Abstract

The performance of a future advanced water-vapor differential absorption lidar (DIAL) system is discussed. It is shown that the system has to be a direct-detection system operating in the ρστ band of water vapor in the 940-nm wavelength region. The most important features of the DIAL technique are introduced: its clear-air measurement capability, its flexibility, and its simultaneous high resolution and accuracy. It is demonstrated that such a DIAL system can contribute to atmospheric sciences over a large range of scales and over a large variety of humidity conditions. An extended error analysis is performed, and errors (e.g., speckle noise) are included that previously were not been discussed in detail and that become important for certain system designs and measurement conditions. The applicability of the derived equation is investigated by comparisons with real data. Excellent agreement is found.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (13)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (36)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription