Abstract

For the first time, to the best of our knowledge, two-dimensional instantaneous measurements of the flow velocity and the gas temperature have been performed in a turbulent flame with simultaneous use of particle image velocimetry and planar filtered Rayleigh scattering. These single-shot measurements provide simultaneous information on the local flame structure (curvature and temperature gradients) and on the local flow conditions (vortices, flow divergences, and strain rates). The applicability of the technique is demonstrated in a turbulent lean CH4–air V flame.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Durst, A. Melling, J. H. Whitelaw, Principles and Practice of Laser-Doppler Anemometry, 2nd ed. (Academic, London, 1981).
  2. M. Raffel, C. Willert, J. Kompenhans, Particle Image Velocimetry, 1st ed. (Springer-Verlag, Berlin, 1998).
    [CrossRef]
  3. J. H. Frank, A. M. Kalt, R. W. Bilger, “Measurements of conditional velocities in turbulent premixed flames by simultaneous OH PLIF and PIV,” Combust. Flame 116, 220–232 (1999).
    [CrossRef]
  4. J. E. Rehm, N. T. Clemens, “The relationship between vorticity/strain and reaction zone structure in turbulent non-premixed jet flames,” in Proceedings of 26th Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1996), pp. 1113–1120.
  5. C. D. Carter, J. M. Donbar, J. F. Driscoll, “Simultaneous CH planar laser-induced fluorescence and particle imaging velocimetry in turbulent nonpremixed flames,” Appl. Phys. B. 66, 129–132 (1998).
    [CrossRef]
  6. E. J. Stevens, K. N. C. Bray, B. Lecordier, “Velocity and scalar statistics for premixed turbulent stagnation flames using PIV,” in Proceedings of 27th Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1998), pp. 949–955.
    [CrossRef]
  7. D. Most, A. Soika, F. Dinkelacker, A. Leipertz, “Simultaneous planar OH and temperature measurements for the detection of lifted reaction zones in premixed bluff-body stabilized flames,” in Developments, Laser Techniques, and Fluid Mechanics, R. J. Adrian, D. F. Durao, F. Durst, M. V. Heitor, M. Maeda, J. Whitelaw, eds. (Springer-Verlag, Berlin, 2000), pp. 505–519.
  8. A. Soika, F. Dinkelacker, A. Leipertz, “Measurement of the resolved flame structure of turbulent premixed flames with constant Reynolds number and varied stoichiometry,” in Proceedings of 27th Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1998), pp. 785–792.
    [CrossRef]
  9. D. Duarte, P. Ferrao, M. V. Heitor, “Flame structure characterization based on Rayleigh thermometry and two-point laser Doppler measurements,” in Laser Techniques Applied to Fluid Mechanics, R. J. Adrian, D. F. Durao, F. Durst, M. V. Heitor, M. Maeda, J. Whitelaw, eds. (Springer-Verlag, Berlin, 1997), pp. 185–249.
  10. D. Hofmann, K.-U. Münch, A. Leipertz, “Two-dimensional temperature determination in sooting flames by filtered Rayleigh scattering,” Opt. Lett. 21, 525–527 (1996).
    [CrossRef]
  11. D. Hofmann, A. Leipertz, “Temperature field measurements in a sooting flame by filtered Rayleigh scattering (FRS),” in Proceedings of 26th Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1996), pp. 945–950.
    [CrossRef]
  12. J. N. Forkey, W. R. Lempert, R. B. Miles, “Accuracy limits for planar measurements of flow velocity, temperature and pressure using filtered Rayleigh scattering,” Exp. Fluids 24, 151–162 (1998).
    [CrossRef]
  13. G. S. Elliott, M. Samimy, “Rayleigh scattering technique for simultaneous measurements of velocity and thermodynamic properties,” AIAA J. 34, 2346–2352 (1996).
    [CrossRef]
  14. A. P. Yalin, R. B. Miles, “Temperature measurements by ultraviolet filtered Rayleigh scattering using a mercury filter,” J. Thermophys. Heat Transfer 14, 210–215 (2000).
    [CrossRef]
  15. F. O’Young, R. W. Bilger, “Scalar gradient and related quantities in turbulent premixed flames,” Combust. Flame 109, 682–700 (1997).
    [CrossRef]
  16. W. L. Roberts, J. F. Driscoll, M. C. Drake, J. W. Ratcliffe, “OH fluorescence images of the quenching of a premixed flame during an interaction with a vortex,” in Proceedings of 24th Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa, 1992), pp. 169–176.
    [CrossRef]
  17. T. Poinsot, D. Veynante, S. Candel, “Diagrams of premixed turbulent combustion based on direct simulation,” in Proceedings of 23rd Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1990), pp. 613–619.
  18. D. Most, A. Leipertz, “Filtered Rayleigh scattering thermometry—calibration of cross section factors,” in Joint Meeting of the British, German and French Section of the Combustion Institute (Combustion Institute, Pittsburgh, Pa., 1999), pp. 475–477.
  19. G. S. Elliot, N. Glumac, D. C. Carter, A. S. Nejad, “Two-dimensional temperature field measurements using a molecular filter based technique,” Combust. Sci. Technol. 125, 351–369 (1997).
    [CrossRef]
  20. A. P. Yalin, R. B. Miles, “Ultraviolet filtered Rayleigh scattering temperature measurements with a mercury filter,” Opt. Lett. 24, 590–592 (1999).
    [CrossRef]
  21. J. Mach, P. L. Varghese, “Velocity measurements by modulated filtered Rayleigh scattering using diode lasers,” AIAA J. 37, 695–699 (1999).
    [CrossRef]
  22. R. B. Miles, J. N. Forkey, W. R. Lempert, “Filtered Rayleigh scattering measurements in supersonic/hypersonic facilities” paper AIAA-92-3894, presented at 17th Aerospace Ground Testing Conference, Nashville, Tennessee, 6–8 July 1992 (American Institute of Aeronautics and Astronautics, Reston, Va., 1992).
  23. J. Haumann, A. Leipertz, “Flame-temperature measurements using the Rayleigh scattering photon-correlation technique,” Opt. Lett. 9, 487–489 (1984).
    [CrossRef] [PubMed]
  24. B. Chu, Laser Light Scattering, 2nd ed. (Academic, Boston, 1991).
  25. S. Yip, “Rayleigh scattering in dilute gases,” J. Acoust. Soc. Am. 49, 941–949 (1971).
    [CrossRef]
  26. I. Namer, R. W. Schefer, “Error estimates for Rayleigh scattering density and temperature measurements in premixed flames,” Exp. Fluids 3, 1–9 (1985).
    [CrossRef]
  27. R. J. Kee, J. F. Grcar, M. D. Smooke, J. A. Miller, CHEMKIN: A Fortran program for modeling steady laminar one-dimensional premixed flames,” (Sandia National Laboratories, Livermore Calif., 1991).
  28. Institute of Physics, Special Issue on Particle Image Velocimetry, Meas. Sci. Technol. 8, (1997).
  29. P. Piironen, E. W. Eloranta, “Demonstration of a high-spectral-resolution lidar based on an iodine absorption filter,” Opt. Lett. 19, 234–236 (1994).
    [CrossRef] [PubMed]
  30. H. Shimizu, S. A. Lee, C. Y. She, “High spectral resolution lidar system with atomic blocking filter for measuring atmospheric parameters,” Appl. Opt. 22, 1373–1381 (1983).
    [CrossRef]
  31. E. Voss, “Untersuchung zur Temperaturfernmessung durch Analyse der Rayleigh-Streuung mit Atomdampffiltern,” Ph.D. dissertation (Universität Hamburg, Hamburg, Germany, 1992).
  32. J. N. Forkey, W. R. Lempert, R. B. Miles, “Corrected and calibrated I2 absorption model at frequency-doubled Nd:YAG laser wavelengths,” Appl. Opt. 36, 6729–6738 (1997).
    [CrossRef]
  33. J. A. Harrison, M. Zahedi, J. W. Nibler, “Use of seeded Nd:YAG lasers for high-resolution spectroscopy,” Opt. Lett. 18, 149–151 (1993).
    [CrossRef] [PubMed]
  34. D. Hofmann, “Zeit- und ortsaufgelöste Bestimmung der Temperatur- und Konzentrationsverteilung in technischen Verbrennungssystemen über die gefilterte Rayleigh Streuung (FRS),” B. Energie Verfahrenstechnik, 97.2 (1997).
  35. Y. A. Cengel, M. A. Boles, Thermodynamics: an Engineering Approach, 3rd ed. (WCB/McGraw-Hill, Boston, 1998).
  36. I. F. Golubev, Viscosity of gases and gas mixtures, translated from Russian by R. Kondor, D. Slutzkin, eds. (Israel Program for Scientific Translation Ltd., Jerusalem, Israel, 1970), p. 237.
  37. Verein Deutscher Ingenieure, Wärmeatlas, 5th ed. (VDI, Düsseldorf, Germany, 1988).
  38. K. Müller-Dethlefs, F. J. Weinberg, “Burning velocity measurement based on laser Rayleigh scattering,” in Proceedings of 17th Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa, 1978), pp. 985–992.

2000 (1)

A. P. Yalin, R. B. Miles, “Temperature measurements by ultraviolet filtered Rayleigh scattering using a mercury filter,” J. Thermophys. Heat Transfer 14, 210–215 (2000).
[CrossRef]

1999 (3)

J. H. Frank, A. M. Kalt, R. W. Bilger, “Measurements of conditional velocities in turbulent premixed flames by simultaneous OH PLIF and PIV,” Combust. Flame 116, 220–232 (1999).
[CrossRef]

A. P. Yalin, R. B. Miles, “Ultraviolet filtered Rayleigh scattering temperature measurements with a mercury filter,” Opt. Lett. 24, 590–592 (1999).
[CrossRef]

J. Mach, P. L. Varghese, “Velocity measurements by modulated filtered Rayleigh scattering using diode lasers,” AIAA J. 37, 695–699 (1999).
[CrossRef]

1998 (2)

C. D. Carter, J. M. Donbar, J. F. Driscoll, “Simultaneous CH planar laser-induced fluorescence and particle imaging velocimetry in turbulent nonpremixed flames,” Appl. Phys. B. 66, 129–132 (1998).
[CrossRef]

J. N. Forkey, W. R. Lempert, R. B. Miles, “Accuracy limits for planar measurements of flow velocity, temperature and pressure using filtered Rayleigh scattering,” Exp. Fluids 24, 151–162 (1998).
[CrossRef]

1997 (5)

F. O’Young, R. W. Bilger, “Scalar gradient and related quantities in turbulent premixed flames,” Combust. Flame 109, 682–700 (1997).
[CrossRef]

G. S. Elliot, N. Glumac, D. C. Carter, A. S. Nejad, “Two-dimensional temperature field measurements using a molecular filter based technique,” Combust. Sci. Technol. 125, 351–369 (1997).
[CrossRef]

Institute of Physics, Special Issue on Particle Image Velocimetry, Meas. Sci. Technol. 8, (1997).

