Abstract

The performance of a future advanced water-vapor differential absorption lidar (DIAL) system is discussed. It is shown that the system has to be a direct-detection system operating in the ρστ band of water vapor in the 940-nm wavelength region. The most important features of the DIAL technique are introduced: its clear-air measurement capability, its flexibility, and its simultaneous high resolution and accuracy. It is demonstrated that such a DIAL system can contribute to atmospheric sciences over a large range of scales and over a large variety of humidity conditions. An extended error analysis is performed, and errors (e.g., speckle noise) are included that previously were not been discussed in detail and that become important for certain system designs and measurement conditions. The applicability of the derived equation is investigated by comparisons with real data. Excellent agreement is found.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Committee on Global Change Research and Board on Sustainable Development, National Research Council, eds., Global Environmental Change: Research Pathways for the Next Decade (National Academy Press, Washington, D.C., 1998).
  2. K. Emanuel, D. Raymond, A. Betts, L. Bosart, C. Bretherton, K. Droegemeier, B. Farell, J. M. Fritsch, R. Houze, M. LeMone, D. Lilly, R. Rotunno, M. Shapiro, R. Smith, A. Thorpe, “Report of the first prospectus development team of the U.S. Weather Research Program to NOAA and the NSF,” Bull. Am. Meteorol. Soc. 76, 1194–1208 (1995).
  3. Board on Atmospheric Sciences and Climate of the National Research Council, ed., The Atmospheric Sciences Entering the Twenty-First Century (National Academy Press, Washington, D.C., 1998).
  4. World Meteorological Organization, Global Energy and Water Cycle Experiment (GEWEX)—Report on the First GEWEX Temperature/Humidity Retrieval Workshop, World Meteorological Organization, (International GEWEX Project Office, 1010 Wayne Ave., Silver Spring, Md. 20910).
  5. D. C. O’Starr, S. H. Melfi, eds. “The role of water vapor in climate,” (NASA Goddard Space Flight Center, Greenbelt, Md., 1991).
  6. D. C. O’Starr, S. H. Melfi, Implementation Plan for the Pilot Phase of the Global Water Vapor Project, Publ. 2 (International GEWEX Project Office, 1010 Wayne Ave., Silver Spring, Md. 20910, 1991).
  7. World Meteorological Organization, The WCRP/GEWEX Global Water Vapor Project (GVaP): Science Plan, Publ. 27 (International GEWEX Project Office, 1010 Wayne Ave., Silver Spring, Md., 20910, 1999).
  8. World Meteorological Organization, The WCRP/GEWEX Global Water Vapor Project (GVaP): Implementation Plan, Publ. 32 (International GEWEX Project Office, 1010 Wayne Ave., Silver Spring, Md. 20910, 1999).
  9. World Meteorological Organization, GCIP Implementation Plan, 1994: Implementation Plan for GEWEX Continental-Scale Project (GCIP), Publ. 8 (International GEWEX Project Office, 1010 Wayne Ave., Silver Spring, Md., 20910, 1994), Vol. II.
  10. G. M. Stokes, S. E. Schwartz, “The Atmospheric Radiation Measurement (ARM) program: programmatic background and design of the cloud and radiation test bed,” Bull. Am. Meteorol. Soc. 75, 1201–1221 (1994).
    [CrossRef]
  11. K. P. Shine, A. Sinha, “Sensitivity of the Earth’s climate to height-dependent changes in water vapor mixing ratio,” Nature (London) 354, 382–384 (1991).
    [CrossRef]
  12. N. A. Crook, “Sensitivity of moist convection forced by boundary layer processes to low-level thermodynamic fields,” Mon. Weather Rev. 124, 1767–1785 (1996).
    [CrossRef]
  13. T. M. Weckwerth, V. Wulfmeyer, R. M. Wakimoto, R. M. Hardesty, J. W. Wilson, R. M. Banta, “NCAR–NOAA lower tropospheric water vapor workshop,” Bull. Am. Meteorol. Soc. 80, 2339–2357 (1999).
    [CrossRef]
  14. T. M. Weckwerth, “The effect of small-scale moisture variability on thunderstorm initiation,” Mon. Weather Rev. 128, 4017–4030 (2000).
    [CrossRef]
  15. F. Guichard, D. Parsons, E. Miller, “Thermodynamics and radiative impact of the correction of sounding humidity bias in the tropics,” J. Climate 13, 3611–3624 (2000).
    [CrossRef]
  16. V. Wulfmeyer, C. Walther, “Future performance of ground-based and airborne water-vapor differential absorption lidar. II. Simulations of the precision of a near-infrared, high-power system,” Appl. Opt. 40, 5321–5336 (2001).
    [CrossRef]
  17. R. M. Schotland, “Some observations of the vertical profile of water vapor by means of a ground based optical radar,” in Proceedings of the Fourth Symposium on Remote Sensing of the Environment (Environmental Research Institute of Michigan, Ann Arbor, Mich., 1966), pp. 273–283.
  18. S. Ismail, E. V. Browell, “Airborne and spaceborne lidar measurements of water vapor profiles: a sensitivity analysis,” Appl. Opt. 28, 3603–3614 (1989).
    [CrossRef] [PubMed]
  19. V. Wulfmeyer, J. Bösenberg, “Ground-based differential absorption lidar for water-vapor profiling: assessment of accuracy, resolution, and meteorological applications,” Appl. Opt. 37, 3825–3844 (1998).
    [CrossRef]
  20. J. Bösenberg, “Ground-based differential absorption lidar for water-vapor profiling: methodology,” Appl. Opt. 37, 3845–3860 (1998).
    [CrossRef]
  21. A. Ansmann, “Errors in ground-based water-vapor DIAL measurements due to Doppler-broadened Rayleigh backscattering,” Appl. Opt. 24, 3476–3480 (1985).
    [CrossRef] [PubMed]
  22. A. Ansmann, J. Bösenberg, “Correction scheme for spectral broadening by Rayleigh scattering in differential absorption lidar measurements of water vapor in the troposphere,” Appl. Opt. 26, 3026–3032 (1987).
    [CrossRef] [PubMed]
  23. V. Wulfmeyer, “Ground-based differential absorption lidar for water-vapor profiling: development and specifications of a high-performance laser transmitter,” Appl. Opt. 37, 3804–3824 (1998).
    [CrossRef]
  24. A. Ansmann, M. Riebesell, U. Wandinger, C. Weitkamp, E. Voss, W. Lahmann, W. Michaelis, “Combined Raman elastic-backscatter lidar for vertical profiling of moisture, aerosol extinction, backscatter, and lidar ratio,” Appl. Phys. B 55, 18–28 (1992).
    [CrossRef]
  25. D. N. Whiteman, S. H. Melfi, R. A. Ferrare, “Raman lidar system for the measurement of water vapor and aerosols in the Earth’s atmosphere,” Appl. Opt. 31, 3068–3082 (1992).
    [CrossRef] [PubMed]
  26. J. E. M. Goldsmith, F. H. Blair, S. E. Bisson, D. D. Turner, “Turn-key Raman lidar for profiling atmospheric water vapor, clouds, and aerosols,” Appl. Opt. 37, 4979–4990 (1998).
    [CrossRef]
  27. V. Wulfmeyer, “Investigation of turbulent processes in the lower troposphere with water-vapor DIAL and radar-RASS,” J. Atmos. Sci. 56, 1055–1076 (1999).
    [CrossRef]
  28. V. Wulfmeyer, “Investigations of humidity skewness and variance profiles in the convective boundary layer and comparison of the latter with large eddy simulation results,” J. Atmos. Sci. 56, 1077–1087 (1999).
    [CrossRef]
  29. R. A. Ferrare, S. Ismail, E. V. Browell, V. C. Brackett, S. A. Kooi, M. B. Clayton, S. H. Melfi, D. N. Whiteman, G. Schwemmer, K. D. Evans, P. V. Hobbs, J. P. Veefkind, P. B. Russell, J. M. Livingston, P. Hignett, B. N. Bolben, L. A. Remer, “LASE measurements of aerosols and water vapor during TARFOX,” (NASA Langley Research Center, Hampton, Va., (1998), pp. 11–14.
  30. G. Ehret, K. P. Hoinka, J. Stein, A. Fix, C. Kiemle, G. Poberaj, “Low stratospheric water vapor measured by an airborne DIAL,” J. Geophys. Res. 104, 31,351–31,359 (1999).
    [CrossRef]
  31. D. Bruneau, H. Cazeneuve, C. Loth, J. Pelon, “Double-pulse dual-wavelength alexandrite laser for atmospheric water vapor measurement,” Appl. Opt. 30, 3930–3937 (1991).
    [CrossRef] [PubMed]
  32. G. Ehret, A. Fix, V. Weiss, G. Poberaj, T. Baumert, “Diode-laser-seeded optical parametric oscillator for airborne water vapor DIAL application in the upper troposphere and lower stratosphere,” Appl. Phys. B 67, 427–431 (1998).
    [CrossRef]
  33. F. Fabry, C. Frush, I. Zawadzki, A. Kilambi, “On the extraction of near-surface index of refraction using radar phase measurements from ground targets,” J. Atmos. Ocean. Technol. 14, 978–987 (1997).
    [CrossRef]
  34. E. E. Gossard, D. E. Wolfe, B. B. Stankov, “Measurement of humidity profiles in the atmosphere by the global positioning system and radar wind profilers,” J. Atmos. Ocean. Technol. 16, 156–164 (1999).
    [CrossRef]
  35. V. Wulfmeyer, J. Bösenberg, S. Lehmann, C. Senff, St. Schmitz, “Injection-seeded alexandrite ring laser: performance and application in a water-vapor differential absorption lidar,” Opt. Lett. 20, 638–640 (1995).
    [CrossRef] [PubMed]
  36. V. Wulfmeyer, J. Bösenberg, “Single-mode operation of an injection-seeded alexandrite ring laser for application in water-vapor and temperature differential absorption lidar,” Opt. Lett. 21, 1150–1152 (1996).
    [CrossRef] [PubMed]
  37. E. V. Browell, S. Ismail, “First lidar measurements of water vapor and aerosols from a high-altitude aircraft,” in Optical Remote Sensing of the Atmosphere, Vol. 2 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 212–214, paper ThA4.
  38. E. V. Browell, S. Ismail, W. M. Hall, A. S. Moore, S. A. Kooi, V. G. Brackett, M. B. Clayton, J. D. W. Barrick, F. J. Schmidlin, N. S. Higdon, S. H. Melfi, D. N. Whiteman, “LASE validation experiment,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, R. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 289–295.
  39. A. S. Moore, K. E. Brown, W. M. Hall, J. C. Barnes, W. C. Edwards, L. B. Petway, A. D. Little, W. S. Luck, I. W. Jones, C. W. Antill, E. V. Browell, S. Ismail, “Development of the Lidar Atmospheric Sensing Experiment (LASE)—an advanced airborne DIAL instrument,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, R. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 281–288.
  40. G. Ehret, H. H. Klingenberg, U. Hefter, A. Assion, A. Fix, G. Proberaj, S. Berger, S. Geiger, Q. Lü, “High peak and average power all solid-state laser systems for airborne LIDAR applications,” LaserOpto 32, 29–37 (2000).
  41. J. L. Machol, R. M. Hardesty, B. J. Rye, C. J. Grund, “Proposed compact, eye-safe lidar for measuring atmospheric water vapor,” in Proceedings, 18th International Laser Radar Conference (Institut für Troposphärenforschung, Leipzig, Germany, 57 (1996), p. 57.
  42. L. M. Little, P. D. Dragic, S. D. Roh, J. J. Coleman, G. C. Papen, “Initial development of a fiber-based LIDAR system for atmospheric water vapor measurements,” (NASA Langley Research Center, Hampton, Va., (1998), pp. 301–303.
  43. P. Quaglia, D. Bruneau, A. Abchiche, M. Lopez, F. Fassina, J. P. Marcovici, P. Genau, T. Danguy, B. Brient, B. Romand, C. Loth, M. Meissonnier, P. Flamant, J. Pelon, “The airborne water-vapor lidar LEANDREII: design, realization, tests, and first validations,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, R. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 281–288.
  44. H. Linné, D. D. Turner, J. E. M. Goldsmith, T. P. Tooman, J. Bösenberg, K. Ertel, S. Lehmann, “Intercomparison of DIAL and Raman lidar measurements of humidity profiles,” in Advances in Laser Remote Sensing, Editions de l’Ecole Polytechnique (Service d’Aéronomy, Paris, 2001), pp. 293–298.
  45. American Geophysical Union, Water Vapor in the Climate System (American Geophysical Union, Washington, D.C., 1995).
  46. B. Grossmann, E. V. Browell, “Spectroscopy of water vapor in the 720 nm wavelength region: line strengths, self-induced pressure broadenings and shifts, and temperature dependence of linewidths and shifts,” J. Mol. Spectrosc. 136, 264–293 (1989).
    [CrossRef]
  47. B. Grossmann, E. V. Browell, “Water-vapor line broadening and shifting by air, nitrogen, oxygen, and argon in the 720-nm wavelength region,” J. Mol. Spectrosc. 138, 562–595 (1989).
    [CrossRef]
  48. L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, “The HITRAN Molecular Database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
    [CrossRef]
  49. L. Elterman, “UV, visible, and IR attenuation for altitudes to 50 km,” (Air Force Cambridge Research Laboratories, Bedford, Mass., 1968).
  50. A. Berk, L. S. Bernstein, D. C. Robertson, “MODTRAN: a moderate resolution model for LOWTRAN 7,” (Spectral Sciences, Burlington, Mass., 1989).
  51. G. S. Kent, G. M. Hansen, “Scanning lidar with a coupled radar safety system,” Appl. Opt. 38, 6383–6387 (1999).
    [CrossRef]
  52. American National Standards Institute, “American National Standard Z136.1-1986: Safe Use of Lasers (American National Standards Institute, New York, 1986).
  53. S. Lehmann, V. Wulfmeyer, J. Bösenberg, “Time-dependent attenuator for dynamic range reduction of lidar signals,” Appl. Opt. 36, 3469–3474 (1997).
    [CrossRef] [PubMed]
  54. E. D. Hinkley, ed. Laser Monitoring of the Atmosphere (Springer-Verlag, Berlin, 1976).
    [CrossRef]
  55. R. M. Measures, Laser Remote Sensing (Wiley-Interscience, New York, 1983).
  56. F. G. Stremler, Introduction to Communication Systems, 2nd ed. (Addison-Wesley, Reading, Mass.1982), p. 511.
  57. B. J. Rye, “Power ratio estimation in incoherent backscatter lidar: direct detection with Gaussian noise,” Appl. Opt. 28, 3639–3646 (1989).
    [CrossRef] [PubMed]
  58. B. J. Rye, R. M. Hardesty, “Estimate optimization parameters for incoherent backscatter heterodyne lidar,” Appl. Opt. 36, 9425–9436 (1997).
    [CrossRef]
  59. E. R. Murray, R. D. Hake, J. E. Van der Laan, J. G. Hawley, “Atmospheric water vapor measurement with a 10 micrometer DIAL system,” Appl. Phys. Lett. 28, 542–543 (1976).
    [CrossRef]
  60. R. M. Hardesty, “Coherent DIAL measurement of range-resolved water vapor concentration,” Appl. Opt. 23, 2545–2553 (1984).
    [CrossRef] [PubMed]
  61. W. B. Grant, J. S. Margolis, A. M. Brothers, D. M. Tratt, “CO2 DIAL measurements of water vapor,” Appl. Opt. 26, 3033–3042 (1987).
    [CrossRef] [PubMed]
  62. W. A. Brewer, V. Wulfmeyer, R. M. Hardesty, B. Rye, “Combined wind and water-vapor measurements using the NOAA Mini-MOPA Doppler lidar,” in 19th International Laser Radar Conference, NASA/CP-1998-207671/PT1NASA, Washington, D.C., (1998), pp. 565–568.
  63. C. J. Grund, R. M. Banta, J. L. George, J. N. Howell, M. J. Post, R. A. Richter, A. M. Weickmann, “High resolution Doppler lidar for boundary layer and cloud research,” J. Ocean. Atmos. Technol. 18, 376–393 (2001).
    [CrossRef]
  64. V. Wulfmeyer, A. Brewer, A. Weickmann, R. Richter, J. Vanandel, J. Howell, R. Richter, C. Grund, M. Hardesty, P. Hildebrand, “NCAR/NOAA high-resolution Doppler lidar for wind measurements and its potential for water-vapor differential absorption lidar,” presented at the Fourth International Symposium on Tropospheric Profiling, Snowmass, Colo., September 21–25, 1998.
  65. W. A. Brewer, R. M. Hardesty, “Development of a dual-wavelength CO2 mini-MOPA Doppler lidar,” in Coherent Laser Radar: Technology and Applications, Vol. 19 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 293–296.
  66. J. Rothermel, D. R. Cutten, R. M. Hardesty, R. T. Menzies, J. N. Howell, S. C. Johnson, D. M. Tratt, L. D. Olivier, R. M. Banta, “The multi-center airborne coherent atmospheric wind sensor,” Bull. Am. Meteorol. Soc. 79, 581–599 (1998).
    [CrossRef]
  67. P. Beckmann, Probability in Communication Engineering (Harcourt, Brace, World, New York, 1967), Chap. 4.
  68. M. Elbaum, P. Diamant, “SNR in photocounting images of rough objects in partially coherent light,” Appl. Opt. 15, 2268–2275 (1976).
    [CrossRef] [PubMed]
  69. M. Born, E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, Cambridge, 1999).
    [CrossRef]
  70. E. E. Remsberg, L. L. Gordley, “Analysis of differential absorption lidar from the Space Shuttle,” Appl. Opt. 17, 624–630 (1978).
    [CrossRef] [PubMed]
  71. E. V. Browell, T. D. Wilkerson, T. J. Illrath, “Water vapor differential absorption lidar development and evaluation,” Appl. Opt. 18, 3474–3483 (1979).
    [CrossRef] [PubMed]
  72. G. Megie, R. T. Menzies, “Complementarity of UV and IR differential absorption lidar for global measurements of atmospheric species,” Appl. Opt. 19, 1173–1183 (1980).
    [CrossRef] [PubMed]
  73. A. Ansmann, “Fehleranalyse der Differential-Absorption-Lidartechnik zur Ermittlung des troposphärischen Wasserdampfes anhand von Modellsimulationen,” diploma dissertation (University of Hamburg, Hamburg, Germany, 1984).
  74. D. Lenschow, V. Wulfmeyer, C. Senff, “Measuring second- through fourth-order moments in noisy data,” J. Atmos. Ocean. Technol. 17, 1330–1347 (2000).
    [CrossRef]
  75. H. Steinhagen, S. Bakan, J. Bösenberg, H. Dier, D. Engelbart, J. Fischer, G. Gendt, U. Görsdorf, J. Güldner, F. Jansen, V. Lehmann, U. Leiterer, J. Neisser, V. Wulfmeyer, “Field campaign LINEX 96/1—possibilities of water vapor observations in the free atmosphere,” Meteorol. Z. 7, 377–391 (1998).

2001 (2)

C. J. Grund, R. M. Banta, J. L. George, J. N. Howell, M. J. Post, R. A. Richter, A. M. Weickmann, “High resolution Doppler lidar for boundary layer and cloud research,” J. Ocean. Atmos. Technol. 18, 376–393 (2001).
[CrossRef]

V. Wulfmeyer, C. Walther, “Future performance of ground-based and airborne water-vapor differential absorption lidar. II. Simulations of the precision of a near-infrared, high-power system,” Appl. Opt. 40, 5321–5336 (2001).
[CrossRef]

2000 (4)

D. Lenschow, V. Wulfmeyer, C. Senff, “Measuring second- through fourth-order moments in noisy data,” J. Atmos. Ocean. Technol. 17, 1330–1347 (2000).
[CrossRef]

G. Ehret, H. H. Klingenberg, U. Hefter, A. Assion, A. Fix, G. Proberaj, S. Berger, S. Geiger, Q. Lü, “High peak and average power all solid-state laser systems for airborne LIDAR applications,” LaserOpto 32, 29–37 (2000).

T. M. Weckwerth, “The effect of small-scale moisture variability on thunderstorm initiation,” Mon. Weather Rev. 128, 4017–4030 (2000).
[CrossRef]

F. Guichard, D. Parsons, E. Miller, “Thermodynamics and radiative impact of the correction of sounding humidity bias in the tropics,” J. Climate 13, 3611–3624 (2000).
[CrossRef]

1999 (6)

V. Wulfmeyer, “Investigation of turbulent processes in the lower troposphere with water-vapor DIAL and radar-RASS,” J. Atmos. Sci. 56, 1055–1076 (1999).
[CrossRef]

V. Wulfmeyer, “Investigations of humidity skewness and variance profiles in the convective boundary layer and comparison of the latter with large eddy simulation results,” J. Atmos. Sci. 56, 1077–1087 (1999).
[CrossRef]

G. Ehret, K. P. Hoinka, J. Stein, A. Fix, C. Kiemle, G. Poberaj, “Low stratospheric water vapor measured by an airborne DIAL,” J. Geophys. Res. 104, 31,351–31,359 (1999).
[CrossRef]

T. M. Weckwerth, V. Wulfmeyer, R. M. Wakimoto, R. M. Hardesty, J. W. Wilson, R. M. Banta, “NCAR–NOAA lower tropospheric water vapor workshop,” Bull. Am. Meteorol. Soc. 80, 2339–2357 (1999).
[CrossRef]

E. E. Gossard, D. E. Wolfe, B. B. Stankov, “Measurement of humidity profiles in the atmosphere by the global positioning system and radar wind profilers,” J. Atmos. Ocean. Technol. 16, 156–164 (1999).
[CrossRef]

G. S. Kent, G. M. Hansen, “Scanning lidar with a coupled radar safety system,” Appl. Opt. 38, 6383–6387 (1999).
[CrossRef]

1998 (7)

V. Wulfmeyer, “Ground-based differential absorption lidar for water-vapor profiling: development and specifications of a high-performance laser transmitter,” Appl. Opt. 37, 3804–3824 (1998).
[CrossRef]

V. Wulfmeyer, J. Bösenberg, “Ground-based differential absorption lidar for water-vapor profiling: assessment of accuracy, resolution, and meteorological applications,” Appl. Opt. 37, 3825–3844 (1998).
[CrossRef]

J. Bösenberg, “Ground-based differential absorption lidar for water-vapor profiling: methodology,” Appl. Opt. 37, 3845–3860 (1998).
[CrossRef]

J. E. M. Goldsmith, F. H. Blair, S. E. Bisson, D. D. Turner, “Turn-key Raman lidar for profiling atmospheric water vapor, clouds, and aerosols,” Appl. Opt. 37, 4979–4990 (1998).
[CrossRef]

G. Ehret, A. Fix, V. Weiss, G. Poberaj, T. Baumert, “Diode-laser-seeded optical parametric oscillator for airborne water vapor DIAL application in the upper troposphere and lower stratosphere,” Appl. Phys. B 67, 427–431 (1998).
[CrossRef]

H. Steinhagen, S. Bakan, J. Bösenberg, H. Dier, D. Engelbart, J. Fischer, G. Gendt, U. Görsdorf, J. Güldner, F. Jansen, V. Lehmann, U. Leiterer, J. Neisser, V. Wulfmeyer, “Field campaign LINEX 96/1—possibilities of water vapor observations in the free atmosphere,” Meteorol. Z. 7, 377–391 (1998).

J. Rothermel, D. R. Cutten, R. M. Hardesty, R. T. Menzies, J. N. Howell, S. C. Johnson, D. M. Tratt, L. D. Olivier, R. M. Banta, “The multi-center airborne coherent atmospheric wind sensor,” Bull. Am. Meteorol. Soc. 79, 581–599 (1998).
[CrossRef]

1997 (3)

1996 (2)

V. Wulfmeyer, J. Bösenberg, “Single-mode operation of an injection-seeded alexandrite ring laser for application in water-vapor and temperature differential absorption lidar,” Opt. Lett. 21, 1150–1152 (1996).
[CrossRef] [PubMed]

N. A. Crook, “Sensitivity of moist convection forced by boundary layer processes to low-level thermodynamic fields,” Mon. Weather Rev. 124, 1767–1785 (1996).
[CrossRef]

1995 (2)

K. Emanuel, D. Raymond, A. Betts, L. Bosart, C. Bretherton, K. Droegemeier, B. Farell, J. M. Fritsch, R. Houze, M. LeMone, D. Lilly, R. Rotunno, M. Shapiro, R. Smith, A. Thorpe, “Report of the first prospectus development team of the U.S. Weather Research Program to NOAA and the NSF,” Bull. Am. Meteorol. Soc. 76, 1194–1208 (1995).

V. Wulfmeyer, J. Bösenberg, S. Lehmann, C. Senff, St. Schmitz, “Injection-seeded alexandrite ring laser: performance and application in a water-vapor differential absorption lidar,” Opt. Lett. 20, 638–640 (1995).
[CrossRef] [PubMed]

1994 (1)

G. M. Stokes, S. E. Schwartz, “The Atmospheric Radiation Measurement (ARM) program: programmatic background and design of the cloud and radiation test bed,” Bull. Am. Meteorol. Soc. 75, 1201–1221 (1994).
[CrossRef]

1992 (3)

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, “The HITRAN Molecular Database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

A. Ansmann, M. Riebesell, U. Wandinger, C. Weitkamp, E. Voss, W. Lahmann, W. Michaelis, “Combined Raman elastic-backscatter lidar for vertical profiling of moisture, aerosol extinction, backscatter, and lidar ratio,” Appl. Phys. B 55, 18–28 (1992).
[CrossRef]

D. N. Whiteman, S. H. Melfi, R. A. Ferrare, “Raman lidar system for the measurement of water vapor and aerosols in the Earth’s atmosphere,” Appl. Opt. 31, 3068–3082 (1992).
[CrossRef] [PubMed]

1991 (2)

D. Bruneau, H. Cazeneuve, C. Loth, J. Pelon, “Double-pulse dual-wavelength alexandrite laser for atmospheric water vapor measurement,” Appl. Opt. 30, 3930–3937 (1991).
[CrossRef] [PubMed]

K. P. Shine, A. Sinha, “Sensitivity of the Earth’s climate to height-dependent changes in water vapor mixing ratio,” Nature (London) 354, 382–384 (1991).
[CrossRef]

1989 (4)

B. Grossmann, E. V. Browell, “Spectroscopy of water vapor in the 720 nm wavelength region: line strengths, self-induced pressure broadenings and shifts, and temperature dependence of linewidths and shifts,” J. Mol. Spectrosc. 136, 264–293 (1989).
[CrossRef]

B. Grossmann, E. V. Browell, “Water-vapor line broadening and shifting by air, nitrogen, oxygen, and argon in the 720-nm wavelength region,” J. Mol. Spectrosc. 138, 562–595 (1989).
[CrossRef]

S. Ismail, E. V. Browell, “Airborne and spaceborne lidar measurements of water vapor profiles: a sensitivity analysis,” Appl. Opt. 28, 3603–3614 (1989).
[CrossRef] [PubMed]

B. J. Rye, “Power ratio estimation in incoherent backscatter lidar: direct detection with Gaussian noise,” Appl. Opt. 28, 3639–3646 (1989).
[CrossRef] [PubMed]

1987 (2)

1985 (1)

1984 (1)

1980 (1)

1979 (1)

1978 (1)

1976 (2)

E. R. Murray, R. D. Hake, J. E. Van der Laan, J. G. Hawley, “Atmospheric water vapor measurement with a 10 micrometer DIAL system,” Appl. Phys. Lett. 28, 542–543 (1976).
[CrossRef]

M. Elbaum, P. Diamant, “SNR in photocounting images of rough objects in partially coherent light,” Appl. Opt. 15, 2268–2275 (1976).
[CrossRef] [PubMed]

Abchiche, A.

P. Quaglia, D. Bruneau, A. Abchiche, M. Lopez, F. Fassina, J. P. Marcovici, P. Genau, T. Danguy, B. Brient, B. Romand, C. Loth, M. Meissonnier, P. Flamant, J. Pelon, “The airborne water-vapor lidar LEANDREII: design, realization, tests, and first validations,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, R. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 281–288.

Ansmann, A.

A. Ansmann, M. Riebesell, U. Wandinger, C. Weitkamp, E. Voss, W. Lahmann, W. Michaelis, “Combined Raman elastic-backscatter lidar for vertical profiling of moisture, aerosol extinction, backscatter, and lidar ratio,” Appl. Phys. B 55, 18–28 (1992).
[CrossRef]

A. Ansmann, J. Bösenberg, “Correction scheme for spectral broadening by Rayleigh scattering in differential absorption lidar measurements of water vapor in the troposphere,” Appl. Opt. 26, 3026–3032 (1987).
[CrossRef] [PubMed]

A. Ansmann, “Errors in ground-based water-vapor DIAL measurements due to Doppler-broadened Rayleigh backscattering,” Appl. Opt. 24, 3476–3480 (1985).
[CrossRef] [PubMed]

A. Ansmann, “Fehleranalyse der Differential-Absorption-Lidartechnik zur Ermittlung des troposphärischen Wasserdampfes anhand von Modellsimulationen,” diploma dissertation (University of Hamburg, Hamburg, Germany, 1984).

Antill, C. W.

A. S. Moore, K. E. Brown, W. M. Hall, J. C. Barnes, W. C. Edwards, L. B. Petway, A. D. Little, W. S. Luck, I. W. Jones, C. W. Antill, E. V. Browell, S. Ismail, “Development of the Lidar Atmospheric Sensing Experiment (LASE)—an advanced airborne DIAL instrument,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, R. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 281–288.

Assion, A.

G. Ehret, H. H. Klingenberg, U. Hefter, A. Assion, A. Fix, G. Proberaj, S. Berger, S. Geiger, Q. Lü, “High peak and average power all solid-state laser systems for airborne LIDAR applications,” LaserOpto 32, 29–37 (2000).

Bakan, S.

H. Steinhagen, S. Bakan, J. Bösenberg, H. Dier, D. Engelbart, J. Fischer, G. Gendt, U. Görsdorf, J. Güldner, F. Jansen, V. Lehmann, U. Leiterer, J. Neisser, V. Wulfmeyer, “Field campaign LINEX 96/1—possibilities of water vapor observations in the free atmosphere,” Meteorol. Z. 7, 377–391 (1998).

Banta, R. M.

C. J. Grund, R. M. Banta, J. L. George, J. N. Howell, M. J. Post, R. A. Richter, A. M. Weickmann, “High resolution Doppler lidar for boundary layer and cloud research,” J. Ocean. Atmos. Technol. 18, 376–393 (2001).
[CrossRef]

T. M. Weckwerth, V. Wulfmeyer, R. M. Wakimoto, R. M. Hardesty, J. W. Wilson, R. M. Banta, “NCAR–NOAA lower tropospheric water vapor workshop,” Bull. Am. Meteorol. Soc. 80, 2339–2357 (1999).
[CrossRef]

J. Rothermel, D. R. Cutten, R. M. Hardesty, R. T. Menzies, J. N. Howell, S. C. Johnson, D. M. Tratt, L. D. Olivier, R. M. Banta, “The multi-center airborne coherent atmospheric wind sensor,” Bull. Am. Meteorol. Soc. 79, 581–599 (1998).
[CrossRef]

Barnes, J. C.

A. S. Moore, K. E. Brown, W. M. Hall, J. C. Barnes, W. C. Edwards, L. B. Petway, A. D. Little, W. S. Luck, I. W. Jones, C. W. Antill, E. V. Browell, S. Ismail, “Development of the Lidar Atmospheric Sensing Experiment (LASE)—an advanced airborne DIAL instrument,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, R. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 281–288.

Barrick, J. D. W.

E. V. Browell, S. Ismail, W. M. Hall, A. S. Moore, S. A. Kooi, V. G. Brackett, M. B. Clayton, J. D. W. Barrick, F. J. Schmidlin, N. S. Higdon, S. H. Melfi, D. N. Whiteman, “LASE validation experiment,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, R. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 289–295.

Baumert, T.

G. Ehret, A. Fix, V. Weiss, G. Poberaj, T. Baumert, “Diode-laser-seeded optical parametric oscillator for airborne water vapor DIAL application in the upper troposphere and lower stratosphere,” Appl. Phys. B 67, 427–431 (1998).
[CrossRef]

Beckmann, P.

P. Beckmann, Probability in Communication Engineering (Harcourt, Brace, World, New York, 1967), Chap. 4.

Berger, S.

G. Ehret, H. H. Klingenberg, U. Hefter, A. Assion, A. Fix, G. Proberaj, S. Berger, S. Geiger, Q. Lü, “High peak and average power all solid-state laser systems for airborne LIDAR applications,” LaserOpto 32, 29–37 (2000).

Berk, A.

A. Berk, L. S. Bernstein, D. C. Robertson, “MODTRAN: a moderate resolution model for LOWTRAN 7,” (Spectral Sciences, Burlington, Mass., 1989).

Bernstein, L. S.

A. Berk, L. S. Bernstein, D. C. Robertson, “MODTRAN: a moderate resolution model for LOWTRAN 7,” (Spectral Sciences, Burlington, Mass., 1989).

Betts, A.

K. Emanuel, D. Raymond, A. Betts, L. Bosart, C. Bretherton, K. Droegemeier, B. Farell, J. M. Fritsch, R. Houze, M. LeMone, D. Lilly, R. Rotunno, M. Shapiro, R. Smith, A. Thorpe, “Report of the first prospectus development team of the U.S. Weather Research Program to NOAA and the NSF,” Bull. Am. Meteorol. Soc. 76, 1194–1208 (1995).

Bisson, S. E.

Blair, F. H.

Bolben, B. N.

R. A. Ferrare, S. Ismail, E. V. Browell, V. C. Brackett, S. A. Kooi, M. B. Clayton, S. H. Melfi, D. N. Whiteman, G. Schwemmer, K. D. Evans, P. V. Hobbs, J. P. Veefkind, P. B. Russell, J. M. Livingston, P. Hignett, B. N. Bolben, L. A. Remer, “LASE measurements of aerosols and water vapor during TARFOX,” (NASA Langley Research Center, Hampton, Va., (1998), pp. 11–14.

Born, M.

M. Born, E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, Cambridge, 1999).
[CrossRef]

Bosart, L.

K. Emanuel, D. Raymond, A. Betts, L. Bosart, C. Bretherton, K. Droegemeier, B. Farell, J. M. Fritsch, R. Houze, M. LeMone, D. Lilly, R. Rotunno, M. Shapiro, R. Smith, A. Thorpe, “Report of the first prospectus development team of the U.S. Weather Research Program to NOAA and the NSF,” Bull. Am. Meteorol. Soc. 76, 1194–1208 (1995).

Bösenberg, J.

V. Wulfmeyer, J. Bösenberg, “Ground-based differential absorption lidar for water-vapor profiling: assessment of accuracy, resolution, and meteorological applications,” Appl. Opt. 37, 3825–3844 (1998).
[CrossRef]

H. Steinhagen, S. Bakan, J. Bösenberg, H. Dier, D. Engelbart, J. Fischer, G. Gendt, U. Görsdorf, J. Güldner, F. Jansen, V. Lehmann, U. Leiterer, J. Neisser, V. Wulfmeyer, “Field campaign LINEX 96/1—possibilities of water vapor observations in the free atmosphere,” Meteorol. Z. 7, 377–391 (1998).

J. Bösenberg, “Ground-based differential absorption lidar for water-vapor profiling: methodology,” Appl. Opt. 37, 3845–3860 (1998).
[CrossRef]

S. Lehmann, V. Wulfmeyer, J. Bösenberg, “Time-dependent attenuator for dynamic range reduction of lidar signals,” Appl. Opt. 36, 3469–3474 (1997).
[CrossRef] [PubMed]

V. Wulfmeyer, J. Bösenberg, “Single-mode operation of an injection-seeded alexandrite ring laser for application in water-vapor and temperature differential absorption lidar,” Opt. Lett. 21, 1150–1152 (1996).
[CrossRef] [PubMed]

V. Wulfmeyer, J. Bösenberg, S. Lehmann, C. Senff, St. Schmitz, “Injection-seeded alexandrite ring laser: performance and application in a water-vapor differential absorption lidar,” Opt. Lett. 20, 638–640 (1995).
[CrossRef] [PubMed]

A. Ansmann, J. Bösenberg, “Correction scheme for spectral broadening by Rayleigh scattering in differential absorption lidar measurements of water vapor in the troposphere,” Appl. Opt. 26, 3026–3032 (1987).
[CrossRef] [PubMed]

H. Linné, D. D. Turner, J. E. M. Goldsmith, T. P. Tooman, J. Bösenberg, K. Ertel, S. Lehmann, “Intercomparison of DIAL and Raman lidar measurements of humidity profiles,” in Advances in Laser Remote Sensing, Editions de l’Ecole Polytechnique (Service d’Aéronomy, Paris, 2001), pp. 293–298.

Brackett, V. C.

R. A. Ferrare, S. Ismail, E. V. Browell, V. C. Brackett, S. A. Kooi, M. B. Clayton, S. H. Melfi, D. N. Whiteman, G. Schwemmer, K. D. Evans, P. V. Hobbs, J. P. Veefkind, P. B. Russell, J. M. Livingston, P. Hignett, B. N. Bolben, L. A. Remer, “LASE measurements of aerosols and water vapor during TARFOX,” (NASA Langley Research Center, Hampton, Va., (1998), pp. 11–14.

Brackett, V. G.

E. V. Browell, S. Ismail, W. M. Hall, A. S. Moore, S. A. Kooi, V. G. Brackett, M. B. Clayton, J. D. W. Barrick, F. J. Schmidlin, N. S. Higdon, S. H. Melfi, D. N. Whiteman, “LASE validation experiment,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, R. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 289–295.

Bretherton, C.

K. Emanuel, D. Raymond, A. Betts, L. Bosart, C. Bretherton, K. Droegemeier, B. Farell, J. M. Fritsch, R. Houze, M. LeMone, D. Lilly, R. Rotunno, M. Shapiro, R. Smith, A. Thorpe, “Report of the first prospectus development team of the U.S. Weather Research Program to NOAA and the NSF,” Bull. Am. Meteorol. Soc. 76, 1194–1208 (1995).

Brewer, A.

V. Wulfmeyer, A. Brewer, A. Weickmann, R. Richter, J. Vanandel, J. Howell, R. Richter, C. Grund, M. Hardesty, P. Hildebrand, “NCAR/NOAA high-resolution Doppler lidar for wind measurements and its potential for water-vapor differential absorption lidar,” presented at the Fourth International Symposium on Tropospheric Profiling, Snowmass, Colo., September 21–25, 1998.

Brewer, W. A.

W. A. Brewer, V. Wulfmeyer, R. M. Hardesty, B. Rye, “Combined wind and water-vapor measurements using the NOAA Mini-MOPA Doppler lidar,” in 19th International Laser Radar Conference, NASA/CP-1998-207671/PT1NASA, Washington, D.C., (1998), pp. 565–568.

W. A. Brewer, R. M. Hardesty, “Development of a dual-wavelength CO2 mini-MOPA Doppler lidar,” in Coherent Laser Radar: Technology and Applications, Vol. 19 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 293–296.

Brient, B.

P. Quaglia, D. Bruneau, A. Abchiche, M. Lopez, F. Fassina, J. P. Marcovici, P. Genau, T. Danguy, B. Brient, B. Romand, C. Loth, M. Meissonnier, P. Flamant, J. Pelon, “The airborne water-vapor lidar LEANDREII: design, realization, tests, and first validations,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, R. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 281–288.

Brothers, A. M.

Browell, E. V.

B. Grossmann, E. V. Browell, “Spectroscopy of water vapor in the 720 nm wavelength region: line strengths, self-induced pressure broadenings and shifts, and temperature dependence of linewidths and shifts,” J. Mol. Spectrosc. 136, 264–293 (1989).
[CrossRef]

S. Ismail, E. V. Browell, “Airborne and spaceborne lidar measurements of water vapor profiles: a sensitivity analysis,” Appl. Opt. 28, 3603–3614 (1989).
[CrossRef] [PubMed]

B. Grossmann, E. V. Browell, “Water-vapor line broadening and shifting by air, nitrogen, oxygen, and argon in the 720-nm wavelength region,” J. Mol. Spectrosc. 138, 562–595 (1989).
[CrossRef]

E. V. Browell, T. D. Wilkerson, T. J. Illrath, “Water vapor differential absorption lidar development and evaluation,” Appl. Opt. 18, 3474–3483 (1979).
[CrossRef] [PubMed]

R. A. Ferrare, S. Ismail, E. V. Browell, V. C. Brackett, S. A. Kooi, M. B. Clayton, S. H. Melfi, D. N. Whiteman, G. Schwemmer, K. D. Evans, P. V. Hobbs, J. P. Veefkind, P. B. Russell, J. M. Livingston, P. Hignett, B. N. Bolben, L. A. Remer, “LASE measurements of aerosols and water vapor during TARFOX,” (NASA Langley Research Center, Hampton, Va., (1998), pp. 11–14.

E. V. Browell, S. Ismail, W. M. Hall, A. S. Moore, S. A. Kooi, V. G. Brackett, M. B. Clayton, J. D. W. Barrick, F. J. Schmidlin, N. S. Higdon, S. H. Melfi, D. N. Whiteman, “LASE validation experiment,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, R. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 289–295.

E. V. Browell, S. Ismail, “First lidar measurements of water vapor and aerosols from a high-altitude aircraft,” in Optical Remote Sensing of the Atmosphere, Vol. 2 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 212–214, paper ThA4.

A. S. Moore, K. E. Brown, W. M. Hall, J. C. Barnes, W. C. Edwards, L. B. Petway, A. D. Little, W. S. Luck, I. W. Jones, C. W. Antill, E. V. Browell, S. Ismail, “Development of the Lidar Atmospheric Sensing Experiment (LASE)—an advanced airborne DIAL instrument,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, R. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 281–288.

Brown, K. E.

A. S. Moore, K. E. Brown, W. M. Hall, J. C. Barnes, W. C. Edwards, L. B. Petway, A. D. Little, W. S. Luck, I. W. Jones, C. W. Antill, E. V. Browell, S. Ismail, “Development of the Lidar Atmospheric Sensing Experiment (LASE)—an advanced airborne DIAL instrument,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, R. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 281–288.

Bruneau, D.

D. Bruneau, H. Cazeneuve, C. Loth, J. Pelon, “Double-pulse dual-wavelength alexandrite laser for atmospheric water vapor measurement,” Appl. Opt. 30, 3930–3937 (1991).
[CrossRef] [PubMed]

P. Quaglia, D. Bruneau, A. Abchiche, M. Lopez, F. Fassina, J. P. Marcovici, P. Genau, T. Danguy, B. Brient, B. Romand, C. Loth, M. Meissonnier, P. Flamant, J. Pelon, “The airborne water-vapor lidar LEANDREII: design, realization, tests, and first validations,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, R. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 281–288.

Cazeneuve, H.

Clayton, M. B.

E. V. Browell, S. Ismail, W. M. Hall, A. S. Moore, S. A. Kooi, V. G. Brackett, M. B. Clayton, J. D. W. Barrick, F. J. Schmidlin, N. S. Higdon, S. H. Melfi, D. N. Whiteman, “LASE validation experiment,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, R. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 289–295.

R. A. Ferrare, S. Ismail, E. V. Browell, V. C. Brackett, S. A. Kooi, M. B. Clayton, S. H. Melfi, D. N. Whiteman, G. Schwemmer, K. D. Evans, P. V. Hobbs, J. P. Veefkind, P. B. Russell, J. M. Livingston, P. Hignett, B. N. Bolben, L. A. Remer, “LASE measurements of aerosols and water vapor during TARFOX,” (NASA Langley Research Center, Hampton, Va., (1998), pp. 11–14.

Coleman, J. J.

L. M. Little, P. D. Dragic, S. D. Roh, J. J. Coleman, G. C. Papen, “Initial development of a fiber-based LIDAR system for atmospheric water vapor measurements,” (NASA Langley Research Center, Hampton, Va., (1998), pp. 301–303.

Crook, N. A.

N. A. Crook, “Sensitivity of moist convection forced by boundary layer processes to low-level thermodynamic fields,” Mon. Weather Rev. 124, 1767–1785 (1996).
[CrossRef]

Cutten, D. R.

J. Rothermel, D. R. Cutten, R. M. Hardesty, R. T. Menzies, J. N. Howell, S. C. Johnson, D. M. Tratt, L. D. Olivier, R. M. Banta, “The multi-center airborne coherent atmospheric wind sensor,” Bull. Am. Meteorol. Soc. 79, 581–599 (1998).
[CrossRef]

Danguy, T.

P. Quaglia, D. Bruneau, A. Abchiche, M. Lopez, F. Fassina, J. P. Marcovici, P. Genau, T. Danguy, B. Brient, B. Romand, C. Loth, M. Meissonnier, P. Flamant, J. Pelon, “The airborne water-vapor lidar LEANDREII: design, realization, tests, and first validations,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, R. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 281–288.

Diamant, P.

Dier, H.

H. Steinhagen, S. Bakan, J. Bösenberg, H. Dier, D. Engelbart, J. Fischer, G. Gendt, U. Görsdorf, J. Güldner, F. Jansen, V. Lehmann, U. Leiterer, J. Neisser, V. Wulfmeyer, “Field campaign LINEX 96/1—possibilities of water vapor observations in the free atmosphere,” Meteorol. Z. 7, 377–391 (1998).

Dragic, P. D.

L. M. Little, P. D. Dragic, S. D. Roh, J. J. Coleman, G. C. Papen, “Initial development of a fiber-based LIDAR system for atmospheric water vapor measurements,” (NASA Langley Research Center, Hampton, Va., (1998), pp. 301–303.

Droegemeier, K.

K. Emanuel, D. Raymond, A. Betts, L. Bosart, C. Bretherton, K. Droegemeier, B. Farell, J. M. Fritsch, R. Houze, M. LeMone, D. Lilly, R. Rotunno, M. Shapiro, R. Smith, A. Thorpe, “Report of the first prospectus development team of the U.S. Weather Research Program to NOAA and the NSF,” Bull. Am. Meteorol. Soc. 76, 1194–1208 (1995).

Edwards, W. C.

A. S. Moore, K. E. Brown, W. M. Hall, J. C. Barnes, W. C. Edwards, L. B. Petway, A. D. Little, W. S. Luck, I. W. Jones, C. W. Antill, E. V. Browell, S. Ismail, “Development of the Lidar Atmospheric Sensing Experiment (LASE)—an advanced airborne DIAL instrument,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, R. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 281–288.

Ehret, G.

G. Ehret, H. H. Klingenberg, U. Hefter, A. Assion, A. Fix, G. Proberaj, S. Berger, S. Geiger, Q. Lü, “High peak and average power all solid-state laser systems for airborne LIDAR applications,” LaserOpto 32, 29–37 (2000).

G. Ehret, K. P. Hoinka, J. Stein, A. Fix, C. Kiemle, G. Poberaj, “Low stratospheric water vapor measured by an airborne DIAL,” J. Geophys. Res. 104, 31,351–31,359 (1999).
[CrossRef]

G. Ehret, A. Fix, V. Weiss, G. Poberaj, T. Baumert, “Diode-laser-seeded optical parametric oscillator for airborne water vapor DIAL application in the upper troposphere and lower stratosphere,” Appl. Phys. B 67, 427–431 (1998).
[CrossRef]

Elbaum, M.

Elterman, L.

L. Elterman, “UV, visible, and IR attenuation for altitudes to 50 km,” (Air Force Cambridge Research Laboratories, Bedford, Mass., 1968).

Emanuel, K.

K. Emanuel, D. Raymond, A. Betts, L. Bosart, C. Bretherton, K. Droegemeier, B. Farell, J. M. Fritsch, R. Houze, M. LeMone, D. Lilly, R. Rotunno, M. Shapiro, R. Smith, A. Thorpe, “Report of the first prospectus development team of the U.S. Weather Research Program to NOAA and the NSF,” Bull. Am. Meteorol. Soc. 76, 1194–1208 (1995).

Engelbart, D.

H. Steinhagen, S. Bakan, J. Bösenberg, H. Dier, D. Engelbart, J. Fischer, G. Gendt, U. Görsdorf, J. Güldner, F. Jansen, V. Lehmann, U. Leiterer, J. Neisser, V. Wulfmeyer, “Field campaign LINEX 96/1—possibilities of water vapor observations in the free atmosphere,” Meteorol. Z. 7, 377–391 (1998).

Ertel, K.

H. Linné, D. D. Turner, J. E. M. Goldsmith, T. P. Tooman, J. Bösenberg, K. Ertel, S. Lehmann, “Intercomparison of DIAL and Raman lidar measurements of humidity profiles,” in Advances in Laser Remote Sensing, Editions de l’Ecole Polytechnique (Service d’Aéronomy, Paris, 2001), pp. 293–298.

Evans, K. D.

R. A. Ferrare, S. Ismail, E. V. Browell, V. C. Brackett, S. A. Kooi, M. B. Clayton, S. H. Melfi, D. N. Whiteman, G. Schwemmer, K. D. Evans, P. V. Hobbs, J. P. Veefkind, P. B. Russell, J. M. Livingston, P. Hignett, B. N. Bolben, L. A. Remer, “LASE measurements of aerosols and water vapor during TARFOX,” (NASA Langley Research Center, Hampton, Va., (1998), pp. 11–14.

Fabry, F.

F. Fabry, C. Frush, I. Zawadzki, A. Kilambi, “On the extraction of near-surface index of refraction using radar phase measurements from ground targets,” J. Atmos. Ocean. Technol. 14, 978–987 (1997).
[CrossRef]

Farell, B.

K. Emanuel, D. Raymond, A. Betts, L. Bosart, C. Bretherton, K. Droegemeier, B. Farell, J. M. Fritsch, R. Houze, M. LeMone, D. Lilly, R. Rotunno, M. Shapiro, R. Smith, A. Thorpe, “Report of the first prospectus development team of the U.S. Weather Research Program to NOAA and the NSF,” Bull. Am. Meteorol. Soc. 76, 1194–1208 (1995).

Fassina, F.

P. Quaglia, D. Bruneau, A. Abchiche, M. Lopez, F. Fassina, J. P. Marcovici, P. Genau, T. Danguy, B. Brient, B. Romand, C. Loth, M. Meissonnier, P. Flamant, J. Pelon, “The airborne water-vapor lidar LEANDREII: design, realization, tests, and first validations,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, R. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 281–288.

Ferrare, R. A.

D. N. Whiteman, S. H. Melfi, R. A. Ferrare, “Raman lidar system for the measurement of water vapor and aerosols in the Earth’s atmosphere,” Appl. Opt. 31, 3068–3082 (1992).
[CrossRef] [PubMed]

R. A. Ferrare, S. Ismail, E. V. Browell, V. C. Brackett, S. A. Kooi, M. B. Clayton, S. H. Melfi, D. N. Whiteman, G. Schwemmer, K. D. Evans, P. V. Hobbs, J. P. Veefkind, P. B. Russell, J. M. Livingston, P. Hignett, B. N. Bolben, L. A. Remer, “LASE measurements of aerosols and water vapor during TARFOX,” (NASA Langley Research Center, Hampton, Va., (1998), pp. 11–14.

Fischer, J.

H. Steinhagen, S. Bakan, J. Bösenberg, H. Dier, D. Engelbart, J. Fischer, G. Gendt, U. Görsdorf, J. Güldner, F. Jansen, V. Lehmann, U. Leiterer, J. Neisser, V. Wulfmeyer, “Field campaign LINEX 96/1—possibilities of water vapor observations in the free atmosphere,” Meteorol. Z. 7, 377–391 (1998).

Fix, A.

G. Ehret, H. H. Klingenberg, U. Hefter, A. Assion, A. Fix, G. Proberaj, S. Berger, S. Geiger, Q. Lü, “High peak and average power all solid-state laser systems for airborne LIDAR applications,” LaserOpto 32, 29–37 (2000).

G. Ehret, K. P. Hoinka, J. Stein, A. Fix, C. Kiemle, G. Poberaj, “Low stratospheric water vapor measured by an airborne DIAL,” J. Geophys. Res. 104, 31,351–31,359 (1999).
[CrossRef]

G. Ehret, A. Fix, V. Weiss, G. Poberaj, T. Baumert, “Diode-laser-seeded optical parametric oscillator for airborne water vapor DIAL application in the upper troposphere and lower stratosphere,” Appl. Phys. B 67, 427–431 (1998).
[CrossRef]

Flamant, P.

P. Quaglia, D. Bruneau, A. Abchiche, M. Lopez, F. Fassina, J. P. Marcovici, P. Genau, T. Danguy, B. Brient, B. Romand, C. Loth, M. Meissonnier, P. Flamant, J. Pelon, “The airborne water-vapor lidar LEANDREII: design, realization, tests, and first validations,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, R. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 281–288.

Fritsch, J. M.

K. Emanuel, D. Raymond, A. Betts, L. Bosart, C. Bretherton, K. Droegemeier, B. Farell, J. M. Fritsch, R. Houze, M. LeMone, D. Lilly, R. Rotunno, M. Shapiro, R. Smith, A. Thorpe, “Report of the first prospectus development team of the U.S. Weather Research Program to NOAA and the NSF,” Bull. Am. Meteorol. Soc. 76, 1194–1208 (1995).

Frush, C.

F. Fabry, C. Frush, I. Zawadzki, A. Kilambi, “On the extraction of near-surface index of refraction using radar phase measurements from ground targets,” J. Atmos. Ocean. Technol. 14, 978–987 (1997).
[CrossRef]

Gamache, R. R.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, “The HITRAN Molecular Database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

Geiger, S.

G. Ehret, H. H. Klingenberg, U. Hefter, A. Assion, A. Fix, G. Proberaj, S. Berger, S. Geiger, Q. Lü, “High peak and average power all solid-state laser systems for airborne LIDAR applications,” LaserOpto 32, 29–37 (2000).

Genau, P.

P. Quaglia, D. Bruneau, A. Abchiche, M. Lopez, F. Fassina, J. P. Marcovici, P. Genau, T. Danguy, B. Brient, B. Romand, C. Loth, M. Meissonnier, P. Flamant, J. Pelon, “The airborne water-vapor lidar LEANDREII: design, realization, tests, and first validations,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, R. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 281–288.

Gendt, G.

H. Steinhagen, S. Bakan, J. Bösenberg, H. Dier, D. Engelbart, J. Fischer, G. Gendt, U. Görsdorf, J. Güldner, F. Jansen, V. Lehmann, U. Leiterer, J. Neisser, V. Wulfmeyer, “Field campaign LINEX 96/1—possibilities of water vapor observations in the free atmosphere,” Meteorol. Z. 7, 377–391 (1998).

George, J. L.

C. J. Grund, R. M. Banta, J. L. George, J. N. Howell, M. J. Post, R. A. Richter, A. M. Weickmann, “High resolution Doppler lidar for boundary layer and cloud research,” J. Ocean. Atmos. Technol. 18, 376–393 (2001).
[CrossRef]

Goldsmith, J. E. M.

J. E. M. Goldsmith, F. H. Blair, S. E. Bisson, D. D. Turner, “Turn-key Raman lidar for profiling atmospheric water vapor, clouds, and aerosols,” Appl. Opt. 37, 4979–4990 (1998).
[CrossRef]

H. Linné, D. D. Turner, J. E. M. Goldsmith, T. P. Tooman, J. Bösenberg, K. Ertel, S. Lehmann, “Intercomparison of DIAL and Raman lidar measurements of humidity profiles,” in Advances in Laser Remote Sensing, Editions de l’Ecole Polytechnique (Service d’Aéronomy, Paris, 2001), pp. 293–298.

Gordley, L. L.

Görsdorf, U.

H. Steinhagen, S. Bakan, J. Bösenberg, H. Dier, D. Engelbart, J. Fischer, G. Gendt, U. Görsdorf, J. Güldner, F. Jansen, V. Lehmann, U. Leiterer, J. Neisser, V. Wulfmeyer, “Field campaign LINEX 96/1—possibilities of water vapor observations in the free atmosphere,” Meteorol. Z. 7, 377–391 (1998).

Gossard, E. E.

E. E. Gossard, D. E. Wolfe, B. B. Stankov, “Measurement of humidity profiles in the atmosphere by the global positioning system and radar wind profilers,” J. Atmos. Ocean. Technol. 16, 156–164 (1999).
[CrossRef]

Grant, W. B.

Grossmann, B.

B. Grossmann, E. V. Browell, “Spectroscopy of water vapor in the 720 nm wavelength region: line strengths, self-induced pressure broadenings and shifts, and temperature dependence of linewidths and shifts,” J. Mol. Spectrosc. 136, 264–293 (1989).
[CrossRef]

B. Grossmann, E. V. Browell, “Water-vapor line broadening and shifting by air, nitrogen, oxygen, and argon in the 720-nm wavelength region,” J. Mol. Spectrosc. 138, 562–595 (1989).
[CrossRef]

Grund, C.

V. Wulfmeyer, A. Brewer, A. Weickmann, R. Richter, J. Vanandel, J. Howell, R. Richter, C. Grund, M. Hardesty, P. Hildebrand, “NCAR/NOAA high-resolution Doppler lidar for wind measurements and its potential for water-vapor differential absorption lidar,” presented at the Fourth International Symposium on Tropospheric Profiling, Snowmass, Colo., September 21–25, 1998.

Grund, C. J.

C. J. Grund, R. M. Banta, J. L. George, J. N. Howell, M. J. Post, R. A. Richter, A. M. Weickmann, “High resolution Doppler lidar for boundary layer and cloud research,” J. Ocean. Atmos. Technol. 18, 376–393 (2001).
[CrossRef]

J. L. Machol, R. M. Hardesty, B. J. Rye, C. J. Grund, “Proposed compact, eye-safe lidar for measuring atmospheric water vapor,” in Proceedings, 18th International Laser Radar Conference (Institut für Troposphärenforschung, Leipzig, Germany, 57 (1996), p. 57.

Guichard, F.

F. Guichard, D. Parsons, E. Miller, “Thermodynamics and radiative impact of the correction of sounding humidity bias in the tropics,” J. Climate 13, 3611–3624 (2000).
[CrossRef]

Güldner, J.

H. Steinhagen, S. Bakan, J. Bösenberg, H. Dier, D. Engelbart, J. Fischer, G. Gendt, U. Görsdorf, J. Güldner, F. Jansen, V. Lehmann, U. Leiterer, J. Neisser, V. Wulfmeyer, “Field campaign LINEX 96/1—possibilities of water vapor observations in the free atmosphere,” Meteorol. Z. 7, 377–391 (1998).

Hake, R. D.

E. R. Murray, R. D. Hake, J. E. Van der Laan, J. G. Hawley, “Atmospheric water vapor measurement with a 10 micrometer DIAL system,” Appl. Phys. Lett. 28, 542–543 (1976).
[CrossRef]

Hall, W. M.

E. V. Browell, S. Ismail, W. M. Hall, A. S. Moore, S. A. Kooi, V. G. Brackett, M. B. Clayton, J. D. W. Barrick, F. J. Schmidlin, N. S. Higdon, S. H. Melfi, D. N. Whiteman, “LASE validation experiment,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, R. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 289–295.

A. S. Moore, K. E. Brown, W. M. Hall, J. C. Barnes, W. C. Edwards, L. B. Petway, A. D. Little, W. S. Luck, I. W. Jones, C. W. Antill, E. V. Browell, S. Ismail, “Development of the Lidar Atmospheric Sensing Experiment (LASE)—an advanced airborne DIAL instrument,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, R. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 281–288.

Hansen, G. M.

Hardesty, M.

V. Wulfmeyer, A. Brewer, A. Weickmann, R. Richter, J. Vanandel, J. Howell, R. Richter, C. Grund, M. Hardesty, P. Hildebrand, “NCAR/NOAA high-resolution Doppler lidar for wind measurements and its potential for water-vapor differential absorption lidar,” presented at the Fourth International Symposium on Tropospheric Profiling, Snowmass, Colo., September 21–25, 1998.

Hardesty, R. M.

T. M. Weckwerth, V. Wulfmeyer, R. M. Wakimoto, R. M. Hardesty, J. W. Wilson, R. M. Banta, “NCAR–NOAA lower tropospheric water vapor workshop,” Bull. Am. Meteorol. Soc. 80, 2339–2357 (1999).
[CrossRef]

J. Rothermel, D. R. Cutten, R. M. Hardesty, R. T. Menzies, J. N. Howell, S. C. Johnson, D. M. Tratt, L. D. Olivier, R. M. Banta, “The multi-center airborne coherent atmospheric wind sensor,” Bull. Am. Meteorol. Soc. 79, 581–599 (1998).
[CrossRef]

B. J. Rye, R. M. Hardesty, “Estimate optimization parameters for incoherent backscatter heterodyne lidar,” Appl. Opt. 36, 9425–9436 (1997).
[CrossRef]

R. M. Hardesty, “Coherent DIAL measurement of range-resolved water vapor concentration,” Appl. Opt. 23, 2545–2553 (1984).
[CrossRef] [PubMed]

J. L. Machol, R. M. Hardesty, B. J. Rye, C. J. Grund, “Proposed compact, eye-safe lidar for measuring atmospheric water vapor,” in Proceedings, 18th International Laser Radar Conference (Institut für Troposphärenforschung, Leipzig, Germany, 57 (1996), p. 57.

W. A. Brewer, R. M. Hardesty, “Development of a dual-wavelength CO2 mini-MOPA Doppler lidar,” in Coherent Laser Radar: Technology and Applications, Vol. 19 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 293–296.

W. A. Brewer, V. Wulfmeyer, R. M. Hardesty, B. Rye, “Combined wind and water-vapor measurements using the NOAA Mini-MOPA Doppler lidar,” in 19th International Laser Radar Conference, NASA/CP-1998-207671/PT1NASA, Washington, D.C., (1998), pp. 565–568.

Hawley, J. G.

E. R. Murray, R. D. Hake, J. E. Van der Laan, J. G. Hawley, “Atmospheric water vapor measurement with a 10 micrometer DIAL system,” Appl. Phys. Lett. 28, 542–543 (1976).
[CrossRef]

Hefter, U.

G. Ehret, H. H. Klingenberg, U. Hefter, A. Assion, A. Fix, G. Proberaj, S. Berger, S. Geiger, Q. Lü, “High peak and average power all solid-state laser systems for airborne LIDAR applications,” LaserOpto 32, 29–37 (2000).

Higdon, N. S.

E. V. Browell, S. Ismail, W. M. Hall, A. S. Moore, S. A. Kooi, V. G. Brackett, M. B. Clayton, J. D. W. Barrick, F. J. Schmidlin, N. S. Higdon, S. H. Melfi, D. N. Whiteman, “LASE validation experiment,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, R. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 289–295.

Hignett, P.

R. A. Ferrare, S. Ismail, E. V. Browell, V. C. Brackett, S. A. Kooi, M. B. Clayton, S. H. Melfi, D. N. Whiteman, G. Schwemmer, K. D. Evans, P. V. Hobbs, J. P. Veefkind, P. B. Russell, J. M. Livingston, P. Hignett, B. N. Bolben, L. A. Remer, “LASE measurements of aerosols and water vapor during TARFOX,” (NASA Langley Research Center, Hampton, Va., (1998), pp. 11–14.

Hildebrand, P.

V. Wulfmeyer, A. Brewer, A. Weickmann, R. Richter, J. Vanandel, J. Howell, R. Richter, C. Grund, M. Hardesty, P. Hildebrand, “NCAR/NOAA high-resolution Doppler lidar for wind measurements and its potential for water-vapor differential absorption lidar,” presented at the Fourth International Symposium on Tropospheric Profiling, Snowmass, Colo., September 21–25, 1998.

Hobbs, P. V.

R. A. Ferrare, S. Ismail, E. V. Browell, V. C. Brackett, S. A. Kooi, M. B. Clayton, S. H. Melfi, D. N. Whiteman, G. Schwemmer, K. D. Evans, P. V. Hobbs, J. P. Veefkind, P. B. Russell, J. M. Livingston, P. Hignett, B. N. Bolben, L. A. Remer, “LASE measurements of aerosols and water vapor during TARFOX,” (NASA Langley Research Center, Hampton, Va., (1998), pp. 11–14.

Hoinka, K. P.

G. Ehret, K. P. Hoinka, J. Stein, A. Fix, C. Kiemle, G. Poberaj, “Low stratospheric water vapor measured by an airborne DIAL,” J. Geophys. Res. 104, 31,351–31,359 (1999).
[CrossRef]

Houze, R.

K. Emanuel, D. Raymond, A. Betts, L. Bosart, C. Bretherton, K. Droegemeier, B. Farell, J. M. Fritsch, R. Houze, M. LeMone, D. Lilly, R. Rotunno, M. Shapiro, R. Smith, A. Thorpe, “Report of the first prospectus development team of the U.S. Weather Research Program to NOAA and the NSF,” Bull. Am. Meteorol. Soc. 76, 1194–1208 (1995).

Howell, J.

V. Wulfmeyer, A. Brewer, A. Weickmann, R. Richter, J. Vanandel, J. Howell, R. Richter, C. Grund, M. Hardesty, P. Hildebrand, “NCAR/NOAA high-resolution Doppler lidar for wind measurements and its potential for water-vapor differential absorption lidar,” presented at the Fourth International Symposium on Tropospheric Profiling, Snowmass, Colo., September 21–25, 1998.

Howell, J. N.

C. J. Grund, R. M. Banta, J. L. George, J. N. Howell, M. J. Post, R. A. Richter, A. M. Weickmann, “High resolution Doppler lidar for boundary layer and cloud research,” J. Ocean. Atmos. Technol. 18, 376–393 (2001).
[CrossRef]

J. Rothermel, D. R. Cutten, R. M. Hardesty, R. T. Menzies, J. N. Howell, S. C. Johnson, D. M. Tratt, L. D. Olivier, R. M. Banta, “The multi-center airborne coherent atmospheric wind sensor,” Bull. Am. Meteorol. Soc. 79, 581–599 (1998).
[CrossRef]

Illrath, T. J.

Ismail, S.

S. Ismail, E. V. Browell, “Airborne and spaceborne lidar measurements of water vapor profiles: a sensitivity analysis,” Appl. Opt. 28, 3603–3614 (1989).
[CrossRef] [PubMed]

A. S. Moore, K. E. Brown, W. M. Hall, J. C. Barnes, W. C. Edwards, L. B. Petway, A. D. Little, W. S. Luck, I. W. Jones, C. W. Antill, E. V. Browell, S. Ismail, “Development of the Lidar Atmospheric Sensing Experiment (LASE)—an advanced airborne DIAL instrument,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, R. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 281–288.

E. V. Browell, S. Ismail, “First lidar measurements of water vapor and aerosols from a high-altitude aircraft,” in Optical Remote Sensing of the Atmosphere, Vol. 2 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 212–214, paper ThA4.

R. A. Ferrare, S. Ismail, E. V. Browell, V. C. Brackett, S. A. Kooi, M. B. Clayton, S. H. Melfi, D. N. Whiteman, G. Schwemmer, K. D. Evans, P. V. Hobbs, J. P. Veefkind, P. B. Russell, J. M. Livingston, P. Hignett, B. N. Bolben, L. A. Remer, “LASE measurements of aerosols and water vapor during TARFOX,” (NASA Langley Research Center, Hampton, Va., (1998), pp. 11–14.

E. V. Browell, S. Ismail, W. M. Hall, A. S. Moore, S. A. Kooi, V. G. Brackett, M. B. Clayton, J. D. W. Barrick, F. J. Schmidlin, N. S. Higdon, S. H. Melfi, D. N. Whiteman, “LASE validation experiment,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, R. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 289–295.

Jansen, F.

H. Steinhagen, S. Bakan, J. Bösenberg, H. Dier, D. Engelbart, J. Fischer, G. Gendt, U. Görsdorf, J. Güldner, F. Jansen, V. Lehmann, U. Leiterer, J. Neisser, V. Wulfmeyer, “Field campaign LINEX 96/1—possibilities of water vapor observations in the free atmosphere,” Meteorol. Z. 7, 377–391 (1998).

Johnson, S. C.

J. Rothermel, D. R. Cutten, R. M. Hardesty, R. T. Menzies, J. N. Howell, S. C. Johnson, D. M. Tratt, L. D. Olivier, R. M. Banta, “The multi-center airborne coherent atmospheric wind sensor,” Bull. Am. Meteorol. Soc. 79, 581–599 (1998).
[CrossRef]

Jones, I. W.

A. S. Moore, K. E. Brown, W. M. Hall, J. C. Barnes, W. C. Edwards, L. B. Petway, A. D. Little, W. S. Luck, I. W. Jones, C. W. Antill, E. V. Browell, S. Ismail, “Development of the Lidar Atmospheric Sensing Experiment (LASE)—an advanced airborne DIAL instrument,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, R. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 281–288.

Kent, G. S.

Kiemle, C.

G. Ehret, K. P. Hoinka, J. Stein, A. Fix, C. Kiemle, G. Poberaj, “Low stratospheric water vapor measured by an airborne DIAL,” J. Geophys. Res. 104, 31,351–31,359 (1999).
[CrossRef]

Kilambi, A.

F. Fabry, C. Frush, I. Zawadzki, A. Kilambi, “On the extraction of near-surface index of refraction using radar phase measurements from ground targets,” J. Atmos. Ocean. Technol. 14, 978–987 (1997).
[CrossRef]

Klingenberg, H. H.

G. Ehret, H. H. Klingenberg, U. Hefter, A. Assion, A. Fix, G. Proberaj, S. Berger, S. Geiger, Q. Lü, “High peak and average power all solid-state laser systems for airborne LIDAR applications,” LaserOpto 32, 29–37 (2000).

Kooi, S. A.

E. V. Browell, S. Ismail, W. M. Hall, A. S. Moore, S. A. Kooi, V. G. Brackett, M. B. Clayton, J. D. W. Barrick, F. J. Schmidlin, N. S. Higdon, S. H. Melfi, D. N. Whiteman, “LASE validation experiment,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, R. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 289–295.

R. A. Ferrare, S. Ismail, E. V. Browell, V. C. Brackett, S. A. Kooi, M. B. Clayton, S. H. Melfi, D. N. Whiteman, G. Schwemmer, K. D. Evans, P. V. Hobbs, J. P. Veefkind, P. B. Russell, J. M. Livingston, P. Hignett, B. N. Bolben, L. A. Remer, “LASE measurements of aerosols and water vapor during TARFOX,” (NASA Langley Research Center, Hampton, Va., (1998), pp. 11–14.

Lahmann, W.

A. Ansmann, M. Riebesell, U. Wandinger, C. Weitkamp, E. Voss, W. Lahmann, W. Michaelis, “Combined Raman elastic-backscatter lidar for vertical profiling of moisture, aerosol extinction, backscatter, and lidar ratio,” Appl. Phys. B 55, 18–28 (1992).
[CrossRef]

Lehmann, S.

S. Lehmann, V. Wulfmeyer, J. Bösenberg, “Time-dependent attenuator for dynamic range reduction of lidar signals,” Appl. Opt. 36, 3469–3474 (1997).
[CrossRef] [PubMed]

V. Wulfmeyer, J. Bösenberg, S. Lehmann, C. Senff, St. Schmitz, “Injection-seeded alexandrite ring laser: performance and application in a water-vapor differential absorption lidar,” Opt. Lett. 20, 638–640 (1995).
[CrossRef] [PubMed]

H. Linné, D. D. Turner, J. E. M. Goldsmith, T. P. Tooman, J. Bösenberg, K. Ertel, S. Lehmann, “Intercomparison of DIAL and Raman lidar measurements of humidity profiles,” in Advances in Laser Remote Sensing, Editions de l’Ecole Polytechnique (Service d’Aéronomy, Paris, 2001), pp. 293–298.

Lehmann, V.

H. Steinhagen, S. Bakan, J. Bösenberg, H. Dier, D. Engelbart, J. Fischer, G. Gendt, U. Görsdorf, J. Güldner, F. Jansen, V. Lehmann, U. Leiterer, J. Neisser, V. Wulfmeyer, “Field campaign LINEX 96/1—possibilities of water vapor observations in the free atmosphere,” Meteorol. Z. 7, 377–391 (1998).

Leiterer, U.

H. Steinhagen, S. Bakan, J. Bösenberg, H. Dier, D. Engelbart, J. Fischer, G. Gendt, U. Görsdorf, J. Güldner, F. Jansen, V. Lehmann, U. Leiterer, J. Neisser, V. Wulfmeyer, “Field campaign LINEX 96/1—possibilities of water vapor observations in the free atmosphere,” Meteorol. Z. 7, 377–391 (1998).

LeMone, M.

K. Emanuel, D. Raymond, A. Betts, L. Bosart, C. Bretherton, K. Droegemeier, B. Farell, J. M. Fritsch, R. Houze, M. LeMone, D. Lilly, R. Rotunno, M. Shapiro, R. Smith, A. Thorpe, “Report of the first prospectus development team of the U.S. Weather Research Program to NOAA and the NSF,” Bull. Am. Meteorol. Soc. 76, 1194–1208 (1995).

Lenschow, D.

D. Lenschow, V. Wulfmeyer, C. Senff, “Measuring second- through fourth-order moments in noisy data,” J. Atmos. Ocean. Technol. 17, 1330–1347 (2000).
[CrossRef]

Lilly, D.

K. Emanuel, D. Raymond, A. Betts, L. Bosart, C. Bretherton, K. Droegemeier, B. Farell, J. M. Fritsch, R. Houze, M. LeMone, D. Lilly, R. Rotunno, M. Shapiro, R. Smith, A. Thorpe, “Report of the first prospectus development team of the U.S. Weather Research Program to NOAA and the NSF,” Bull. Am. Meteorol. Soc. 76, 1194–1208 (1995).

Linné, H.

H. Linné, D. D. Turner, J. E. M. Goldsmith, T. P. Tooman, J. Bösenberg, K. Ertel, S. Lehmann, “Intercomparison of DIAL and Raman lidar measurements of humidity profiles,” in Advances in Laser Remote Sensing, Editions de l’Ecole Polytechnique (Service d’Aéronomy, Paris, 2001), pp. 293–298.

Little, A. D.

A. S. Moore, K. E. Brown, W. M. Hall, J. C. Barnes, W. C. Edwards, L. B. Petway, A. D. Little, W. S. Luck, I. W. Jones, C. W. Antill, E. V. Browell, S. Ismail, “Development of the Lidar Atmospheric Sensing Experiment (LASE)—an advanced airborne DIAL instrument,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, R. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 281–288.

Little, L. M.

L. M. Little, P. D. Dragic, S. D. Roh, J. J. Coleman, G. C. Papen, “Initial development of a fiber-based LIDAR system for atmospheric water vapor measurements,” (NASA Langley Research Center, Hampton, Va., (1998), pp. 301–303.

Livingston, J. M.

R. A. Ferrare, S. Ismail, E. V. Browell, V. C. Brackett, S. A. Kooi, M. B. Clayton, S. H. Melfi, D. N. Whiteman, G. Schwemmer, K. D. Evans, P. V. Hobbs, J. P. Veefkind, P. B. Russell, J. M. