Abstract

Taking into account Poisson, background, amplifier, and speckle noise, we can simulate the precision of water-vapor measurements by using a 10-W average-power differential absorption lidar (DIAL) system. This system is currently under development at Hohenheim University, Germany, and at the American National Center for Atmospheric Research. For operation in the 940-nm region, a large set of measurement situations is described, including configurations that are considered for the first time to the authors’ knowledge. They include ultrahigh-resolution measurements in the surface layer (resolutions, 1.5 m and 0.1 s) and vertically pointing measurements (resolutions, 30 m and 1 s) from the ground to 2 km in the atmospheric boundary layer. Even during daytime, the DIAL system will have a measurement range from the ground to the upper troposphere (300 m, 10 min) that can be extended from a mountain site to the lower stratosphere. From the ground, for the first time of which the authors are aware, three-dimensional fields of water vapor in the boundary layer can be investigated within a range of the order of 15 km and with an averaging time of 10 min. From an aircraft, measurements of the atmospheric boundary layer (60 m, 1 s) can be performed from a height of 4 km to the ground. At higher altitudes, up to 18 km, water-vapor profiles can still be obtained from aircraft height level to the ground. When it is being flown either in the free troposphere or in the stratosphere, the system will measure horizontal water-vapor profiles up to 12 km. We are not aware of another remote-sensing technique that provides, simultaneously, such high resolution and accuracy.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Wulfmeyer, C. Walther, “The future potential of ground-based and airborne water vapor differential absorption lidar. I. Overview and theory,” Appl. Opt. 40, 5304–5320 (2001).
    [CrossRef]
  2. S. Ismail, E. V. Browell, “Airborne and spaceborne lidar measurements of water vapor profiles: a sensitivity analysis,” Appl. Opt. 28, 3603–3614 (1989).
    [CrossRef] [PubMed]
  3. L. Elterman, “UV, visible, and IR attenuation for altitudes to 50 km,” Environmental Research Papers, AFCRL-68-0153 285 (U.S. Air Force Cambridge Research Laboratory, Bedford, Mass., 1968).
  4. S. Erhard, A. Giesen, M. Karszewski, T. Rupp, C. Stewen, “Novel pump design of Yb:YAG thin disk laser for operation at room temperature with high efficiency,” in Advanced Solid-State Lasers, Vol. 26 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), p. 26.
  5. G. Ehret, H. H. Klingenberg, U. Hefter, A. Assion, A. Fix, G. Proberaj, S. Berger, S. Geiger, Q. Lü, “High peak and average power all solid-state laser systems for airborne LIDAR applications,” LaserOpto 32, 29–37 (2000).
  6. A. K. Sridharan, T. Rutherford, W. M. Tulloch, R. L. Byer, “A proposed 1.55 µm solid state laser system for remote wind sensing,” in 10th Conference on Coherent Laser Radar (University Space Research Association, Huntsville, Ala., 1999), pp. 241–277.
  7. T. F. Refaat, W. S. Luck, R. J. DeYoung, “Design of advanced atmospheric water vapor differential absorption lidar (DIAL) detection system,” (NASA Langley Research Center, Hampton, Va., 1999).
  8. E. E. Remsberg, L. L. Gordley, “Analysis of differential absorption lidar from the Space Shuttle,” Appl. Opt. 17, 624–630 (1978).
    [CrossRef] [PubMed]
  9. V. Wulfmeyer, “DIAL—Messungen von vertikalen Wasserdampfverteilungen—ein Lasersystem für Wasserdampf- und Temperaturmessungen in der Troposphäre,” Ph.D. dissertation (Max-Planck-Institut für Meteorologie, Hamburg, Germany, 1995).
  10. W. E. Eichinger, D. I. Cooper, F. L. Archuletta, D. Hof, D. B. Holtkamp, R. R. Karl, C. R. Quick, J. Tiee, “Development of a scanning, solar-blind water Raman lidar,” Appl. Opt. 33, 3923–3932 (1994).
    [CrossRef] [PubMed]
  11. World Meteorological Organization, The WCRP/GEWEX Global Water Vapor Project (GVaP): Science Plan, Publ. 27 (International GEWEX Project Office, 1010 Wayne Ave., Silver Spring, Md. 20910, 1999).
  12. World Meteorological Organization, The WCRP/GEWEX Global Water Vapor Project (GVaP): Implementation Plan, Publ. (International GEWEX Project Office, 1010 Wayne Ave., Silver Spring, Md. 20910, 1999).

2001 (1)

2000 (1)

G. Ehret, H. H. Klingenberg, U. Hefter, A. Assion, A. Fix, G. Proberaj, S. Berger, S. Geiger, Q. Lü, “High peak and average power all solid-state laser systems for airborne LIDAR applications,” LaserOpto 32, 29–37 (2000).

1994 (1)

1989 (1)

1978 (1)

Archuletta, F. L.

Assion, A.

G. Ehret, H. H. Klingenberg, U. Hefter, A. Assion, A. Fix, G. Proberaj, S. Berger, S. Geiger, Q. Lü, “High peak and average power all solid-state laser systems for airborne LIDAR applications,” LaserOpto 32, 29–37 (2000).

Berger, S.

G. Ehret, H. H. Klingenberg, U. Hefter, A. Assion, A. Fix, G. Proberaj, S. Berger, S. Geiger, Q. Lü, “High peak and average power all solid-state laser systems for airborne LIDAR applications,” LaserOpto 32, 29–37 (2000).

Browell, E. V.

Byer, R. L.

A. K. Sridharan, T. Rutherford, W. M. Tulloch, R. L. Byer, “A proposed 1.55 µm solid state laser system for remote wind sensing,” in 10th Conference on Coherent Laser Radar (University Space Research Association, Huntsville, Ala., 1999), pp. 241–277.

Cooper, D. I.

DeYoung, R. J.

T. F. Refaat, W. S. Luck, R. J. DeYoung, “Design of advanced atmospheric water vapor differential absorption lidar (DIAL) detection system,” (NASA Langley Research Center, Hampton, Va., 1999).

Ehret, G.

G. Ehret, H. H. Klingenberg, U. Hefter, A. Assion, A. Fix, G. Proberaj, S. Berger, S. Geiger, Q. Lü, “High peak and average power all solid-state laser systems for airborne LIDAR applications,” LaserOpto 32, 29–37 (2000).

Eichinger, W. E.

Elterman, L.

L. Elterman, “UV, visible, and IR attenuation for altitudes to 50 km,” Environmental Research Papers, AFCRL-68-0153 285 (U.S. Air Force Cambridge Research Laboratory, Bedford, Mass., 1968).

Erhard, S.

S. Erhard, A. Giesen, M. Karszewski, T. Rupp, C. Stewen, “Novel pump design of Yb:YAG thin disk laser for operation at room temperature with high efficiency,” in Advanced Solid-State Lasers, Vol. 26 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), p. 26.

Fix, A.

G. Ehret, H. H. Klingenberg, U. Hefter, A. Assion, A. Fix, G. Proberaj, S. Berger, S. Geiger, Q. Lü, “High peak and average power all solid-state laser systems for airborne LIDAR applications,” LaserOpto 32, 29–37 (2000).

Geiger, S.

G. Ehret, H. H. Klingenberg, U. Hefter, A. Assion, A. Fix, G. Proberaj, S. Berger, S. Geiger, Q. Lü, “High peak and average power all solid-state laser systems for airborne LIDAR applications,” LaserOpto 32, 29–37 (2000).

Giesen, A.

S. Erhard, A. Giesen, M. Karszewski, T. Rupp, C. Stewen, “Novel pump design of Yb:YAG thin disk laser for operation at room temperature with high efficiency,” in Advanced Solid-State Lasers, Vol. 26 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), p. 26.

Gordley, L. L.

Hefter, U.

G. Ehret, H. H. Klingenberg, U. Hefter, A. Assion, A. Fix, G. Proberaj, S. Berger, S. Geiger, Q. Lü, “High peak and average power all solid-state laser systems for airborne LIDAR applications,” LaserOpto 32, 29–37 (2000).

Hof, D.

Holtkamp, D. B.

Ismail, S.

Karl, R. R.

Karszewski, M.

S. Erhard, A. Giesen, M. Karszewski, T. Rupp, C. Stewen, “Novel pump design of Yb:YAG thin disk laser for operation at room temperature with high efficiency,” in Advanced Solid-State Lasers, Vol. 26 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), p. 26.

Klingenberg, H. H.