J. N. Forkey, W. R. Lempert, R. B. Miles, “Corrected and calibrated I2 absorption model at frequency-doubled Nd:YAG laser wavelengths,” Appl. Opt. 36, 6729–6738 (1997).
[CrossRef]

D. Hofmann, “Zeit- und ortsaufgelöste Bestimmung der Temperatur- und Konzentrationsverteilung in technischen Verbrennungssystemen über die gefilterte Rayleigh Streuung (FRS),” B. Energie Verfahrenstechnik, 97.2 (1997).

1996 (2)

G. S. Elliott, M. Samimy, “Rayleigh scattering technique for simultaneous measurements of velocity and thermodynamic properties,” AIAA J. 34, 2346–2352 (1996).
[CrossRef]

D. Hofmann, K.-U. Münch, A. Leipertz, “Two-dimensional temperature determination in sooting flames by filtered Rayleigh scattering,” Opt. Lett. 21, 525–527 (1996).
[CrossRef]

1994 (1)

1993 (1)

1985 (1)

I. Namer, R. W. Schefer, “Error estimates for Rayleigh scattering density and temperature measurements in premixed flames,” Exp. Fluids 3, 1–9 (1985).
[CrossRef]

1984 (1)

1983 (1)

1971 (1)

S. Yip, “Rayleigh scattering in dilute gases,” J. Acoust. Soc. Am. 49, 941–949 (1971).
[CrossRef]

Bilger, R. W.

J. H. Frank, A. M. Kalt, R. W. Bilger, “Measurements of conditional velocities in turbulent premixed flames by simultaneous OH PLIF and PIV,” Combust. Flame 116, 220–232 (1999).
[CrossRef]

F. O’Young, R. W. Bilger, “Scalar gradient and related quantities in turbulent premixed flames,” Combust. Flame 109, 682–700 (1997).
[CrossRef]

Boles, M. A.

Y. A. Cengel, M. A. Boles, Thermodynamics: an Engineering Approach, 3rd ed. (WCB/McGraw-Hill, Boston, 1998).

Bray, K. N. C.

E. J. Stevens, K. N. C. Bray, B. Lecordier, “Velocity and scalar statistics for premixed turbulent stagnation flames using PIV,” in Proceedings of 27th Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1998), pp. 949–955.
[CrossRef]

Candel, S.

T. Poinsot, D. Veynante, S. Candel, “Diagrams of premixed turbulent combustion based on direct simulation,” in Proceedings of 23rd Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1990), pp. 613–619.

Carter, C. D.

C. D. Carter, J. M. Donbar, J. F. Driscoll, “Simultaneous CH planar laser-induced fluorescence and particle imaging velocimetry in turbulent nonpremixed flames,” Appl. Phys. B. 66, 129–132 (1998).
[CrossRef]

Carter, D. C.

G. S. Elliot, N. Glumac, D. C. Carter, A. S. Nejad, “Two-dimensional temperature field measurements using a molecular filter based technique,” Combust. Sci. Technol. 125, 351–369 (1997).
[CrossRef]

Cengel, Y. A.

Y. A. Cengel, M. A. Boles, Thermodynamics: an Engineering Approach, 3rd ed. (WCB/McGraw-Hill, Boston, 1998).

Chu, B.

B. Chu, Laser Light Scattering, 2nd ed. (Academic, Boston, 1991).

Clemens, N. T.

J. E. Rehm, N. T. Clemens, “The relationship between vorticity/strain and reaction zone structure in turbulent non-premixed jet flames,” in Proceedings of 26th Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1996), pp. 1113–1120.

Dinkelacker, F.

D. Most, A. Soika, F. Dinkelacker, A. Leipertz, “Simultaneous planar OH and temperature measurements for the detection of lifted reaction zones in premixed bluff-body stabilized flames,” in Developments, Laser Techniques, and Fluid Mechanics, R. J. Adrian, D. F. Durao, F. Durst, M. V. Heitor, M. Maeda, J. Whitelaw, eds. (Springer-Verlag, Berlin, 2000), pp. 505–519.

A. Soika, F. Dinkelacker, A. Leipertz, “Measurement of the resolved flame structure of turbulent premixed flames with constant Reynolds number and varied stoichiometry,” in Proceedings of 27th Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1998), pp. 785–792.
[CrossRef]

Donbar, J. M.

C. D. Carter, J. M. Donbar, J. F. Driscoll, “Simultaneous CH planar laser-induced fluorescence and particle imaging velocimetry in turbulent nonpremixed flames,” Appl. Phys. B. 66, 129–132 (1998).
[CrossRef]

Drake, M. C.

W. L. Roberts, J. F. Driscoll, M. C. Drake, J. W. Ratcliffe, “OH fluorescence images of the quenching of a premixed flame during an interaction with a vortex,” in Proceedings of 24th Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa, 1992), pp. 169–176.
[CrossRef]

Driscoll, J. F.

C. D. Carter, J. M. Donbar, J. F. Driscoll, “Simultaneous CH planar laser-induced fluorescence and particle imaging velocimetry in turbulent nonpremixed flames,” Appl. Phys. B. 66, 129–132 (1998).
[CrossRef]

W. L. Roberts, J. F. Driscoll, M. C. Drake, J. W. Ratcliffe, “OH fluorescence images of the quenching of a premixed flame during an interaction with a vortex,” in Proceedings of 24th Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa, 1992), pp. 169–176.
[CrossRef]

Duarte, D.

D. Duarte, P. Ferrao, M. V. Heitor, “Flame structure characterization based on Rayleigh thermometry and two-point laser Doppler measurements,” in Laser Techniques Applied to Fluid Mechanics, R. J. Adrian, D. F. Durao, F. Durst, M. V. Heitor, M. Maeda, J. Whitelaw, eds. (Springer-Verlag, Berlin, 1997), pp. 185–249.

Durst, F.

F. Durst, A. Melling, J. H. Whitelaw, Principles and Practice of Laser-Doppler Anemometry, 2nd ed. (Academic, London, 1981).

Elliot, G. S.

G. S. Elliot, N. Glumac, D. C. Carter, A. S. Nejad, “Two-dimensional temperature field measurements using a molecular filter based technique,” Combust. Sci. Technol. 125, 351–369 (1997).
[CrossRef]

Elliott, G. S.

G. S. Elliott, M. Samimy, “Rayleigh scattering technique for simultaneous measurements of velocity and thermodynamic properties,” AIAA J. 34, 2346–2352 (1996).
[CrossRef]

Eloranta, E. W.

Ferrao, P.

D. Duarte, P. Ferrao, M. V. Heitor, “Flame structure characterization based on Rayleigh thermometry and two-point laser Doppler measurements,” in Laser Techniques Applied to Fluid Mechanics, R. J. Adrian, D. F. Durao, F. Durst, M. V. Heitor, M. Maeda, J. Whitelaw, eds. (Springer-Verlag, Berlin, 1997), pp. 185–249.

Forkey, J. N.

J. N. Forkey, W. R. Lempert, R. B. Miles, “Accuracy limits for planar measurements of flow velocity, temperature and pressure using filtered Rayleigh scattering,” Exp. Fluids 24, 151–162 (1998).
[CrossRef]

J. N. Forkey, W. R. Lempert, R. B. Miles, “Corrected and calibrated I2 absorption model at frequency-doubled Nd:YAG laser wavelengths,” Appl. Opt. 36, 6729–6738 (1997).
[CrossRef]

R. B. Miles, J. N. Forkey, W. R. Lempert, “Filtered Rayleigh scattering measurements in supersonic/hypersonic facilities” paper AIAA-92-3894, presented at 17th Aerospace Ground Testing Conference, Nashville, Tennessee, 6–8 July 1992 (American Institute of Aeronautics and Astronautics, Reston, Va., 1992).

Frank, J. H.

J. H. Frank, A. M. Kalt, R. W. Bilger, “Measurements of conditional velocities in turbulent premixed flames by simultaneous OH PLIF and PIV,” Combust. Flame 116, 220–232 (1999).
[CrossRef]

Glumac, N.

G. S. Elliot, N. Glumac, D. C. Carter, A. S. Nejad, “Two-dimensional temperature field measurements using a molecular filter based technique,” Combust. Sci. Technol. 125, 351–369 (1997).
[CrossRef]

Golubev, I. F.

I. F. Golubev, Viscosity of gases and gas mixtures, translated from Russian by R. Kondor, D. Slutzkin, eds. (Israel Program for Scientific Translation Ltd., Jerusalem, Israel, 1970), p. 237.

Grcar, J. F.

R. J. Kee, J. F. Grcar, M. D. Smooke, J. A. Miller, CHEMKIN: A Fortran program for modeling steady laminar one-dimensional premixed flames,” (Sandia National Laboratories, Livermore Calif., 1991).

Harrison, J. A.

Haumann, J.

Heitor, M. V.

D. Duarte, P. Ferrao, M. V. Heitor, “Flame structure characterization based on Rayleigh thermometry and two-point laser Doppler measurements,” in Laser Techniques Applied to Fluid Mechanics, R. J. Adrian, D. F. Durao, F. Durst, M. V. Heitor, M. Maeda, J. Whitelaw, eds. (Springer-Verlag, Berlin, 1997), pp. 185–249.

Hofmann, D.

D. Hofmann, “Zeit- und ortsaufgelöste Bestimmung der Temperatur- und Konzentrationsverteilung in technischen Verbrennungssystemen über die gefilterte Rayleigh Streuung (FRS),” B. Energie Verfahrenstechnik, 97.2 (1997).

D. Hofmann, K.-U. Münch, A. Leipertz, “Two-dimensional temperature determination in sooting flames by filtered Rayleigh scattering,” Opt. Lett. 21, 525–527 (1996).
[CrossRef]

D. Hofmann, A. Leipertz, “Temperature field measurements in a sooting flame by filtered Rayleigh scattering (FRS),” in Proceedings of 26th Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1996), pp. 945–950.
[CrossRef]

Kalt, A. M.

J. H. Frank, A. M. Kalt, R. W. Bilger, “Measurements of conditional velocities in turbulent premixed flames by simultaneous OH PLIF and PIV,” Combust. Flame 116, 220–232 (1999).
[CrossRef]

Kee, R. J.

