Abstract

A two-dimensional soot diagnostic technique has been developed as an extension of the well-known two-color pyrometry. Two flame images are simultaneously collected on a CCD at selected wavelengths through suitable optics. By use of the dependence of soot emissivity on the soot volume fraction and by comparison with images from a calibrated light source, both the temperature field and the soot distribution can be determined. Validation was carried out through data obtained with other soot diagnostic methods on ethylene diffusion and Diesel oil-rich premixed flames. The current technique readily allowed us to obtain a large amount of data for a thorough description of the soot distribution within the flame. As an example of the technique’s potential, data about methane and propane diffusion flames are reported.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. T. Charalampopoulos, “Morphology and dynamics of agglomerated particulates in combustion systems using light scattering techniques,” Prog. Energy Combust. Sci. 18, 13–45 (1992).
    [CrossRef]
  2. S. Kumar, C. L. Tien, “Effective diameter of agglomerates for radiative extinction and scattering,” Combust. Sci. Technol. 66, 199–216 (1989).
    [CrossRef]
  3. R. J. Santoro, H. G. Semerjian, R. A. Dobbins, “Soot particle measurements in diffusion flames,” Combust. Flame 51, 203–218 (1983).
    [CrossRef]
  4. S. De Iuliis, F. Cignoli, S. Benecchi, G. Zizak, “Determination of soot parameters by a two-angle scattering–extinction technique in an ethylene diffusion flames,” Appl. Opt. 37, 7865–7874 (1998).
    [CrossRef]
  5. P. S. Greenberg, J. C. Ku, “Soot volume fraction imaging,” Appl. Opt. 36, 5514–5522 (1997).
    [CrossRef] [PubMed]
  6. D. R. Snelling, K. A. Thomson, G. J. Smallwood, O. L. Gulder, “Two-dimensional imaging of soot volume fraction in laminar diffusion flames,” Appl. Opt. 38, 2478–2485 (1999).
    [CrossRef]
  7. T. Ni, J. A. Pinson, S. Gupta, R. J. Santoro, “Two-dimensional imaging of soot volume fraction by the use of laser-induced incandescence,” Appl. Opt. 34, 7083–7091 (1995).
    [CrossRef] [PubMed]
  8. S. Will, S. Schraml, A. Leipertz, “Two-dimensional soot particle sizing by time-resolved laser-induced incandescence,” Opt. Lett. 20, 2342–2344 (1995).
    [CrossRef]
  9. C. R. Shaddix, R. C. Smyth, “Laser-induced incandescence measurements of soot production in steady and flickering methane, propane, and ethylene diffusion flames,” Combust. Flame 107, 418–452 (1996).
    [CrossRef]
  10. R. L. Vander Wal, Z. Zhou, M. Y. Choi, “Laser-induced incandescence calibration via gravimetric sampling,” Combust. Flame 105, 462–470 (1996).
    [CrossRef]
  11. R. L. Vander Wal, “Calibration and comparison of laser-induced incandescence with cavity ring-down,” in Proceedings of the 27th Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1998), pp. 59–67.
    [CrossRef]
  12. R. G. Siddall, I. A. McGrath, “The emissivity of luminous flames,” in Proceedings of the 9th Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1962), pp. 102–110.
  13. P. J. Pagni, S. Bard, “Particulate volume fractions in diffusion flames,” in Proceedings of the 17th Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1978), pp. 1017–1028.
  14. S. De Iuliis, M. Barbini, S. Benecchi, F. Cignoli, G. Zizak, “Determination of the soot volume fraction in an ethylene diffusion flame by multiwavelength analysis of soot radiation,” Combust. Flame 115, 253–261 (1998).
    [CrossRef]
  15. Y. Matsui, T. Kamimoto, S. Matsuoka, “A study on the time and space resolved measurement of flame temperature and soot concentration in a D.I. Diesel engine by the two-color method,” SAE Tech. Paper 790491 (Society of Automotive Engineers, Warrendale, Pa., 1979).
  16. H. X. Quoc, J.-M. Vignon, M. Brun, “A new approach of the two-color method for determining local instantaneous soot concentration and temperature in a D.I. Diesel combustion chamber,” SAE Tech. Paper 910736 (Society of Automotive Engineers, Warrendale, Pa., 1991).
  17. M. Klassen, Y. R. Sivathanu, J. L. Gore, “Simultaneous emission absorption measurements in toluene-fueled pool flames: mean and RMS properties,” Combust. Flame 90, 34–44 (1992).
    [CrossRef]
  18. M. Y. Choi, A. Hamins, G. W. Mulholland, T. Kashiwagi, “Simultaneous optical measurement of soot volume fraction and temperature in premixed flames,” Combust. Flame 99, 174–186 (1994).
    [CrossRef]
  19. S. De Iuliis, F. Cignoli, S. Benecchi, G. Zizak, “Investigation of the similarity of soot parameters in ethylene diffusion flames with different height by extinction/scattering technique,” in Proceedings of the 27th Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1998), pp. 1549–1555.
    [CrossRef]
  20. S. di Stasio, P. Massoli, “Influence of the soot properties uncertainties in temperature and volume-fraction measurements by two-color pyrometry,” Meas. Sci. Technol. 5, 1453–1465 (1994).
    [CrossRef]
  21. H. Chang, T. T. Charalampopoulos, “Determination of the wavelength dependence of refractive indices of flame soot,” Proc. R. Soc. London Ser. A 430, 577–591 (1990).
    [CrossRef]
  22. F. Cignoli, S. De Iuliis, G. Zizak, “Soot load versus aromatic concentration in Diesel oil premixed flames,” Fuel 80, 945–955 (2001).
    [CrossRef]
  23. U. Anselmi-Tamburini, G. Campari, G. Spinolo, P. Lupotto, “A two-color spatial-scanning pyrometer for the determination of temperature profiles in combustion synthesis reactions,” Rev. Sci. Instrum. 66, 5006–5014 (1995).
    [CrossRef]
  24. M. B. Boslough, T. J. Ahrens, “A sensitive time-resolved radiation pyrometer for shock-temperature measurements above 1500 K,” Rev. Sci. Instrum. 60, 3711–3716 (1989).
    [CrossRef]
  25. R. J. Santoro, H. G. Semerjian, R. A. Dobbins, “Soot particle measurements in diffusion flames,” Combust. Flame 51, 203–218 (1983).
    [CrossRef]
  26. R. J. Santoro, H. G. Semerjian, “Soot formation in diffusion flames: flow rate, fuel species, and temperature effects,” in Proceedings of the 20th Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1984), pp. 997–1006.
  27. L. R. Boedeker, G. M. Dobbs, “CARS temperature measurements in sooting, laminar diffusion flames,” Combust. Sci. Technol. 46, 301–323 (1986).
    [CrossRef]
  28. R. J. Santoro, T. T. Yeh, J. J. Horvath, H. G. Semerjian, “The transport and growth of soot particles in laminar diffusion flames,” Combust. Sci. Technol. 53, 89–115 (1989).
    [CrossRef]
  29. J. H. Kent, D. R. Honnery, “A soot formation rate map for a laminar ethylene diffusion flame,” Combust. Flame 79, 287–298 (1990).
    [CrossRef]
  30. R. Villasenor, I. M. Kennedy, “Soot formation and oxidation in laminar diffusion flames,” in Proceedings of the 24th Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1992), pp. 1023–1030.
    [CrossRef]
  31. O. L. Gulder, “Soot formation in laminar diffusion flames at elevated temperatures,” Combust. Flame 88, 74–82 (1992).
    [CrossRef]
  32. O. L. Gulder, D. R. Snelling, “Influence of nitrogen dilution and flame temperature on soot formation in diffusion flame,” Combust. Flame 92, 115–124 (1993).
    [CrossRef]
  33. P. B. Sunderland, G. M. Faeth, “Soot formation in hydrocarbon/air laminar jet diffusion flames,” Combust. Flame 105, 132–146 (1996).
    [CrossRef]
  34. I. M. Kennedy, C. Yam, D. C. Rapp, R. J. Santoro, “Modeling and measurements of soot and species in a laminar diffusion flame,” Combust. Flame 107, 368–382 (1996).
    [CrossRef]
  35. C. J. Dasch, “One-dimensional tomography: a comparison of Abel, onion-peeling, and filtered backprojection methods,” Appl. Opt. 31, 1146–1152 (1992).
    [CrossRef] [PubMed]
  36. J. Vattulainen, V. Nummela, R. Hernberg, J. Kytola, “A system for quantitative imaging diagnostics and its application to pyrometric in-cylinder flame-temperature measurements in large Diesel engines,” Meas. Sci. Technol. 11, 103–112 (2000).
    [CrossRef]
  37. W. Lee, Y. D. Na, “Soot study in laminar diffusion flames at elevated pressure using two-color pyrometry and Abel inversion,” in Proceedings of the 4th JSME-KSME Thermal Engineering Conference (Japan Society of Mechanical Engineers, Tokyo, Japan, 2000).
  38. W. Lee, Y. D. Na, “Determination of the soot temperature in laminar diffusion flames at elevated pressures using two-wavelength pyrometry with Abel inversion,” in Book-of-Abstracts of the 28th Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 2000).

2001 (1)

F. Cignoli, S. De Iuliis, G. Zizak, “Soot load versus aromatic concentration in Diesel oil premixed flames,” Fuel 80, 945–955 (2001).
[CrossRef]

2000 (1)

J. Vattulainen, V. Nummela, R. Hernberg, J. Kytola, “A system for quantitative imaging diagnostics and its application to pyrometric in-cylinder flame-temperature measurements in large Diesel engines,” Meas. Sci. Technol. 11, 103–112 (2000).
[CrossRef]

1999 (1)

1998 (2)

S. De Iuliis, F. Cignoli, S. Benecchi, G. Zizak, “Determination of soot parameters by a two-angle scattering–extinction technique in an ethylene diffusion flames,” Appl. Opt. 37, 7865–7874 (1998).
[CrossRef]

S. De Iuliis, M. Barbini, S. Benecchi, F. Cignoli, G. Zizak, “Determination of the soot volume fraction in an ethylene diffusion flame by multiwavelength analysis of soot radiation,” Combust. Flame 115, 253–261 (1998).
[CrossRef]

1997 (1)

1996 (4)

C. R. Shaddix, R. C. Smyth, “Laser-induced incandescence measurements of soot production in steady and flickering methane, propane, and ethylene diffusion flames,” Combust. Flame 107, 418–452 (1996).
[CrossRef]

R. L. Vander Wal, Z. Zhou, M. Y. Choi, “Laser-induced incandescence calibration via gravimetric sampling,” Combust. Flame 105, 462–470 (1996).
[CrossRef]

P. B. Sunderland, G. M. Faeth, “Soot formation in hydrocarbon/air laminar jet diffusion flames,” Combust. Flame 105, 132–146 (1996).
[CrossRef]

I. M. Kennedy, C. Yam, D. C. Rapp, R. J. Santoro, “Modeling and measurements of soot and species in a laminar diffusion flame,” Combust. Flame 107, 368–382 (1996).
[CrossRef]

1995 (3)

1994 (2)

M. Y. Choi, A. Hamins, G. W. Mulholland, T. Kashiwagi, “Simultaneous optical measurement of soot volume fraction and temperature in premixed flames,” Combust. Flame 99, 174–186 (1994).
[CrossRef]

