Abstract

We report on experimental verification of optical trapping using multiple beams generated by a vertical-cavity surface-emitting laser (VCSEL) array. Control of the spatial and temporal emission of a VCSEL array provides flexibility for manipulation of microscopic objects with compact hardware. Simultaneous capture of multiple objects and translation of an object without mechanical movement are demonstrated by an experimental system equipped with 8 × 8 VCSEL array sources. Features and applicability of the method are also discussed.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
    [CrossRef] [PubMed]
  2. A. Ashkin, J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235, 1517–1520 (1987).
    [CrossRef] [PubMed]
  3. A. Ashkin, J. M. Dziedzic, T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature (London) 330, 769–771 (1987).
    [CrossRef]
  4. S. C. Kuo, M. P. Sheetz, “Force of single kinesin molecules measured with optical tweezers,” Science 260, 232–234 (1993).
    [CrossRef] [PubMed]
  5. Y. Arai, R. Yasuda, K. Akashi, Y. Harada, H. Miyata, K. Kinosita, H. Itoh, “Tying a molecular knot with optical tweezers,” Nature (London) 399, 446–448 (1999).
    [CrossRef]
  6. M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature (London) 394, 348–350 (1998).
    [CrossRef]
  7. Z. P. Luo, Y. L. Sun, K. N. An, “An optical spin micromotor,” Appl. Phys. Lett. 76, 1779–1781 (2000).
    [CrossRef]
  8. A. E. Chiou, W. Wang, G. J. Sonek, J. Hong, M. W. Berns, “Interferometric optical tweezers,” Opt. Commun. 133, 7–10 (1997).
    [CrossRef]
  9. M. M. Burns, J. M. Fournier, J. A. Golovchenko, “Optical matter: crystallization and binding in intense optical fields,” Science 249, 749–754 (1990).
    [CrossRef] [PubMed]
  10. H. He, M. E. J. Friese, N. R. Heckenberg, H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75, 826–829 (1995).
    [CrossRef] [PubMed]
  11. K. T. Gahagan, G. A. Swartzlander, “Optical vortex trapping of particles,” Opt. Lett. 21, 827–829 (1996).
    [CrossRef] [PubMed]
  12. Y. Hayasaki, M. Itoh, T. Yatagai, N. Nishida, “Nonmechanical optical manipulation of microparticle using spatial light modulator,” Opt. Rev. 6, 24–27 (1999).
    [CrossRef]
  13. F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, “Optical interconnections using microlens arrays,” Opt. Quantum Electron. 24, S465–S477 (1992).
    [CrossRef]
  14. E. M. Strzelecka, D. A. Louderback, B. J. Thibeault, G. B. Thompson, K. Bertilsson, L. A. Coldren, “Parallel free-space optical interconnect based on arrays of vertical-cavity lasers and detectors with monolithic microlenses,” Appl. Opt. 37, 2811–2821 (1998).
    [CrossRef]
  15. S. M. Block, “Making light work with optical tweezers,” Nature (London) 360, 493–495 (1992).
    [CrossRef]
  16. N. B. Simpson, D. McGloin, K. Dholakia, L. Allen, M. J. Padgett, “Optical tweezers with increased axial trapping efficiency,” J. Mod. Opt. 45, 1943–1949 (1998).
    [CrossRef]
  17. K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, H. Masuhara, “Laser-scanning micromanipulation and spatial patterning of fine particles,” Jpn. J. Appl. Phys. 30, L907–L909 (1991).
    [CrossRef]
  18. R. C. Gauthier, S. Wallace, “Optical levitation of spheres: analytical development and numerical computations of the force equations,” J. Opt. Soc. Am. B 12, 1680–1686 (1995).
    [CrossRef]

2000 (1)

Z. P. Luo, Y. L. Sun, K. N. An, “An optical spin micromotor,” Appl. Phys. Lett. 76, 1779–1781 (2000).
[CrossRef]

1999 (2)

Y. Arai, R. Yasuda, K. Akashi, Y. Harada, H. Miyata, K. Kinosita, H. Itoh, “Tying a molecular knot with optical tweezers,” Nature (London) 399, 446–448 (1999).
[CrossRef]

Y. Hayasaki, M. Itoh, T. Yatagai, N. Nishida, “Nonmechanical optical manipulation of microparticle using spatial light modulator,” Opt. Rev. 6, 24–27 (1999).
[CrossRef]