R. J. Kee, J. F. Grcar, M. D. Smooke, J. A. Miller, CHEMKIN: A Fortran program for modeling steady laminar one-dimensional premixed flames,” (Sandia National Laboratories, Livermore Calif., 1991).

Kompenhans, J.

M. Raffel, C. Willert, J. Kompenhans, Particle Image Velocimetry, 1st ed. (Springer-Verlag, Berlin, 1998).
[CrossRef]

Lecordier, B.

E. J. Stevens, K. N. C. Bray, B. Lecordier, “Velocity and scalar statistics for premixed turbulent stagnation flames using PIV,” in Proceedings of 27th Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1998), pp. 949–955.
[CrossRef]

Lee, S. A.

Leipertz, A.

D. Hofmann, K.-U. Münch, A. Leipertz, “Two-dimensional temperature determination in sooting flames by filtered Rayleigh scattering,” Opt. Lett. 21, 525–527 (1996).
[CrossRef]

J. Haumann, A. Leipertz, “Flame-temperature measurements using the Rayleigh scattering photon-correlation technique,” Opt. Lett. 9, 487–489 (1984).
[CrossRef] [PubMed]

D. Most, A. Leipertz, “Filtered Rayleigh scattering thermometry—calibration of cross section factors,” in Joint Meeting of the British, German and French Section of the Combustion Institute (Combustion Institute, Pittsburgh, Pa., 1999), pp. 475–477.

D. Most, A. Soika, F. Dinkelacker, A. Leipertz, “Simultaneous planar OH and temperature measurements for the detection of lifted reaction zones in premixed bluff-body stabilized flames,” in Developments, Laser Techniques, and Fluid Mechanics, R. J. Adrian, D. F. Durao, F. Durst, M. V. Heitor, M. Maeda, J. Whitelaw, eds. (Springer-Verlag, Berlin, 2000), pp. 505–519.

D. Hofmann, A. Leipertz, “Temperature field measurements in a sooting flame by filtered Rayleigh scattering (FRS),” in Proceedings of 26th Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1996), pp. 945–950.
[CrossRef]

A. Soika, F. Dinkelacker, A. Leipertz, “Measurement of the resolved flame structure of turbulent premixed flames with constant Reynolds number and varied stoichiometry,” in Proceedings of 27th Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1998), pp. 785–792.
[CrossRef]

Lempert, W. R.

J. N. Forkey, W. R. Lempert, R. B. Miles, “Accuracy limits for planar measurements of flow velocity, temperature and pressure using filtered Rayleigh scattering,” Exp. Fluids 24, 151–162 (1998).
[CrossRef]

J. N. Forkey, W. R. Lempert, R. B. Miles, “Corrected and calibrated I2 absorption model at frequency-doubled Nd:YAG laser wavelengths,” Appl. Opt. 36, 6729–6738 (1997).
[CrossRef]

R. B. Miles, J. N. Forkey, W. R. Lempert, “Filtered Rayleigh scattering measurements in supersonic/hypersonic facilities” paper AIAA-92-3894, presented at 17th Aerospace Ground Testing Conference, Nashville, Tennessee, 6–8 July 1992 (American Institute of Aeronautics and Astronautics, Reston, Va., 1992).

Mach, J.

J. Mach, P. L. Varghese, “Velocity measurements by modulated filtered Rayleigh scattering using diode lasers,” AIAA J. 37, 695–699 (1999).
[CrossRef]

Melling, A.

F. Durst, A. Melling, J. H. Whitelaw, Principles and Practice of Laser-Doppler Anemometry, 2nd ed. (Academic, London, 1981).

Miles, R. B.

A. P. Yalin, R. B. Miles, “Temperature measurements by ultraviolet filtered Rayleigh scattering using a mercury filter,” J. Thermophys. Heat Transfer 14, 210–215 (2000).
[CrossRef]

A. P. Yalin, R. B. Miles, “Ultraviolet filtered Rayleigh scattering temperature measurements with a mercury filter,” Opt. Lett. 24, 590–592 (1999).
[CrossRef]

J. N. Forkey, W. R. Lempert, R. B. Miles, “Accuracy limits for planar measurements of flow velocity, temperature and pressure using filtered Rayleigh scattering,” Exp. Fluids 24, 151–162 (1998).
[CrossRef]

J. N. Forkey, W. R. Lempert, R. B. Miles, “Corrected and calibrated I2 absorption model at frequency-doubled Nd:YAG laser wavelengths,” Appl. Opt. 36, 6729–6738 (1997).
[CrossRef]

R. B. Miles, J. N. Forkey, W. R. Lempert, “Filtered Rayleigh scattering measurements in supersonic/hypersonic facilities” paper AIAA-92-3894, presented at 17th Aerospace Ground Testing Conference, Nashville, Tennessee, 6–8 July 1992 (American Institute of Aeronautics and Astronautics, Reston, Va., 1992).

Miller, J. A.

R. J. Kee, J. F. Grcar, M. D. Smooke, J. A. Miller, CHEMKIN: A Fortran program for modeling steady laminar one-dimensional premixed flames,” (Sandia National Laboratories, Livermore Calif., 1991).

Most, D.

D. Most, A. Leipertz, “Filtered Rayleigh scattering thermometry—calibration of cross section factors,” in Joint Meeting of the British, German and French Section of the Combustion Institute (Combustion Institute, Pittsburgh, Pa., 1999), pp. 475–477.