S. di Stasio, P. Massoli, “Influence of the soot properties uncertainties in temperature and volume-fraction measurements by two-color pyrometry,” Meas. Sci. Technol. 5, 1453–1465 (1994).
[CrossRef]

1993 (1)

O. L. Gulder, D. R. Snelling, “Influence of nitrogen dilution and flame temperature on soot formation in diffusion flame,” Combust. Flame 92, 115–124 (1993).
[CrossRef]

1992 (4)

C. J. Dasch, “One-dimensional tomography: a comparison of Abel, onion-peeling, and filtered backprojection methods,” Appl. Opt. 31, 1146–1152 (1992).
[CrossRef] [PubMed]

O. L. Gulder, “Soot formation in laminar diffusion flames at elevated temperatures,” Combust. Flame 88, 74–82 (1992).
[CrossRef]

M. Klassen, Y. R. Sivathanu, J. L. Gore, “Simultaneous emission absorption measurements in toluene-fueled pool flames: mean and RMS properties,” Combust. Flame 90, 34–44 (1992).
[CrossRef]

T. T. Charalampopoulos, “Morphology and dynamics of agglomerated particulates in combustion systems using light scattering techniques,” Prog. Energy Combust. Sci. 18, 13–45 (1992).
[CrossRef]

1990 (2)

H. Chang, T. T. Charalampopoulos, “Determination of the wavelength dependence of refractive indices of flame soot,” Proc. R. Soc. London Ser. A 430, 577–591 (1990).
[CrossRef]

J. H. Kent, D. R. Honnery, “A soot formation rate map for a laminar ethylene diffusion flame,” Combust. Flame 79, 287–298 (1990).
[CrossRef]

1989 (3)

R. J. Santoro, T. T. Yeh, J. J. Horvath, H. G. Semerjian, “The transport and growth of soot particles in laminar diffusion flames,” Combust. Sci. Technol. 53, 89–115 (1989).
[CrossRef]

M. B. Boslough, T. J. Ahrens, “A sensitive time-resolved radiation pyrometer for shock-temperature measurements above 1500 K,” Rev. Sci. Instrum. 60, 3711–3716 (1989).
[CrossRef]

S. Kumar, C. L. Tien, “Effective diameter of agglomerates for radiative extinction and scattering,” Combust. Sci. Technol. 66, 199–216 (1989).
[CrossRef]

1986 (1)

L. R. Boedeker, G. M. Dobbs, “CARS temperature measurements in sooting, laminar diffusion flames,” Combust. Sci. Technol. 46, 301–323 (1986).
[CrossRef]

1983 (2)

R. J. Santoro, H. G. Semerjian, R. A. Dobbins, “Soot particle measurements in diffusion flames,” Combust. Flame 51, 203–218 (1983).
[CrossRef]

R. J. Santoro, H. G. Semerjian, R. A. Dobbins, “Soot particle measurements in diffusion flames,” Combust. Flame 51, 203–218 (1983).
[CrossRef]

Ahrens, T. J.

M. B. Boslough, T. J. Ahrens, “A sensitive time-resolved radiation pyrometer for shock-temperature measurements above 1500 K,” Rev. Sci. Instrum. 60, 3711–3716 (1989).
[CrossRef]

Anselmi-Tamburini, U.

U. Anselmi-Tamburini, G. Campari, G. Spinolo, P. Lupotto, “A two-color spatial-scanning pyrometer for the determination of temperature profiles in combustion synthesis reactions,” Rev. Sci. Instrum. 66, 5006–5014 (1995).
[CrossRef]

Barbini, M.

S. De Iuliis, M. Barbini, S. Benecchi, F. Cignoli, G. Zizak, “Determination of the soot volume fraction in an ethylene diffusion flame by multiwavelength analysis of soot radiation,” Combust. Flame 115, 253–261 (1998).
[CrossRef]

Bard, S.

P. J. Pagni, S. Bard, “Particulate volume fractions in diffusion flames,” in Proceedings of the 17th Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1978), pp. 1017–1028.

Benecchi, S.

S. De Iuliis, M. Barbini, S. Benecchi, F. Cignoli, G. Zizak, “Determination of the soot volume fraction in an ethylene diffusion flame by multiwavelength analysis of soot radiation,” Combust. Flame 115, 253–261 (1998).
[CrossRef]

S. De Iuliis, F. Cignoli, S. Benecchi, G. Zizak, “Determination of soot parameters by a two-angle scattering–extinction technique in an ethylene diffusion flames,” Appl. Opt. 37, 7865–7874 (1998).
[CrossRef]

S. De Iuliis, F. Cignoli, S. Benecchi, G. Zizak, “Investigation of the similarity of soot parameters in ethylene diffusion flames with different height by extinction/scattering technique,” in Proceedings of the 27th Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1998), pp. 1549–1555.
[CrossRef]

Boedeker, L. R.

L. R. Boedeker, G. M. Dobbs, “CARS temperature measurements in sooting, laminar diffusion flames,” Combust. Sci. Technol. 46, 301–323 (1986).
[CrossRef]

Boslough, M. B.

M. B. Boslough, T. J. Ahrens, “A sensitive time-resolved radiation pyrometer for shock-temperature measurements above 1500 K,” Rev. Sci. Instrum. 60, 3711–3716 (1989).
[CrossRef]

Brun, M.

H. X. Quoc, J.-M. Vignon, M. Brun, “A new approach of the two-color method for determining local instantaneous soot concentration and temperature in a D.I. Diesel combustion chamber,” SAE Tech. Paper 910736 (Society of Automotive Engineers, Warrendale, Pa., 1991).

Campari, G.

U. Anselmi-Tamburini, G. Campari, G. Spinolo, P. Lupotto, “A two-color spatial-scanning pyrometer for the determination of temperature profiles in combustion synthesis reactions,” Rev. Sci. Instrum. 66, 5006–5014 (1995).
[CrossRef]

Chang, H.