1998 (3)

N. B. Simpson, D. McGloin, K. Dholakia, L. Allen, M. J. Padgett, “Optical tweezers with increased axial trapping efficiency,” J. Mod. Opt. 45, 1943–1949 (1998).
[CrossRef]

E. M. Strzelecka, D. A. Louderback, B. J. Thibeault, G. B. Thompson, K. Bertilsson, L. A. Coldren, “Parallel free-space optical interconnect based on arrays of vertical-cavity lasers and detectors with monolithic microlenses,” Appl. Opt. 37, 2811–2821 (1998).
[CrossRef]

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature (London) 394, 348–350 (1998).
[CrossRef]

1997 (1)

A. E. Chiou, W. Wang, G. J. Sonek, J. Hong, M. W. Berns, “Interferometric optical tweezers,” Opt. Commun. 133, 7–10 (1997).
[CrossRef]

1996 (1)

1995 (2)

R. C. Gauthier, S. Wallace, “Optical levitation of spheres: analytical development and numerical computations of the force equations,” J. Opt. Soc. Am. B 12, 1680–1686 (1995).
[CrossRef]

H. He, M. E. J. Friese, N. R. Heckenberg, H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75, 826–829 (1995).
[CrossRef] [PubMed]

1993 (1)

S. C. Kuo, M. P. Sheetz, “Force of single kinesin molecules measured with optical tweezers,” Science 260, 232–234 (1993).
[CrossRef] [PubMed]

1992 (2)

F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, “Optical interconnections using microlens arrays,” Opt. Quantum Electron. 24, S465–S477 (1992).
[CrossRef]

S. M. Block, “Making light work with optical tweezers,” Nature (London) 360, 493–495 (1992).
[CrossRef]

1991 (1)

K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, H. Masuhara, “Laser-scanning micromanipulation and spatial patterning of fine particles,” Jpn. J. Appl. Phys. 30, L907–L909 (1991).
[CrossRef]

1990 (1)

M. M. Burns, J. M. Fournier, J. A. Golovchenko, “Optical matter: crystallization and binding in intense optical fields,” Science 249, 749–754 (1990).
[CrossRef] [PubMed]

1987 (2)

A. Ashkin, J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235, 1517–1520 (1987).
[CrossRef] [PubMed]

A. Ashkin, J. M. Dziedzic, T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature (London) 330, 769–771 (1987).
[CrossRef]

1986 (1)

Akashi, K.

Y. Arai, R. Yasuda, K. Akashi, Y. Harada, H. Miyata, K. Kinosita, H. Itoh, “Tying a molecular knot with optical tweezers,” Nature (London) 399, 446–448 (1999).
[CrossRef]

Allen, L.

N. B. Simpson, D. McGloin, K. Dholakia, L. Allen, M. J. Padgett, “Optical tweezers with increased axial trapping efficiency,” J. Mod. Opt. 45, 1943–1949 (1998).
[CrossRef]

An, K. N.

Z. P. Luo, Y. L. Sun, K. N. An, “An optical spin micromotor,” Appl. Phys. Lett. 76, 1779–1781 (2000).
[CrossRef]

Arai, Y.

Y. Arai, R. Yasuda, K. Akashi, Y. Harada, H. Miyata, K. Kinosita, H. Itoh, “Tying a molecular knot with optical tweezers,” Nature (London) 399, 446–448 (1999).
[CrossRef]

Ashkin, A.

A. Ashkin, J. M. Dziedzic, T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature (London) 330, 769–771 (1987).
[CrossRef]

A. Ashkin, J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235, 1517–1520 (1987).
[CrossRef] [PubMed]

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
[CrossRef] [PubMed]

Berns, M. W.

A. E. Chiou, W. Wang, G. J. Sonek, J. Hong, M. W. Berns, “Interferometric optical tweezers,” Opt. Commun. 133, 7–10 (1997).
[CrossRef]

Bertilsson, K.

Bjorkholm, J. E.

Block, S. M.

S. M. Block, “Making light work with optical tweezers,” Nature (London) 360, 493–495 (1992).
[CrossRef]

Burns, M. M.

M. M. Burns, J. M. Fournier, J. A. Golovchenko, “Optical matter: crystallization and binding in intense optical fields,” Science 249, 749–754 (1990).
[CrossRef] [PubMed]

Chiou, A. E.