D. Most, A. Soika, F. Dinkelacker, A. Leipertz, “Simultaneous planar OH and temperature measurements for the detection of lifted reaction zones in premixed bluff-body stabilized flames,” in Developments, Laser Techniques, and Fluid Mechanics, R. J. Adrian, D. F. Durao, F. Durst, M. V. Heitor, M. Maeda, J. Whitelaw, eds. (Springer-Verlag, Berlin, 2000), pp. 505–519.

Müller-Dethlefs, K.

K. Müller-Dethlefs, F. J. Weinberg, “Burning velocity measurement based on laser Rayleigh scattering,” in Proceedings of 17th Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa, 1978), pp. 985–992.

Münch, K.-U.

Namer, I.

I. Namer, R. W. Schefer, “Error estimates for Rayleigh scattering density and temperature measurements in premixed flames,” Exp. Fluids 3, 1–9 (1985).
[CrossRef]

Nejad, A. S.

G. S. Elliot, N. Glumac, D. C. Carter, A. S. Nejad, “Two-dimensional temperature field measurements using a molecular filter based technique,” Combust. Sci. Technol. 125, 351–369 (1997).
[CrossRef]

Nibler, J. W.

O’Young, F.

F. O’Young, R. W. Bilger, “Scalar gradient and related quantities in turbulent premixed flames,” Combust. Flame 109, 682–700 (1997).
[CrossRef]

Piironen, P.

Poinsot, T.

T. Poinsot, D. Veynante, S. Candel, “Diagrams of premixed turbulent combustion based on direct simulation,” in Proceedings of 23rd Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1990), pp. 613–619.

Raffel, M.

M. Raffel, C. Willert, J. Kompenhans, Particle Image Velocimetry, 1st ed. (Springer-Verlag, Berlin, 1998).
[CrossRef]

Ratcliffe, J. W.

W. L. Roberts, J. F. Driscoll, M. C. Drake, J. W. Ratcliffe, “OH fluorescence images of the quenching of a premixed flame during an interaction with a vortex,” in Proceedings of 24th Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa, 1992), pp. 169–176.
[CrossRef]

Rehm, J. E.

J. E. Rehm, N. T. Clemens, “The relationship between vorticity/strain and reaction zone structure in turbulent non-premixed jet flames,” in Proceedings of 26th Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1996), pp. 1113–1120.

Roberts, W. L.

W. L. Roberts, J. F. Driscoll, M. C. Drake, J. W. Ratcliffe, “OH fluorescence images of the quenching of a premixed flame during an interaction with a vortex,” in Proceedings of 24th Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa, 1992), pp. 169–176.
[CrossRef]

Samimy, M.

G. S. Elliott, M. Samimy, “Rayleigh scattering technique for simultaneous measurements of velocity and thermodynamic properties,” AIAA J. 34, 2346–2352 (1996).
[CrossRef]

Schefer, R. W.

I. Namer, R. W. Schefer, “Error estimates for Rayleigh scattering density and temperature measurements in premixed flames,” Exp. Fluids 3, 1–9 (1985).
[CrossRef]

She, C. Y.

Shimizu, H.

Smooke, M. D.

R. J. Kee, J. F. Grcar, M. D. Smooke, J. A. Miller, CHEMKIN: A Fortran program for modeling steady laminar one-dimensional premixed flames,” (Sandia National Laboratories, Livermore Calif., 1991).

Soika, A.

A. Soika, F. Dinkelacker, A. Leipertz, “Measurement of the resolved flame structure of turbulent premixed flames with constant Reynolds number and varied stoichiometry,” in Proceedings of 27th Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1998), pp. 785–792.
[CrossRef]

D. Most, A. Soika, F. Dinkelacker, A. Leipertz, “Simultaneous planar OH and temperature measurements for the detection of lifted reaction zones in premixed bluff-body stabilized flames,” in Developments, Laser Techniques, and Fluid Mechanics, R. J. Adrian, D. F. Durao, F. Durst, M. V. Heitor, M. Maeda, J. Whitelaw, eds. (Springer-Verlag, Berlin, 2000), pp. 505–519.

Stevens, E. J.

E. J. Stevens, K. N. C. Bray, B. Lecordier, “Velocity and scalar statistics for premixed turbulent stagnation flames using PIV,” in Proceedings of 27th Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1998), pp. 949–955.
[CrossRef]

Varghese, P. L.

J. Mach, P. L. Varghese, “Velocity measurements by modulated filtered Rayleigh scattering using diode lasers,” AIAA J. 37, 695–699 (1999).
[CrossRef]

Veynante, D.

T. Poinsot, D. Veynante, S. Candel, “Diagrams of premixed turbulent combustion based on direct simulation,” in Proceedings of 23rd Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1990), pp. 613–619.

Voss, E.

E. Voss, “Untersuchung zur Temperaturfernmessung durch Analyse der Rayleigh-Streuung mit Atomdampffiltern,” Ph.D. dissertation (Universität Hamburg, Hamburg, Germany, 1992).

Weinberg, F. J.

K. Müller-Dethlefs, F. J. Weinberg, “Burning velocity measurement based on laser Rayleigh scattering,” in Proceedings of 17th Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa, 1978), pp. 985–992.

Whitelaw, J. H.

F. Durst, A. Melling, J. H. Whitelaw, Principles and Practice of Laser-Doppler Anemometry, 2nd ed. (Academic, London, 1981).

Willert, C.

M. Raffel, C. Willert, J. Kompenhans, Particle Image Velocimetry, 1st ed. (Springer-Verlag, Berlin, 1998).
[CrossRef]

Yalin, A. P.

A. P. Yalin, R. B. Miles, “Temperature measurements by ultraviolet filtered Rayleigh scattering using a mercury filter,” J. Thermophys. Heat Transfer 14, 210–215 (2000).
[CrossRef]

A. P. Yalin, R. B. Miles, “Ultraviolet filtered Rayleigh scattering temperature measurements with a mercury filter,” Opt. Lett. 24, 590–592 (1999).
[CrossRef]

Yip, S.

S. Yip, “Rayleigh scattering in dilute gases,” J. Acoust. Soc. Am. 49, 941–949 (1971).
[CrossRef]

Zahedi, M.

AIAA J. (2)

G. S. Elliott, M. Samimy, “Rayleigh scattering technique for simultaneous measurements of velocity and thermodynamic properties,” AIAA J. 34, 2346–2352 (1996).
[CrossRef]

J. Mach, P. L. Varghese, “Velocity measurements by modulated filtered Rayleigh scattering using diode lasers,” AIAA J. 37, 695–699 (1999).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. B. (1)

C. D. Carter, J. M. Donbar, J. F. Driscoll, “Simultaneous CH planar laser-induced fluorescence and particle imaging velocimetry in turbulent nonpremixed flames,” Appl. Phys. B. 66, 129–132 (1998).
[CrossRef]

B. Energie Verfahrenstechnik (1)

D. Hofmann, “Zeit- und ortsaufgelöste Bestimmung der Temperatur- und Konzentrationsverteilung in technischen Verbrennungssystemen über die gefilterte Rayleigh Streuung (FRS),” B. Energie Verfahrenstechnik, 97.2 (1997).

Combust. Flame (2)

J. H. Frank, A. M. Kalt, R. W. Bilger, “Measurements of conditional velocities in turbulent premixed flames by simultaneous OH PLIF and PIV,” Combust. Flame 116, 220–232 (1999).
[CrossRef]

F. O’Young, R. W. Bilger, “Scalar gradient and related quantities in turbulent premixed flames,” Combust. Flame 109, 682–700 (1997).
[CrossRef]

Combust. Sci. Technol. (1)

G. S. Elliot, N. Glumac, D. C. Carter, A. S. Nejad, “Two-dimensional temperature field measurements using a molecular filter based technique,” Combust. Sci. Technol. 125, 351–369 (1997).
[CrossRef]

Exp. Fluids (2)

J. N. Forkey, W. R. Lempert, R. B. Miles, “Accuracy limits for planar measurements of flow velocity, temperature and pressure using filtered Rayleigh scattering,” Exp. Fluids 24, 151–162 (1998).
[CrossRef]

I. Namer, R. W. Schefer, “Error estimates for Rayleigh scattering density and temperature measurements in premixed flames,” Exp. Fluids 3, 1–9 (1985).
[CrossRef]

J. Acoust. Soc. Am. (1)

S. Yip, “Rayleigh scattering in dilute gases,” J. Acoust. Soc. Am. 49, 941–949 (1971).
[CrossRef]

J. Thermophys. Heat Transfer (1)

A. P. Yalin, R. B. Miles, “Temperature measurements by ultraviolet filtered Rayleigh scattering using a mercury filter,” J. Thermophys. Heat Transfer 14, 210–215 (2000).
[CrossRef]

Meas. Sci. Technol. (1)

Institute of Physics, Special Issue on Particle Image Velocimetry, Meas. Sci. Technol. 8, (1997).

Opt. Lett. (5)

Other (19)

D. Hofmann, A. Leipertz, “Temperature field measurements in a sooting flame by filtered Rayleigh scattering (FRS),” in Proceedings of 26th Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1996), pp. 945–950.
[CrossRef]

W. L. Roberts, J. F. Driscoll, M. C. Drake, J. W. Ratcliffe, “OH fluorescence images of the quenching of a premixed flame during an interaction with a vortex,” in Proceedings of 24th Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa, 1992), pp. 169–176.
[CrossRef]

T. Poinsot, D. Veynante, S. Candel, “Diagrams of premixed turbulent combustion based on direct simulation,” in Proceedings of 23rd Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1990), pp. 613–619.

D. Most, A. Leipertz, “Filtered Rayleigh scattering thermometry—calibration of cross section factors,” in Joint Meeting of the British, German and French Section of the Combustion Institute (Combustion Institute, Pittsburgh, Pa., 1999), pp. 475–477.

J. E. Rehm, N. T. Clemens, “The relationship between vorticity/strain and reaction zone structure in turbulent non-premixed jet flames,” in Proceedings of 26th Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1996), pp. 1113–1120.

F. Durst, A. Melling, J. H. Whitelaw, Principles and Practice of Laser-Doppler Anemometry, 2nd ed. (Academic, London, 1981).

M. Raffel, C. Willert, J. Kompenhans, Particle Image Velocimetry, 1st ed. (Springer-Verlag, Berlin, 1998).
[CrossRef]

E. J. Stevens, K. N. C. Bray, B. Lecordier, “Velocity and scalar statistics for premixed turbulent stagnation flames using PIV,” in Proceedings of 27th Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1998), pp. 949–955.
[CrossRef]

D. Most, A. Soika, F. Dinkelacker, A. Leipertz, “Simultaneous planar OH and temperature measurements for the detection of lifted reaction zones in premixed bluff-body stabilized flames,” in Developments, Laser Techniques, and Fluid Mechanics, R. J. Adrian, D. F. Durao, F. Durst, M. V. Heitor, M. Maeda, J. Whitelaw, eds. (Springer-Verlag, Berlin, 2000), pp. 505–519.