H. Chang, T. T. Charalampopoulos, “Determination of the wavelength dependence of refractive indices of flame soot,” Proc. R. Soc. London Ser. A 430, 577–591 (1990).
[CrossRef]

Charalampopoulos, T. T.

T. T. Charalampopoulos, “Morphology and dynamics of agglomerated particulates in combustion systems using light scattering techniques,” Prog. Energy Combust. Sci. 18, 13–45 (1992).
[CrossRef]

H. Chang, T. T. Charalampopoulos, “Determination of the wavelength dependence of refractive indices of flame soot,” Proc. R. Soc. London Ser. A 430, 577–591 (1990).
[CrossRef]

Choi, M. Y.

R. L. Vander Wal, Z. Zhou, M. Y. Choi, “Laser-induced incandescence calibration via gravimetric sampling,” Combust. Flame 105, 462–470 (1996).
[CrossRef]

M. Y. Choi, A. Hamins, G. W. Mulholland, T. Kashiwagi, “Simultaneous optical measurement of soot volume fraction and temperature in premixed flames,” Combust. Flame 99, 174–186 (1994).
[CrossRef]

Cignoli, F.

F. Cignoli, S. De Iuliis, G. Zizak, “Soot load versus aromatic concentration in Diesel oil premixed flames,” Fuel 80, 945–955 (2001).
[CrossRef]

S. De Iuliis, M. Barbini, S. Benecchi, F. Cignoli, G. Zizak, “Determination of the soot volume fraction in an ethylene diffusion flame by multiwavelength analysis of soot radiation,” Combust. Flame 115, 253–261 (1998).
[CrossRef]

S. De Iuliis, F. Cignoli, S. Benecchi, G. Zizak, “Determination of soot parameters by a two-angle scattering–extinction technique in an ethylene diffusion flames,” Appl. Opt. 37, 7865–7874 (1998).
[CrossRef]

S. De Iuliis, F. Cignoli, S. Benecchi, G. Zizak, “Investigation of the similarity of soot parameters in ethylene diffusion flames with different height by extinction/scattering technique,” in Proceedings of the 27th Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1998), pp. 1549–1555.
[CrossRef]

Dasch, C. J.

De Iuliis, S.

F. Cignoli, S. De Iuliis, G. Zizak, “Soot load versus aromatic concentration in Diesel oil premixed flames,” Fuel 80, 945–955 (2001).
[CrossRef]

S. De Iuliis, M. Barbini, S. Benecchi, F. Cignoli, G. Zizak, “Determination of the soot volume fraction in an ethylene diffusion flame by multiwavelength analysis of soot radiation,” Combust. Flame 115, 253–261 (1998).
[CrossRef]

S. De Iuliis, F. Cignoli, S. Benecchi, G. Zizak, “Determination of soot parameters by a two-angle scattering–extinction technique in an ethylene diffusion flames,” Appl. Opt. 37, 7865–7874 (1998).
[CrossRef]

S. De Iuliis, F. Cignoli, S. Benecchi, G. Zizak, “Investigation of the similarity of soot parameters in ethylene diffusion flames with different height by extinction/scattering technique,” in Proceedings of the 27th Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1998), pp. 1549–1555.
[CrossRef]

di Stasio, S.

S. di Stasio, P. Massoli, “Influence of the soot properties uncertainties in temperature and volume-fraction measurements by two-color pyrometry,” Meas. Sci. Technol. 5, 1453–1465 (1994).
[CrossRef]

Dobbins, R. A.

R. J. Santoro, H. G. Semerjian, R. A. Dobbins, “Soot particle measurements in diffusion flames,” Combust. Flame 51, 203–218 (1983).
[CrossRef]

R. J. Santoro, H. G. Semerjian, R. A. Dobbins, “Soot particle measurements in diffusion flames,” Combust. Flame 51, 203–218 (1983).
[CrossRef]

Dobbs, G. M.

L. R. Boedeker, G. M. Dobbs, “CARS temperature measurements in sooting, laminar diffusion flames,” Combust. Sci. Technol. 46, 301–323 (1986).
[CrossRef]

Faeth, G. M.

P. B. Sunderland, G. M. Faeth, “Soot formation in hydrocarbon/air laminar jet diffusion flames,” Combust. Flame 105, 132–146 (1996).
[CrossRef]

Gore, J. L.

M. Klassen, Y. R. Sivathanu, J. L. Gore, “Simultaneous emission absorption measurements in toluene-fueled pool flames: mean and RMS properties,” Combust. Flame 90, 34–44 (1992).
[CrossRef]

Greenberg, P. S.

Gulder, O. L.

D. R. Snelling, K. A. Thomson, G. J. Smallwood, O. L. Gulder, “Two-dimensional imaging of soot volume fraction in laminar diffusion flames,” Appl. Opt. 38, 2478–2485 (1999).
[CrossRef]

O. L. Gulder, D. R. Snelling, “Influence of nitrogen dilution and flame temperature on soot formation in diffusion flame,” Combust. Flame 92, 115–124 (1993).
[CrossRef]

O. L. Gulder, “Soot formation in laminar diffusion flames at elevated temperatures,” Combust. Flame 88, 74–82 (1992).
[CrossRef]

Gupta, S.

Hamins, A.

M. Y. Choi, A. Hamins, G. W. Mulholland, T. Kashiwagi, “Simultaneous optical measurement of soot volume fraction and temperature in premixed flames,” Combust. Flame 99, 174–186 (1994).
[CrossRef]

Hernberg, R.

J. Vattulainen, V. Nummela, R. Hernberg, J. Kytola, “A system for quantitative imaging diagnostics and its application to pyrometric in-cylinder flame-temperature measurements in large Diesel engines,” Meas. Sci. Technol. 11, 103–112 (2000).
[CrossRef]

Honnery, D. R.