A. E. Chiou, W. Wang, G. J. Sonek, J. Hong, M. W. Berns, “Interferometric optical tweezers,” Opt. Commun. 133, 7–10 (1997).
[CrossRef]

Chu, S.

Cloonan, T. J.

F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, “Optical interconnections using microlens arrays,” Opt. Quantum Electron. 24, S465–S477 (1992).
[CrossRef]

Coldren, L. A.

Dholakia, K.

N. B. Simpson, D. McGloin, K. Dholakia, L. Allen, M. J. Padgett, “Optical tweezers with increased axial trapping efficiency,” J. Mod. Opt. 45, 1943–1949 (1998).
[CrossRef]

Dziedzic, J. M.

A. Ashkin, J. M. Dziedzic, T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature (London) 330, 769–771 (1987).
[CrossRef]

A. Ashkin, J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235, 1517–1520 (1987).
[CrossRef] [PubMed]

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
[CrossRef] [PubMed]

Fournier, J. M.

M. M. Burns, J. M. Fournier, J. A. Golovchenko, “Optical matter: crystallization and binding in intense optical fields,” Science 249, 749–754 (1990).
[CrossRef] [PubMed]

Friese, M. E. J.

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature (London) 394, 348–350 (1998).
[CrossRef]

H. He, M. E. J. Friese, N. R. Heckenberg, H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75, 826–829 (1995).
[CrossRef] [PubMed]

Gahagan, K. T.

Gauthier, R. C.

Golovchenko, J. A.

M. M. Burns, J. M. Fournier, J. A. Golovchenko, “Optical matter: crystallization and binding in intense optical fields,” Science 249, 749–754 (1990).
[CrossRef] [PubMed]

Harada, Y.

Y. Arai, R. Yasuda, K. Akashi, Y. Harada, H. Miyata, K. Kinosita, H. Itoh, “Tying a molecular knot with optical tweezers,” Nature (London) 399, 446–448 (1999).
[CrossRef]

Hayasaki, Y.

Y. Hayasaki, M. Itoh, T. Yatagai, N. Nishida, “Nonmechanical optical manipulation of microparticle using spatial light modulator,” Opt. Rev. 6, 24–27 (1999).
[CrossRef]

He, H.

H. He, M. E. J. Friese, N. R. Heckenberg, H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75, 826–829 (1995).
[CrossRef] [PubMed]

Heckenberg, N. R.

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature (London) 394, 348–350 (1998).
[CrossRef]

H. He, M. E. J. Friese, N. R. Heckenberg, H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75, 826–829 (1995).
[CrossRef] [PubMed]

Hinton, H. S.

F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, “Optical interconnections using microlens arrays,” Opt. Quantum Electron. 24, S465–S477 (1992).
[CrossRef]

Hong, J.

A. E. Chiou, W. Wang, G. J. Sonek, J. Hong, M. W. Berns, “Interferometric optical tweezers,” Opt. Commun. 133, 7–10 (1997).
[CrossRef]

Itoh, H.

Y. Arai, R. Yasuda, K. Akashi, Y. Harada, H. Miyata, K. Kinosita, H. Itoh, “Tying a molecular knot with optical tweezers,” Nature (London) 399, 446–448 (1999).
[CrossRef]

Itoh, M.

Y. Hayasaki, M. Itoh, T. Yatagai, N. Nishida, “Nonmechanical optical manipulation of microparticle using spatial light modulator,” Opt. Rev. 6, 24–27 (1999).
[CrossRef]

Kinosita, K.

Y. Arai, R. Yasuda, K. Akashi, Y. Harada, H. Miyata, K. Kinosita, H. Itoh, “Tying a molecular knot with optical tweezers,” Nature (London) 399, 446–448 (1999).
[CrossRef]

Kitamura, N.

K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, H. Masuhara, “Laser-scanning micromanipulation and spatial patterning of fine particles,” Jpn. J. Appl. Phys. 30, L907–L909 (1991).
[CrossRef]

Koshioka, M.

K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, H. Masuhara, “Laser-scanning micromanipulation and spatial patterning of fine particles,” Jpn. J. Appl. Phys. 30, L907–L909 (1991).
[CrossRef]

Kuo, S. C.