G. Ehret, H. H. Klingenberg, U. Hefter, A. Assion, A. Fix, G. Proberaj, S. Berger, S. Geiger, Q. Lü, “High peak and average power all solid-state laser systems for airborne LIDAR applications,” LaserOpto 32, 29–37 (2000).

Lü, Q.

G. Ehret, H. H. Klingenberg, U. Hefter, A. Assion, A. Fix, G. Proberaj, S. Berger, S. Geiger, Q. Lü, “High peak and average power all solid-state laser systems for airborne LIDAR applications,” LaserOpto 32, 29–37 (2000).

Luck, W. S.

T. F. Refaat, W. S. Luck, R. J. DeYoung, “Design of advanced atmospheric water vapor differential absorption lidar (DIAL) detection system,” (NASA Langley Research Center, Hampton, Va., 1999).

Proberaj, G.

G. Ehret, H. H. Klingenberg, U. Hefter, A. Assion, A. Fix, G. Proberaj, S. Berger, S. Geiger, Q. Lü, “High peak and average power all solid-state laser systems for airborne LIDAR applications,” LaserOpto 32, 29–37 (2000).

Quick, C. R.

Refaat, T. F.

T. F. Refaat, W. S. Luck, R. J. DeYoung, “Design of advanced atmospheric water vapor differential absorption lidar (DIAL) detection system,” (NASA Langley Research Center, Hampton, Va., 1999).

Remsberg, E. E.

Rupp, T.

S. Erhard, A. Giesen, M. Karszewski, T. Rupp, C. Stewen, “Novel pump design of Yb:YAG thin disk laser for operation at room temperature with high efficiency,” in Advanced Solid-State Lasers, Vol. 26 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), p. 26.

Rutherford, T.

A. K. Sridharan, T. Rutherford, W. M. Tulloch, R. L. Byer, “A proposed 1.55 µm solid state laser system for remote wind sensing,” in 10th Conference on Coherent Laser Radar (University Space Research Association, Huntsville, Ala., 1999), pp. 241–277.

Sridharan, A. K.

A. K. Sridharan, T. Rutherford, W. M. Tulloch, R. L. Byer, “A proposed 1.55 µm solid state laser system for remote wind sensing,” in 10th Conference on Coherent Laser Radar (University Space Research Association, Huntsville, Ala., 1999), pp. 241–277.

Stewen, C.

S. Erhard, A. Giesen, M. Karszewski, T. Rupp, C. Stewen, “Novel pump design of Yb:YAG thin disk laser for operation at room temperature with high efficiency,” in Advanced Solid-State Lasers, Vol. 26 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), p. 26.

Tiee, J.

Tulloch, W. M.

A. K. Sridharan, T. Rutherford, W. M. Tulloch, R. L. Byer, “A proposed 1.55 µm solid state laser system for remote wind sensing,” in 10th Conference on Coherent Laser Radar (University Space Research Association, Huntsville, Ala., 1999), pp. 241–277.

Walther, C.

Wulfmeyer, V.

V. Wulfmeyer, C. Walther, “The future potential of ground-based and airborne water vapor differential absorption lidar. I. Overview and theory,” Appl. Opt. 40, 5304–5320 (2001).
[CrossRef]

V. Wulfmeyer, “DIAL—Messungen von vertikalen Wasserdampfverteilungen—ein Lasersystem für Wasserdampf- und Temperaturmessungen in der Troposphäre,” Ph.D. dissertation (Max-Planck-Institut für Meteorologie, Hamburg, Germany, 1995).

Appl. Opt. (4)

LaserOpto (1)

G. Ehret, H. H. Klingenberg, U. Hefter, A. Assion, A. Fix, G. Proberaj, S. Berger, S. Geiger, Q. Lü, “High peak and average power all solid-state laser systems for airborne LIDAR applications,” LaserOpto 32, 29–37 (2000).

Other (7)

A. K. Sridharan, T. Rutherford, W. M. Tulloch, R. L. Byer, “A proposed 1.55 µm solid state laser system for remote wind sensing,” in 10th Conference on Coherent Laser Radar (University Space Research Association, Huntsville, Ala., 1999), pp. 241–277.

T. F. Refaat, W. S. Luck, R. J. DeYoung, “Design of advanced atmospheric water vapor differential absorption lidar (DIAL) detection system,” (NASA Langley Research Center, Hampton, Va., 1999).

V. Wulfmeyer, “DIAL—Messungen von vertikalen Wasserdampfverteilungen—ein Lasersystem für Wasserdampf- und Temperaturmessungen in der Troposphäre,” Ph.D. dissertation (Max-Planck-Institut für Meteorologie, Hamburg, Germany, 1995).

World Meteorological Organization, The WCRP/GEWEX Global Water Vapor Project (GVaP): Science Plan, Publ. 27 (International GEWEX Project Office, 1010 Wayne Ave., Silver Spring, Md. 20910, 1999).

World Meteorological Organization, The WCRP/GEWEX Global Water Vapor Project (GVaP): Implementation Plan, Publ. (International GEWEX Project Office, 1010 Wayne Ave., Silver Spring, Md. 20910, 1999).

L. Elterman, “UV, visible, and IR attenuation for altitudes to 50 km,” Environmental Research Papers, AFCRL-68-0153 285 (U.S. Air Force Cambridge Research Laboratory, Bedford, Mass., 1968).

S. Erhard, A. Giesen, M. Karszewski, T. Rupp, C. Stewen, “Novel pump design of Yb:YAG thin disk laser for operation at room temperature with high efficiency,” in Advanced Solid-State Lasers, Vol. 26 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), p. 26.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (23)

Fig. 1
Fig. 1

Comparison of the currents produced by the off-line and the on-line signals of a 10-mJ horizontally pointing system in the ABL at 940 nm. These currents are compared with typical rms noise currents produced by Poisson noise, speckle noise, daylight background noise, and detector–amplifier (det/amp) noise.

Fig. 2
Fig. 2

Comparison of the currents produced by the off-line and the on-line signals of a 10-mJ horizontally pointing system in the ABL at 1400 nm. These currents are compared with typical rms noise currents produced by Poisson noise, speckle noise, daylight background noise, and detector–amplifier (det/amp) noise.

Fig. 3
Fig. 3

Error analysis of a 10-mJ horizontally pointing system in the ABL at 940 nm.

Fig. 4
Fig. 4

Error analysis of a 10-mJ horizontally pointing system in the ABL at 1400 nm.

Fig. 5
Fig. 5

Error analysis of the speckle term in a horizontally pointing system in the ABL. The laser pulse energy varies between 10 mJ and 1 J. The detector system parameters are set to Δν f = 0.5 nm and a FOV of 0.5 mrad.

Fig. 6
Fig. 6

Error analysis of the speckle term in a horizontally pointing system in the ABL. The laser pulse energy is set to 1 J.

Fig. 7
Fig. 7

Error analysis of a horizontally pointing system in the ABL. The off-line laser pulse energy is 10 mJ, and the repetition rate is 1 kHz. The detector system parameters are optimized to a FOV of 0.2 mrad and Δλ F = 0.2 nm. The other parameters used are summarized in Table 2.

Fig. 8
Fig. 8

Error analysis of a horizontally pointing system in the ABL. The off-line laser pulse energy is 100 mJ, and the repetition rate is 100 Hz. The detector system parameters are optimized to a FOV of 0.2 mrad and Δλ F = 0.2 nm. The other parameters used are summarized in Table 2.

Fig. 9
Fig. 9

Error analysis of a horizontally pointing system in the ABL. The off-line laser pulse energy is 1 J, and the repetition rate is 10 Hz. The detector system parameters are optimized to a FOV of 0.2 mrad and Δλ F = 0.2 nm. The other parameters used are summarized in Table 2.

Fig. 10
Fig. 10

Error analysis of an optimized horizontally pointing system in the ABL. The off-line laser pulse energy is 1 J, and the repetition rate is 10 Hz. The detector system parameters are a FOV of 0.2 mrad and Δλ F = 0.2 nm. Furthermore, Δt = 20 ns, Δν L ν FT = 3, and F θ = 3. The other parameters used are summarized in Table 2.

Fig. 11
Fig. 11

Error analysis of a scanning system in the ABL. Shown is the spatial resolution of the system with a scan speed of 360° in 60 s. The resolution is chosen such that the precision is better than 5% in each range square. The results are shown for several settings of the pulse energy while the same average power is maintained.

Fig. 12
Fig. 12

Error analysis of an optimized scanning system in the ABL. Shown is the spatial resolution of the system with a scan speed of 360° in 60 s. The resolution is chosen such that the precision is better than 5% in each range square. The bandwidth of the laser pulse is three times Fourier limited, the divergence is three times diffraction limited, and the pulse duration is 20 ns.