J. H. Kent, D. R. Honnery, “A soot formation rate map for a laminar ethylene diffusion flame,” Combust. Flame 79, 287–298 (1990).
[CrossRef]

Horvath, J. J.

R. J. Santoro, T. T. Yeh, J. J. Horvath, H. G. Semerjian, “The transport and growth of soot particles in laminar diffusion flames,” Combust. Sci. Technol. 53, 89–115 (1989).
[CrossRef]

Kamimoto, T.

Y. Matsui, T. Kamimoto, S. Matsuoka, “A study on the time and space resolved measurement of flame temperature and soot concentration in a D.I. Diesel engine by the two-color method,” SAE Tech. Paper 790491 (Society of Automotive Engineers, Warrendale, Pa., 1979).

Kashiwagi, T.

M. Y. Choi, A. Hamins, G. W. Mulholland, T. Kashiwagi, “Simultaneous optical measurement of soot volume fraction and temperature in premixed flames,” Combust. Flame 99, 174–186 (1994).
[CrossRef]

Kennedy, I. M.

I. M. Kennedy, C. Yam, D. C. Rapp, R. J. Santoro, “Modeling and measurements of soot and species in a laminar diffusion flame,” Combust. Flame 107, 368–382 (1996).
[CrossRef]

R. Villasenor, I. M. Kennedy, “Soot formation and oxidation in laminar diffusion flames,” in Proceedings of the 24th Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1992), pp. 1023–1030.
[CrossRef]

Kent, J. H.

J. H. Kent, D. R. Honnery, “A soot formation rate map for a laminar ethylene diffusion flame,” Combust. Flame 79, 287–298 (1990).
[CrossRef]

Klassen, M.

M. Klassen, Y. R. Sivathanu, J. L. Gore, “Simultaneous emission absorption measurements in toluene-fueled pool flames: mean and RMS properties,” Combust. Flame 90, 34–44 (1992).
[CrossRef]

Ku, J. C.

Kumar, S.

S. Kumar, C. L. Tien, “Effective diameter of agglomerates for radiative extinction and scattering,” Combust. Sci. Technol. 66, 199–216 (1989).
[CrossRef]

Kytola, J.

J. Vattulainen, V. Nummela, R. Hernberg, J. Kytola, “A system for quantitative imaging diagnostics and its application to pyrometric in-cylinder flame-temperature measurements in large Diesel engines,” Meas. Sci. Technol. 11, 103–112 (2000).
[CrossRef]

Lee, W.

W. Lee, Y. D. Na, “Determination of the soot temperature in laminar diffusion flames at elevated pressures using two-wavelength pyrometry with Abel inversion,” in Book-of-Abstracts of the 28th Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 2000).

W. Lee, Y. D. Na, “Soot study in laminar diffusion flames at elevated pressure using two-color pyrometry and Abel inversion,” in Proceedings of the 4th JSME-KSME Thermal Engineering Conference (Japan Society of Mechanical Engineers, Tokyo, Japan, 2000).

Leipertz, A.

Lupotto, P.

U. Anselmi-Tamburini, G. Campari, G. Spinolo, P. Lupotto, “A two-color spatial-scanning pyrometer for the determination of temperature profiles in combustion synthesis reactions,” Rev. Sci. Instrum. 66, 5006–5014 (1995).
[CrossRef]

Massoli, P.

S. di Stasio, P. Massoli, “Influence of the soot properties uncertainties in temperature and volume-fraction measurements by two-color pyrometry,” Meas. Sci. Technol. 5, 1453–1465 (1994).
[CrossRef]

Matsui, Y.

Y. Matsui, T. Kamimoto, S. Matsuoka, “A study on the time and space resolved measurement of flame temperature and soot concentration in a D.I. Diesel engine by the two-color method,” SAE Tech. Paper 790491 (Society of Automotive Engineers, Warrendale, Pa., 1979).

Matsuoka, S.

Y. Matsui, T. Kamimoto, S. Matsuoka, “A study on the time and space resolved measurement of flame temperature and soot concentration in a D.I. Diesel engine by the two-color method,” SAE Tech. Paper 790491 (Society of Automotive Engineers, Warrendale, Pa., 1979).

McGrath, I. A.

R. G. Siddall, I. A. McGrath, “The emissivity of luminous flames,” in Proceedings of the 9th Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1962), pp. 102–110.

Mulholland, G. W.

M. Y. Choi, A. Hamins, G. W. Mulholland, T. Kashiwagi, “Simultaneous optical measurement of soot volume fraction and temperature in premixed flames,” Combust. Flame 99, 174–186 (1994).
[CrossRef]

Na, Y. D.

W. Lee, Y. D. Na, “Soot study in laminar diffusion flames at elevated pressure using two-color pyrometry and Abel inversion,” in Proceedings of the 4th JSME-KSME Thermal Engineering Conference (Japan Society of Mechanical Engineers, Tokyo, Japan, 2000).

W. Lee, Y. D. Na, “Determination of the soot temperature in laminar diffusion flames at elevated pressures using two-wavelength pyrometry with Abel inversion,” in Book-of-Abstracts of the 28th Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 2000).

Ni, T.

Nummela, V.

J. Vattulainen, V. Nummela, R. Hernberg, J. Kytola, “A system for quantitative imaging diagnostics and its application to pyrometric in-cylinder flame-temperature measurements in large Diesel engines,” Meas. Sci. Technol. 11, 103–112 (2000).
[CrossRef]

Pagni, P. J.

P. J. Pagni, S. Bard, “Particulate volume fractions in diffusion flames,” in Proceedings of the 17th Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1978), pp. 1017–1028.

Pinson, J. A.

Quoc, H. X.

