” Opt. Rev. 4, 567–571 (1997).
[CrossRef]

B. W. Schilling, T.-C. Poon, G. Indebetouw, B. Storrie, M. H. Wu, K. Shinoda, Y. Suzuki, “Three-dimensional holographic fluorescence microscopy,” Opt. Lett. 22, 1506–1508 (1997).
[CrossRef]

1995 (2)

B. W. Schilling, T.-C. Poon, “Real-time preprocessing of holographic information,” Opt. Eng. 34, 3174–3179 (1995).
[CrossRef]

C. J. Kuo, H. T. Chang, “Resolution studies for electronic holography,” Opt. Eng. 34, 1352–1357 (1995).
[CrossRef]

1993 (1)

1992 (1)

1985 (1)

1979 (1)

Allik, T. H.

J. A. Hutchinson, C. W. Trussell, T. H. Allik, S. J. Hamlin, J. C. McCarthy, M. Jack, “Multifunction laser radar II,” in Laser Radar Technology and Applications V, G. W. Kamerman, U. N. Singh, C. Werner, V. V. Molebny, eds., Proc. SPIE4035, 248–253 (2000).
[CrossRef]

Chang, H. T.

C. J. Kuo, H. T. Chang, “Resolution studies for electronic holography,” Opt. Eng. 34, 1352–1357 (1995).
[CrossRef]

Doh, K. B.

T.-C. Poon, K. B. Doh, B. W. Schilling, K. Shinoda, Y. Suzuki, M. H. Wu, “Holographic three-dimensional display using an electron-beam-addressed spatial light modulator,” Opt. Rev. 4, 567–571 (1997).
[CrossRef]

Duncan, B. D.

Hamlin, S. J.

J. A. Hutchinson, C. W. Trussell, T. H. Allik, S. J. Hamlin, J. C. McCarthy, M. Jack, “Multifunction laser radar II,” in Laser Radar Technology and Applications V, G. W. Kamerman, U. N. Singh, C. Werner, V. V. Molebny, eds., Proc. SPIE4035, 248–253 (2000).
[CrossRef]

Hutchinson, J. A.

J. A. Hutchinson, C. W. Trussell, T. H. Allik, S. J. Hamlin, J. C. McCarthy, M. Jack, “Multifunction laser radar II,” in Laser Radar Technology and Applications V, G. W. Kamerman, U. N. Singh, C. Werner, V. V. Molebny, eds., Proc. SPIE4035, 248–253 (2000).
[CrossRef]

Indebetouw, G.

Jack, M.

J. A. Hutchinson, C. W. Trussell, T. H. Allik, S. J. Hamlin, J. C. McCarthy, M. Jack, “Multifunction laser radar II,” in Laser Radar Technology and Applications V, G. W. Kamerman, U. N. Singh, C. Werner, V. V. Molebny, eds., Proc. SPIE4035, 248–253 (2000).
[CrossRef]

Jelalian, A. V.

A. V. Jelalian, Laser Radar Systems (Artech House, Boston, Mass., 1991).

Kawai, H.

Kim, T.

Korpel, A.

Kuo, C. J.

C. J. Kuo, H. T. Chang, “Resolution studies for electronic holography,” Opt. Eng. 34, 1352–1357 (1995).
[CrossRef]

Lebien, S. M.

C. L. Smithpeter, R. O. Nellums, S. M. Lebien, G. Studor, “A miniature, high-resolution laser radar operating at video rates,” in Laser Radar Technology and Applications V, G. W. Kamerman, U. N. Singh, C. Werner, V. V. Molebny, eds., Proc. SPIE4035, 279–286 (2000).
[CrossRef]

McCarthy, J. C.

J. A. Hutchinson, C. W. Trussell, T. H. Allik, S. J. Hamlin, J. C. McCarthy, M. Jack, “Multifunction laser radar II,” in Laser Radar Technology and Applications V, G. W. Kamerman, U. N. Singh, C. Werner, V. V. Molebny, eds., Proc. SPIE4035, 248–253 (2000).
[CrossRef]

Nellums, R. O.