A. Soika, F. Dinkelacker, A. Leipertz, “Measurement of the resolved flame structure of turbulent premixed flames with constant Reynolds number and varied stoichiometry,” in Proceedings of 27th Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1998), pp. 785–792.
[CrossRef]

D. Duarte, P. Ferrao, M. V. Heitor, “Flame structure characterization based on Rayleigh thermometry and two-point laser Doppler measurements,” in Laser Techniques Applied to Fluid Mechanics, R. J. Adrian, D. F. Durao, F. Durst, M. V. Heitor, M. Maeda, J. Whitelaw, eds. (Springer-Verlag, Berlin, 1997), pp. 185–249.

R. B. Miles, J. N. Forkey, W. R. Lempert, “Filtered Rayleigh scattering measurements in supersonic/hypersonic facilities” paper AIAA-92-3894, presented at 17th Aerospace Ground Testing Conference, Nashville, Tennessee, 6–8 July 1992 (American Institute of Aeronautics and Astronautics, Reston, Va., 1992).

B. Chu, Laser Light Scattering, 2nd ed. (Academic, Boston, 1991).

E. Voss, “Untersuchung zur Temperaturfernmessung durch Analyse der Rayleigh-Streuung mit Atomdampffiltern,” Ph.D. dissertation (Universität Hamburg, Hamburg, Germany, 1992).

R. J. Kee, J. F. Grcar, M. D. Smooke, J. A. Miller, CHEMKIN: A Fortran program for modeling steady laminar one-dimensional premixed flames,” (Sandia National Laboratories, Livermore Calif., 1991).

Y. A. Cengel, M. A. Boles, Thermodynamics: an Engineering Approach, 3rd ed. (WCB/McGraw-Hill, Boston, 1998).

I. F. Golubev, Viscosity of gases and gas mixtures, translated from Russian by R. Kondor, D. Slutzkin, eds. (Israel Program for Scientific Translation Ltd., Jerusalem, Israel, 1970), p. 237.

Verein Deutscher Ingenieure, Wärmeatlas, 5th ed. (VDI, Düsseldorf, Germany, 1988).

K. Müller-Dethlefs, F. J. Weinberg, “Burning velocity measurement based on laser Rayleigh scattering,” in Proceedings of 17th Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa, 1978), pp. 985–992.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of the functioning of the FRS technique through consideration of the Rayleigh and Mie scattering spectra at 532 nm (left) and the remaining FRS signal, which was generated by filtering the Mie signal and parts of the Rayleigh signal with an absorption line of iodine vapor as an ultrathin notch filter (right).

Fig. 2
Fig. 2

Calculated scattering cross-sectional ratio σ̅FRS/σ̅FRS,N2 and intensity ratio I FRS,ref0)/I FRS0) as a function of temperature for a premixed CH4–air combustion at ϕ = 0.7 by use of the kinetic scattering model. Additionally, we plotted the temperature dependence of the regime variable y′.

Fig. 3
Fig. 3

Calculated concentrations of the main species of CH4–air combustion for ϕ = 0.7 as a function of temperature by use of the CHEMKIN code.27

Fig. 4
Fig. 4

Schematic of the experimental setup for the simultaneous application of FRS and PIV with two Nd:YAG lasers, one of which works single-mode.

Fig. 5
Fig. 5

Schematic of the molecular filter cell. Filling: pure I 2, operated in a two-phase solid-gas regime; and Tcell, adjusted by a tempering fluid. Optical windows were heated electrically to ensure that Twindow is slightly above Tcell.

Fig. 6
Fig. 6

Exemplary single-shot data sets (A, B, C) of simultaneously obtained temperature and velocity fields in a lean premixed CH4–air flame. Left, temperature data superposed with velocity vector field; right, local strain rates |∊| [Eq. (8)] superposed with temperature isolines; dot: position of stabilization wire.

Fig. 7
Fig. 7

Mean temperature and velocity field images obtained in a lean premixed CH4–air V flame. Left flame structure superposed with velocity vector field; right, local strain rates |∊| [Eq. (8)] superposed with temperature isolines; Dot, position of stabilization wire (x = y = 0).

Tables (1)

Tables Icon

Table 1 Major Uncertainty Sources Y for FRS Thermometry-Estimated Variation of Y and Their Influence on I FRS,ref/I FRS

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

IFRSλ0=CI0λ0NlΩσ¯FRSλ0, T, p, ci.
IFRSλ0IFRS,refλ0x,y=CI0λ0CI0λ0NNreflΩlrefΩrefσ¯FRSλ0, T, p, ciσ¯FRS,refλ0, Tref, pref, ci,refx,y.
y=1/|k|L.
Skin,iT, k, ω¯=2π0.5/kv0exp-ω¯2/2k2v02.
σFRS,i=σLRS,iILRS IFRS=σLRS,i Skin,iT, k, ω¯dω¯× ftransω¯Skin,iT, k, ω¯dω¯.
σ¯FRS|kin=i ciσ¯FRS,i|kin.
||=vxy2+vyy20.5.

Metrics