H. X. Quoc, J.-M. Vignon, M. Brun, “A new approach of the two-color method for determining local instantaneous soot concentration and temperature in a D.I. Diesel combustion chamber,” SAE Tech. Paper 910736 (Society of Automotive Engineers, Warrendale, Pa., 1991).

Rapp, D. C.

I. M. Kennedy, C. Yam, D. C. Rapp, R. J. Santoro, “Modeling and measurements of soot and species in a laminar diffusion flame,” Combust. Flame 107, 368–382 (1996).
[CrossRef]

Santoro, R. J.

I. M. Kennedy, C. Yam, D. C. Rapp, R. J. Santoro, “Modeling and measurements of soot and species in a laminar diffusion flame,” Combust. Flame 107, 368–382 (1996).
[CrossRef]

T. Ni, J. A. Pinson, S. Gupta, R. J. Santoro, “Two-dimensional imaging of soot volume fraction by the use of laser-induced incandescence,” Appl. Opt. 34, 7083–7091 (1995).
[CrossRef] [PubMed]

R. J. Santoro, T. T. Yeh, J. J. Horvath, H. G. Semerjian, “The transport and growth of soot particles in laminar diffusion flames,” Combust. Sci. Technol. 53, 89–115 (1989).
[CrossRef]

R. J. Santoro, H. G. Semerjian, R. A. Dobbins, “Soot particle measurements in diffusion flames,” Combust. Flame 51, 203–218 (1983).
[CrossRef]

R. J. Santoro, H. G. Semerjian, R. A. Dobbins, “Soot particle measurements in diffusion flames,” Combust. Flame 51, 203–218 (1983).
[CrossRef]

R. J. Santoro, H. G. Semerjian, “Soot formation in diffusion flames: flow rate, fuel species, and temperature effects,” in Proceedings of the 20th Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1984), pp. 997–1006.

Schraml, S.

Semerjian, H. G.

R. J. Santoro, T. T. Yeh, J. J. Horvath, H. G. Semerjian, “The transport and growth of soot particles in laminar diffusion flames,” Combust. Sci. Technol. 53, 89–115 (1989).
[CrossRef]

R. J. Santoro, H. G. Semerjian, R. A. Dobbins, “Soot particle measurements in diffusion flames,” Combust. Flame 51, 203–218 (1983).
[CrossRef]

R. J. Santoro, H. G. Semerjian, R. A. Dobbins, “Soot particle measurements in diffusion flames,” Combust. Flame 51, 203–218 (1983).
[CrossRef]

R. J. Santoro, H. G. Semerjian, “Soot formation in diffusion flames: flow rate, fuel species, and temperature effects,” in Proceedings of the 20th Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1984), pp. 997–1006.

Shaddix, C. R.

C. R. Shaddix, R. C. Smyth, “Laser-induced incandescence measurements of soot production in steady and flickering methane, propane, and ethylene diffusion flames,” Combust. Flame 107, 418–452 (1996).
[CrossRef]

Siddall, R. G.

R. G. Siddall, I. A. McGrath, “The emissivity of luminous flames,” in Proceedings of the 9th Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1962), pp. 102–110.

Sivathanu, Y. R.

M. Klassen, Y. R. Sivathanu, J. L. Gore, “Simultaneous emission absorption measurements in toluene-fueled pool flames: mean and RMS properties,” Combust. Flame 90, 34–44 (1992).
[CrossRef]

Smallwood, G. J.

Smyth, R. C.

C. R. Shaddix, R. C. Smyth, “Laser-induced incandescence measurements of soot production in steady and flickering methane, propane, and ethylene diffusion flames,” Combust. Flame 107, 418–452 (1996).
[CrossRef]

Snelling, D. R.

D. R. Snelling, K. A. Thomson, G. J. Smallwood, O. L. Gulder, “Two-dimensional imaging of soot volume fraction in laminar diffusion flames,” Appl. Opt. 38, 2478–2485 (1999).
[CrossRef]

O. L. Gulder, D. R. Snelling, “Influence of nitrogen dilution and flame temperature on soot formation in diffusion flame,” Combust. Flame 92, 115–124 (1993).
[CrossRef]

Spinolo, G.

U. Anselmi-Tamburini, G. Campari, G. Spinolo, P. Lupotto, “A two-color spatial-scanning pyrometer for the determination of temperature profiles in combustion synthesis reactions,” Rev. Sci. Instrum. 66, 5006–5014 (1995).
[CrossRef]

Sunderland, P. B.

P. B. Sunderland, G. M. Faeth, “Soot formation in hydrocarbon/air laminar jet diffusion flames,” Combust. Flame 105, 132–146 (1996).
[CrossRef]

Thomson, K. A.

Tien, C. L.

S. Kumar, C. L. Tien, “Effective diameter of agglomerates for radiative extinction and scattering,” Combust. Sci. Technol. 66, 199–216 (1989).
[CrossRef]

Vander Wal, R. L.

R. L. Vander Wal, Z. Zhou, M. Y. Choi, “Laser-induced incandescence calibration via gravimetric sampling,” Combust. Flame 105, 462–470 (1996).
[CrossRef]

R. L. Vander Wal, “Calibration and comparison of laser-induced incandescence with cavity ring-down,” in Proceedings of the 27th Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1998), pp. 59–67.
[CrossRef]

Vattulainen, J.

J. Vattulainen, V. Nummela, R. Hernberg, J. Kytola, “A system for quantitative imaging diagnostics and its application to pyrometric in-cylinder flame-temperature measurements in large Diesel engines,” Meas. Sci. Technol. 11, 103–112 (2000).
[CrossRef]

Vignon, J.-M.

H. X. Quoc, J.-M. Vignon, M. Brun, “A new approach of the two-color method for determining local instantaneous soot concentration and temperature in a D.I. Diesel combustion chamber,” SAE Tech. Paper 910736 (Society of Automotive Engineers, Warrendale, Pa., 1991).

Villasenor, R.

R. Villasenor, I. M. Kennedy, “Soot formation and oxidation in laminar diffusion flames,” in Proceedings of the 24th Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1992), pp. 1023–1030.
[CrossRef]

Will, S.

Yam, C.

I. M. Kennedy, C. Yam, D. C. Rapp, R. J. Santoro, “Modeling and measurements of soot and species in a laminar diffusion flame,” Combust. Flame 107, 368–382 (1996).
[CrossRef]

Yeh, T. T.

R. J. Santoro, T. T. Yeh, J. J. Horvath, H. G. Semerjian, “The transport and growth of soot particles in laminar diffusion flames,” Combust. Sci. Technol. 53, 89–115 (1989).
[CrossRef]

Zhou, Z.

R. L. Vander Wal, Z. Zhou, M. Y. Choi, “Laser-induced incandescence calibration via gravimetric sampling,” Combust. Flame 105, 462–470 (1996).
[CrossRef]

Zizak, G.

F. Cignoli, S. De Iuliis, G. Zizak, “Soot load versus aromatic concentration in Diesel oil premixed flames,” Fuel 80, 945–955 (2001).
[CrossRef]

S. De Iuliis, M. Barbini, S. Benecchi, F. Cignoli, G. Zizak, “Determination of the soot volume fraction in an ethylene diffusion flame by multiwavelength analysis of soot radiation,” Combust. Flame 115, 253–261 (1998).
[CrossRef]

S. De Iuliis, F. Cignoli, S. Benecchi, G. Zizak, “Determination of soot parameters by a two-angle scattering–extinction technique in an ethylene diffusion flames,” Appl. Opt. 37, 7865–7874 (1998).
[CrossRef]

S. De Iuliis, F. Cignoli, S. Benecchi, G. Zizak, “Investigation of the similarity of soot parameters in ethylene diffusion flames with different height by extinction/scattering technique,” in Proceedings of the 27th Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1998), pp. 1549–1555.
[CrossRef]

Appl. Opt. (5)

Combust. Flame (12)

J. H. Kent, D. R. Honnery, “A soot formation rate map for a laminar ethylene diffusion flame,” Combust. Flame 79, 287–298 (1990).
[CrossRef]

O. L. Gulder, “Soot formation in laminar diffusion flames at elevated temperatures,” Combust. Flame 88, 74–82 (1992).
[CrossRef]

O. L. Gulder, D. R. Snelling, “Influence of nitrogen dilution and flame temperature on soot formation in diffusion flame,” Combust. Flame 92, 115–124 (1993).
[CrossRef]

P. B. Sunderland, G. M. Faeth, “Soot formation in hydrocarbon/air laminar jet diffusion flames,” Combust. Flame 105, 132–146 (1996).
[CrossRef]

I. M. Kennedy, C. Yam, D. C. Rapp, R. J. Santoro, “Modeling and measurements of soot and species in a laminar diffusion flame,” Combust. Flame 107, 368–382 (1996).
[CrossRef]

R. J. Santoro, H. G. Semerjian, R. A. Dobbins, “Soot particle measurements in diffusion flames,” Combust. Flame 51, 203–218 (1983).
[CrossRef]

C. R. Shaddix, R. C. Smyth, “Laser-induced incandescence measurements of soot production in steady and flickering methane, propane, and ethylene diffusion flames,” Combust. Flame 107, 418–452 (1996).
[CrossRef]

R. L. Vander Wal, Z. Zhou, M. Y. Choi, “Laser-induced incandescence calibration via gravimetric sampling,” Combust. Flame 105, 462–470 (1996).
[CrossRef]

S. De Iuliis, M. Barbini, S. Benecchi, F. Cignoli, G. Zizak, “Determination of the soot volume fraction in an ethylene diffusion flame by multiwavelength analysis of soot radiation,” Combust. Flame 115, 253–261 (1998).
[CrossRef]

M. Klassen, Y. R. Sivathanu, J. L. Gore, “Simultaneous emission absorption measurements in toluene-fueled pool flames: mean and RMS properties,” Combust. Flame 90, 34–44 (1992).
[CrossRef]

M. Y. Choi, A. Hamins, G. W. Mulholland, T. Kashiwagi, “Simultaneous optical measurement of soot volume fraction and temperature in premixed flames,” Combust. Flame 99, 174–186 (1994).
[CrossRef]

R. J. Santoro, H. G. Semerjian, R. A. Dobbins, “Soot particle measurements in diffusion flames,” Combust. Flame 51, 203–218 (1983).
[CrossRef]

Combust. Sci. Technol. (3)

L. R. Boedeker, G. M. Dobbs, “CARS temperature measurements in sooting, laminar diffusion flames,” Combust. Sci. Technol. 46, 301–323 (1986).
[CrossRef]

R. J. Santoro, T. T. Yeh, J. J. Horvath, H. G. Semerjian, “The transport and growth of soot particles in laminar diffusion flames,” Combust. Sci. Technol. 53, 89–115 (1989).
[CrossRef]

S. Kumar, C. L. Tien, “Effective diameter of agglomerates for radiative extinction and scattering,” Combust. Sci. Technol. 66, 199–216 (1989).
[CrossRef]

Fuel (1)

F. Cignoli, S. De Iuliis, G. Zizak, “Soot load versus aromatic concentration in Diesel oil premixed flames,” Fuel 80, 945–955 (2001).
[CrossRef]

Meas. Sci. Technol. (2)

S. di Stasio, P. Massoli, “Influence of the soot properties uncertainties in temperature and volume-fraction measurements by two-color pyrometry,” Meas. Sci. Technol. 5, 1453–1465 (1994).
[CrossRef]

J. Vattulainen, V. Nummela, R. Hernberg, J. Kytola, “A system for quantitative imaging diagnostics and its application to pyrometric in-cylinder flame-temperature measurements in large Diesel engines,” Meas. Sci. Technol. 11, 103–112 (2000).
[CrossRef]

Opt. Lett. (1)

Proc. R. Soc. London Ser. A (1)

H. Chang, T. T. Charalampopoulos, “Determination of the wavelength dependence of refractive indices of flame soot,” Proc. R. Soc. London Ser. A 430, 577–591 (1990).
[CrossRef]

Prog. Energy Combust. Sci. (1)

T. T. Charalampopoulos, “Morphology and dynamics of agglomerated particulates in combustion systems using light scattering techniques,” Prog. Energy Combust. Sci. 18, 13–45 (1992).
[CrossRef]

Rev. Sci. Instrum. (2)

U. Anselmi-Tamburini, G. Campari, G. Spinolo, P. Lupotto, “A two-color spatial-scanning pyrometer for the determination of temperature profiles in combustion synthesis reactions,” Rev. Sci. Instrum. 66, 5006–5014 (1995).
[CrossRef]

M. B. Boslough, T. J. Ahrens, “A sensitive time-resolved radiation pyrometer for shock-temperature measurements above 1500 K,” Rev. Sci. Instrum. 60, 3711–3716 (1989).
[CrossRef]

Other (10)

R. J. Santoro, H. G. Semerjian, “Soot formation in diffusion flames: flow rate, fuel species, and temperature effects,” in Proceedings of the 20th Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1984), pp. 997–1006.

S. De Iuliis, F. Cignoli, S. Benecchi, G. Zizak, “Investigation of the similarity of soot parameters in ethylene diffusion flames with different height by extinction/scattering technique,” in Proceedings of the 27th Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1998), pp. 1549–1555.
[CrossRef]

Y. Matsui, T. Kamimoto, S. Matsuoka, “A study on the time and space resolved measurement of flame temperature and soot concentration in a D.I. Diesel engine by the two-color method,” SAE Tech. Paper 790491 (Society of Automotive Engineers, Warrendale, Pa., 1979).

H. X. Quoc, J.-M. Vignon, M. Brun, “A new approach of the two-color method for determining local instantaneous soot concentration and temperature in a D.I. Diesel combustion chamber,” SAE Tech. Paper 910736 (Society of Automotive Engineers, Warrendale, Pa., 1991).

R. L. Vander Wal, “Calibration and comparison of laser-induced incandescence with cavity ring-down,” in Proceedings of the 27th Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1998), pp. 59–67.
[CrossRef]

R. G. Siddall, I. A. McGrath, “The emissivity of luminous flames,” in Proceedings of the 9th Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1962), pp. 102–110.

P. J. Pagni, S. Bard, “Particulate volume fractions in diffusion flames,” in Proceedings of the 17th Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1978), pp. 1017–1028.

W. Lee, Y. D. Na, “Soot study in laminar diffusion flames at elevated pressure using two-color pyrometry and Abel inversion,” in Proceedings of the 4th JSME-KSME Thermal Engineering Conference (Japan Society of Mechanical Engineers, Tokyo, Japan, 2000).

W. Lee, Y. D. Na, “Determination of the soot temperature in laminar diffusion flames at elevated pressures using two-wavelength pyrometry with Abel inversion,” in Book-of-Abstracts of the 28th Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 2000).

R. Villasenor, I. M. Kennedy, “Soot formation and oxidation in laminar diffusion flames,” in Proceedings of the 24th Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1992), pp. 1023–1030.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Experimental apparatus.

Fig. 2
Fig. 2

CCD camera linearity range: ◇, red and □, blue wavelength regions, △, exposure time, and ○, diaphragm number.

Fig. 3
Fig. 3

Soot volume fraction radial profiles in an ethylene diffusion flame of 6.5-cm height. Emission and extinction measurements are compared.

Fig. 4
Fig. 4

Comparison of the f v radial profiles that we obtained by focusing on the flame axis (solid curve) and shifting the burner axis by ±5 mm (dotted curve) from the detector.

Fig. 5
Fig. 5

Comparison between the temperature radial profiles calculated with our technique (filled squares) and those obtained from the multiwavelength emission measurements in Ref. 14 (open circles).

Fig. 6
Fig. 6

Chord-integrated radial profile of the soot volume fraction at the maximum f v axial location in a rich premixed flame of Diesel oil by emission and extinction techniques.

Fig. 7
Fig. 7

Maximum average soot volume fraction versus the equivalence ratio in rich premixed flames of Diesel oil by emission and extinction techniques.

Fig. 8
Fig. 8

2-D soot volume fraction distribution for two methane diffusion flames.

Fig. 9
Fig. 9

2-D soot volume fraction distribution for two propane diffusion flames.

Fig. 10
Fig. 10

Axial profiles of the local values of f v [(a) and (c)] and of the soot load in the flame section [(b) and (d)] compared for methane and propane.

Fig. 11
Fig. 11

Temperature field for methane (h f = 5 cm) and propane (h f = 8 cm). Gray-scale spans from 1600 to 2100 K in 50 K steps. Black-and-white areas are below and above this range, respectively. The sawtooth contour is due to the binned pixel patterns.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

Esλλ, Ts=τsλRBBλ, Tsεsλ, fv,
fv=πdp3N6,
εsλ, fv=1-exp-KabsL,
Kabs=36πFλfvλ=fvlabsλ,
εs=1-expfvLlabsλ.
ELλλ, TL=τLλRBBλ, TLεLλ, TL,
τsλ1τsλ2=τLλ1τLλ2.
TS=-c21λ1-1λ2lnESλ1ESλ2ELλ2ELλ1εLλ1, TLεLλ2, TLlabsλ1labsλ2+c2TL1λ2-1λ1-1,
fv=-labsLln1-εLλ, TLτSλτLλESλELλ×exp-c2λ1TL-1TS.

Metrics