C. L. Smithpeter, R. O. Nellums, S. M. Lebien, G. Studor, “A miniature, high-resolution laser radar operating at video rates,” in Laser Radar Technology and Applications V, G. W. Kamerman, U. N. Singh, C. Werner, V. V. Molebny, eds., Proc. SPIE4035, 279–286 (2000).
[CrossRef]

Ohzu, H.

Poon, T.-C.

Saleh, B. E. A.

B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991).
[CrossRef]

Schilling, B. W.

T.-C. Poon, K. B. Doh, B. W. Schilling, K. Shinoda, Y. Suzuki, M. H. Wu, “Holographic three-dimensional display using an electron-beam-addressed spatial light modulator,” Opt. Rev. 4, 567–571 (1997).
[CrossRef]

B. W. Schilling, T.-C. Poon, G. Indebetouw, B. Storrie, M. H. Wu, K. Shinoda, Y. Suzuki, “Three-dimensional holographic fluorescence microscopy,” Opt. Lett. 22, 1506–1508 (1997).
[CrossRef]

B. W. Schilling, T.-C. Poon, “Real-time preprocessing of holographic information,” Opt. Eng. 34, 3174–3179 (1995).
[CrossRef]

T.-C. Poon, B. W. Schilling, M. H. Wu, K. Shinoda, Y. Suzuki, “Real-time two-dimensional holographic imaging by using an electron-beam-addressed spatial light modulator,” Opt. Lett. 18, 63–65 (1993).
[CrossRef] [PubMed]

B. W. Schilling, “Three-dimensional fluorescence microscopy by optical scanning holography,” Ph.D. dissertation (Bradley Department of Electrical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Va., 1997).

Shinoda, K.

Smithpeter, C. L.

C. L. Smithpeter, R. O. Nellums, S. M. Lebien, G. Studor, “A miniature, high-resolution laser radar operating at video rates,” in Laser Radar Technology and Applications V, G. W. Kamerman, U. N. Singh, C. Werner, V. V. Molebny, eds., Proc. SPIE4035, 279–286 (2000).
[CrossRef]

Storrie, B.

Studor, G.

C. L. Smithpeter, R. O. Nellums, S. M. Lebien, G. Studor, “A miniature, high-resolution laser radar operating at video rates,” in Laser Radar Technology and Applications V, G. W. Kamerman, U. N. Singh, C. Werner, V. V. Molebny, eds., Proc. SPIE4035, 279–286 (2000).
[CrossRef]

Suzuki, Y.

Takaki, Y.

Teich, M. C.

B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991).
[CrossRef]

Trussell, C. W.

J. A. Hutchinson, C. W. Trussell, T. H. Allik, S. J. Hamlin, J. C. McCarthy, M. Jack, “Multifunction laser radar II,” in Laser Radar Technology and Applications V, G. W. Kamerman, U. N. Singh, C. Werner, V. V. Molebny, eds., Proc. SPIE4035, 248–253 (2000).
[CrossRef]

Walker, J. S.

J. S. Walker, Fast Fourier Transforms (CRC Press, Boston, Mass., 1991).

Wu, M. H.

Appl. Opt. (2)

J. Opt. Soc. Am. A (2)

Opt. Eng. (2)

B. W. Schilling, T.-C. Poon, “Real-time preprocessing of holographic information,” Opt. Eng. 34, 3174–3179 (1995).
[CrossRef]

C. J. Kuo, H. T. Chang, “Resolution studies for electronic holography,” Opt. Eng. 34, 1352–1357 (1995).
[CrossRef]

Opt. Lett. (3)

Opt. Rev. (1)

T.-C. Poon, K. B. Doh, B. W. Schilling, K. Shinoda, Y. Suzuki, M. H. Wu, “Holographic three-dimensional display using an electron-beam-addressed spatial light modulator,” Opt. Rev. 4, 567–571 (1997).
[CrossRef]