Fig. 13
Fig. 13

Error analysis of an ultrahigh-resolution ground-based horizontal DIAL measurement with resolutions of 1.5 m and 0.1 s. The pulse energy is 10 mJ.

Fig. 14
Fig. 14

Error analysis of a vertically pointing high-resolution DIAL system in the ABL with a pulse energy of 10 mJ as well as resolutions of 30 m and 1 s. All error profiles correspond to daytime measurements.

Fig. 15
Fig. 15

Error analysis of the daytime performance of a ground-based vertically pointing DIAL system in the troposphere with a pulse energy of 100 mJ, a repetition rate of 100 Hz, and resolutions of 300 m and 10 min as well as of 2000 m and 30 min.

Fig. 16
Fig. 16

Error analysis of a vertically pointing DIAL system deployed on a 3-km-high mountain site with a pulse energy of 100 mJ, a repetition rate of 100 Hz, and resolutions of 300 m and 10 min as well as of 2000 m and 30 min. Again, the data show the daytime performance.

Fig. 17
Fig. 17

Error analysis of an airborne horizontally pointing system in the ABL. The range resolution is 300 m and the averaging time is 2 s. Other system parameters are summarized in Table 5. All error profiles correspond to daytime measurements. The average laser power is low.

Fig. 18
Fig. 18

Error analysis of an airborne horizontally pointing system in the ABL. The range resolution is 600 m and the averaging time is 4 s. Other system parameters are summarized in Table 5. All the error profiles correspond to daytime measurements. The average laser power is low.

Fig. 19
Fig. 19

Error analysis of an airborne downward-looking DIAL system at a height of 4 km with a pulse energy of 10 mJ, a repetition rate of 1 kHz, and range and time resolutions of 60 m and 0.5 s, respectively, per on-line frequency.

Fig. 20
Fig. 20

Error analysis of an airborne downward-looking DIAL system at a height of 12 km with a pulse energy of 10 mJ, a repetition rate of 1 kHz, and range and time resolutions of 300 m and 2 s, respectively, per on-line frequency.

Fig. 21
Fig. 21

Error analysis of an airborne downward-looking DIAL system at a height of 18 km with a pulse energy of 10 mJ, a repetition rate of 1 kHz, and range and time resolutions of 300 m and 3 s, respectively, per on-line frequency.

Fig. 22
Fig. 22

Error analysis of a 6-km-high horizontally pointing DIAL system with a pulse energy of 100 mJ, a repetition rate of 100 Hz, and range and time resolutions of 600 m and 4 s, respectively.

Fig. 23
Fig. 23

Error analysis of a 15-km-high horizontally pointing DIAL system with a pulse energy of 100 mJ, a repetition rate of 100 Hz, and range and time resolutions of 600 m and 4 s, respectively.

Tables (7)

Tables Icon

Table 1 Parameters for Performance Simulationsa

Tables Icon

Table 2 Parameters for the Simulation of a Horizontally Pointing or Scanning DIAL System in the ABLa

Tables Icon

Table 3 Parameters for the Simulation of an Ultrahigh-Resolution Horizontally Pointing DIAL System in the ABL

Tables Icon

Table 4 Parameters for the Simulation of a Vertically Pointing, High-Resolution DIAL System in the ABL

Tables Icon

Table 5 Parameters for the Simulation of an Airborne Horizontally Pointing DIAL System in the ABL

Tables Icon

Table 6 Parameters for the Simulation of an Airborne Downward Pointing DIAL System in the ABL

Tables Icon

Table 7 Parameters for the Simulation of an Airborne Horizontally Pointing DIAL System in the Middle Troposphere and Lower Stratosphere

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

σnnH2O1Δτ212mkFdetηDNs,off¯exp2τ+1+FdetηDNs,off¯2*Nb¯Ns,off¯exp4τ+1+2*BIdet2+Iamp2BeGηDNs,off¯2exp4τ+1+1l2ΔνFTΔνL+2*Nb¯2Ns,off¯2ΔνFTΔνfexp4τ+11/2
Nb=Iνhν ΔνfAπFOV2TrecΔt.
Nb=Lνhνρπexp-2τatmνΔνfAπFOV2TrecΔt.
NsR=E0hνcΔt2TlasTrecORβRAR2×exp-2 0R αrdr,

Metrics