S. C. Kuo, M. P. Sheetz, “Force of single kinesin molecules measured with optical tweezers,” Science 260, 232–234 (1993).
[CrossRef] [PubMed]

Louderback, D. A.

Luo, Z. P.

Z. P. Luo, Y. L. Sun, K. N. An, “An optical spin micromotor,” Appl. Phys. Lett. 76, 1779–1781 (2000).
[CrossRef]

Masuhara, H.

K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, H. Masuhara, “Laser-scanning micromanipulation and spatial patterning of fine particles,” Jpn. J. Appl. Phys. 30, L907–L909 (1991).
[CrossRef]

McCormick, F. B.

F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, “Optical interconnections using microlens arrays,” Opt. Quantum Electron. 24, S465–S477 (1992).
[CrossRef]

McGloin, D.

N. B. Simpson, D. McGloin, K. Dholakia, L. Allen, M. J. Padgett, “Optical tweezers with increased axial trapping efficiency,” J. Mod. Opt. 45, 1943–1949 (1998).
[CrossRef]

Misawa, H.

K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, H. Masuhara, “Laser-scanning micromanipulation and spatial patterning of fine particles,” Jpn. J. Appl. Phys. 30, L907–L909 (1991).
[CrossRef]

Miyata, H.

Y. Arai, R. Yasuda, K. Akashi, Y. Harada, H. Miyata, K. Kinosita, H. Itoh, “Tying a molecular knot with optical tweezers,” Nature (London) 399, 446–448 (1999).
[CrossRef]

Nieminen, T. A.

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature (London) 394, 348–350 (1998).
[CrossRef]

Nishida, N.

Y. Hayasaki, M. Itoh, T. Yatagai, N. Nishida, “Nonmechanical optical manipulation of microparticle using spatial light modulator,” Opt. Rev. 6, 24–27 (1999).
[CrossRef]

Padgett, M. J.

N. B. Simpson, D. McGloin, K. Dholakia, L. Allen, M. J. Padgett, “Optical tweezers with increased axial trapping efficiency,” J. Mod. Opt. 45, 1943–1949 (1998).
[CrossRef]

Rubinsztein-Dunlop, H.

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature (London) 394, 348–350 (1998).
[CrossRef]

H. He, M. E. J. Friese, N. R. Heckenberg, H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75, 826–829 (1995).
[CrossRef] [PubMed]

Sasaki, K.

K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, H. Masuhara, “Laser-scanning micromanipulation and spatial patterning of fine particles,” Jpn. J. Appl. Phys. 30, L907–L909 (1991).
[CrossRef]

Sasian, J. M.

F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, “Optical interconnections using microlens arrays,” Opt. Quantum Electron. 24, S465–S477 (1992).
[CrossRef]

Sheetz, M. P.

S. C. Kuo, M. P. Sheetz, “Force of single kinesin molecules measured with optical tweezers,” Science 260, 232–234 (1993).
[CrossRef] [PubMed]

Simpson, N. B.

N. B. Simpson, D. McGloin, K. Dholakia, L. Allen, M. J. Padgett, “Optical tweezers with increased axial trapping efficiency,” J. Mod. Opt. 45, 1943–1949 (1998).
[CrossRef]

Sonek, G. J.

A. E. Chiou, W. Wang, G. J. Sonek, J. Hong, M. W. Berns, “Interferometric optical tweezers,” Opt. Commun. 133, 7–10 (1997).
[CrossRef]

Strzelecka, E. M.

Sun, Y. L.

Z. P. Luo, Y. L. Sun, K. N. An, “An optical spin micromotor,” Appl. Phys. Lett. 76, 1779–1781 (2000).
[CrossRef]

Swartzlander, G. A.

Thibeault, B. J.

Thompson, G. B.

Tooley, F. A. P.

F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, “Optical interconnections using microlens arrays,” Opt. Quantum Electron. 24, S465–S477 (1992).
[CrossRef]

Wallace, S.

Wang, W.

A. E. Chiou, W. Wang, G. J. Sonek, J. Hong, M. W. Berns, “Interferometric optical tweezers,” Opt. Commun. 133, 7–10 (1997).
[CrossRef]

Yamane, T.

A. Ashkin, J. M. Dziedzic, T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature (London) 330, 769–771 (1987).
[CrossRef]

Yasuda, R.

Y. Arai, R. Yasuda, K. Akashi, Y. Harada, H. Miyata, K. Kinosita, H. Itoh, “Tying a molecular knot with optical tweezers,” Nature (London) 399, 446–448 (1999).
[CrossRef]

Yatagai, T.

Y. Hayasaki, M. Itoh, T. Yatagai, N. Nishida, “Nonmechanical optical manipulation of microparticle using spatial light modulator,” Opt. Rev. 6, 24–27 (1999).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

Z. P. Luo, Y. L. Sun, K. N. An, “An optical spin micromotor,” Appl. Phys. Lett. 76, 1779–1781 (2000).
[CrossRef]

J. Mod. Opt. (1)

N. B. Simpson, D. McGloin, K. Dholakia, L. Allen, M. J. Padgett, “Optical tweezers with increased axial trapping efficiency,” J. Mod. Opt. 45, 1943–1949 (1998).
[CrossRef]

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (1)

K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, H. Masuhara, “Laser-scanning micromanipulation and spatial patterning of fine particles,” Jpn. J. Appl. Phys. 30, L907–L909 (1991).
[CrossRef]

Nature (London) (4)

S. M. Block, “Making light work with optical tweezers,” Nature (London) 360, 493–495 (1992).
[CrossRef]

A. Ashkin, J. M. Dziedzic, T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature (London) 330, 769–771 (1987).
[CrossRef]

Y. Arai, R. Yasuda, K. Akashi, Y. Harada, H. Miyata, K. Kinosita, H. Itoh, “Tying a molecular knot with optical tweezers,” Nature (London) 399, 446–448 (1999).
[CrossRef]

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature (London) 394, 348–350 (1998).
[CrossRef]

Opt. Commun. (1)

A. E. Chiou, W. Wang, G. J. Sonek, J. Hong, M. W. Berns, “Interferometric optical tweezers,” Opt. Commun. 133, 7–10 (1997).
[CrossRef]

Opt. Lett. (2)

Opt. Quantum Electron. (1)

F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, “Optical interconnections using microlens arrays,” Opt. Quantum Electron. 24, S465–S477 (1992).
[CrossRef]

Opt. Rev. (1)

Y. Hayasaki, M. Itoh, T. Yatagai, N. Nishida, “Nonmechanical optical manipulation of microparticle using spatial light modulator,” Opt. Rev. 6, 24–27 (1999).
[CrossRef]

Phys. Rev. Lett. (1)

H. He, M. E. J. Friese, N. R. Heckenberg, H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75, 826–829 (1995).
[CrossRef] [PubMed]

Science (3)

A. Ashkin, J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235, 1517–1520 (1987).
[CrossRef] [PubMed]

M. M. Burns, J. M. Fournier, J. A. Golovchenko, “Optical matter: crystallization and binding in intense optical fields,” Science 249, 749–754 (1990).
[CrossRef] [PubMed]

S. C. Kuo, M. P. Sheetz, “Force of single kinesin molecules measured with optical tweezers,” Science 260, 232–234 (1993).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic diagram of VCSEL array trapping.

Fig. 2
Fig. 2

Experimental setup of VCSEL array trapping. D/A, digital-to-analog.

Fig. 3
Fig. 3

Dependence of the emission intensity of the VCSEL on the driving current.

Fig. 4
Fig. 4

Series of observed pictures at 10-s intervals during simultaneous capture and translation of two particles. The target particles are indicated by circles; the ● designates the origin of the stage.

Fig. 5
Fig. 5

VCSEL pixels that were used for nonmechanical translation (upper) and an emission sequence of the VCSELs (lower).

Fig. 6
Fig. 6

Series of observed pictures at 10-s intervals in nonmechanical translation. The target particles are indicated by circles; the ● designates the initial position of the target.

Fig. 7
Fig. 7

Position control of particles by two VCSELs: (a) left, (b) both, (c) right. The crosshatched circles designate the target particle.

Fig. 8
Fig. 8

Time response of the particle position for modulation of two VCSELs.

Fig. 9
Fig. 9

Relationship between the lateral displacement of the particle and the lateral force. Coincidental illumination of the particles by solid curve, a single VCSEL; dashed curve, 2 × 2 VCSELs; dot–dash curve, 4 × 4 VCSELs.

Metrics