Other (6)

J. S. Walker, Fast Fourier Transforms (CRC Press, Boston, Mass., 1991).

B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991).
[CrossRef]

J. A. Hutchinson, C. W. Trussell, T. H. Allik, S. J. Hamlin, J. C. McCarthy, M. Jack, “Multifunction laser radar II,” in Laser Radar Technology and Applications V, G. W. Kamerman, U. N. Singh, C. Werner, V. V. Molebny, eds., Proc. SPIE4035, 248–253 (2000).
[CrossRef]

C. L. Smithpeter, R. O. Nellums, S. M. Lebien, G. Studor, “A miniature, high-resolution laser radar operating at video rates,” in Laser Radar Technology and Applications V, G. W. Kamerman, U. N. Singh, C. Werner, V. V. Molebny, eds., Proc. SPIE4035, 279–286 (2000).
[CrossRef]

A. V. Jelalian, Laser Radar Systems (Artech House, Boston, Mass., 1991).

B. W. Schilling, “Three-dimensional fluorescence microscopy by optical scanning holography,” Ph.D. dissertation (Bradley Department of Electrical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Va., 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1
Fig. 1

Experimental setup for laser-scanning electronic holography. AOM, acousto-optic modulator; A/D, analog to digital.

Fig. 2
Fig. 2

Actual 3-D reflective object from point of view of hologram recording.

Fig. 3
Fig. 3

Side view of 3-D reflective object to show object depth.

Fig. 4
Fig. 4

Experimentally recorded hologram of three point objects (see photograph shown in Figs. 2 and 3) by use of laser-scanning electronic holography.

Fig. 5
Fig. 5

Experimentally recorded system PSF for z = z 1, denoted by h δ(x, y; z = z 1).

Fig. 6
Fig. 6

Experimentally recorded system PSF for z = z 2, denoted by h δ(x, y; z = z 2).

Fig. 7
Fig. 7

Experimentally recorded system PSF for z = z 3, denoted by h δ(x, y; z = z 3).

Fig. 8
Fig. 8

Numerical reconstruction of plane z = z 1 from the hologram shown in Fig. 4.

Fig. 9
Fig. 9

Numerical reconstruction of plane z = z 2 from the hologram shown in Fig. 4.

Fig. 10
Fig. 10

Numerical reconstruction of plane z = z 3 from the hologram shown in Fig. 4.

Fig. 11
Fig. 11

Simulated system PSF for z = z 2, denoted by h′ δ(x, y; z = z 2).

Fig. 12
Fig. 12

Numerical reconstruction of plane z = z 2 from the hologram shown in Fig. 4 by use of the modeled PSF shown in Fig. 11.

Fig. 13
Fig. 13

Photograph of second data set: a point object, a rectangular object, and a cylindrical object.

Fig. 14
Fig. 14

Experimentally recorded hologram of three objects (see photograph shown in Fig. 13).

Fig. 15
Fig. 15

Numerical reconstruction of plane z = z 1 from the hologram shown in Fig. 14.

Fig. 16
Fig. 16

Numerical reconstruction of plane z = z 2 from the hologram shown in Fig. 14.

Fig. 17
Fig. 17

Numerical reconstruction of plane z = z 3 from the hologram shown in Fig. 14.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

tx, y=Isx, y; z*|Γx, y, z|2,
Isx, y; z  cosπλzx2+y2,
Isx, y; z=exp-x2+y2αcosπλzx2+y2,
tx, y=hδx, y; z*|Γx, y, z|2,
hδx, y; z=Isx, y, z*δx = 0, y=0, z=z0=Isx, y, z=z0.
Ftx, y=Fhδx, y; zF|Γx, y, z|2,
F|Γx, y, z|2=Ftx, yFhδx, y; z.
hδx, y; z=exp-x2+y2αcosπλzx2+y2,

Metrics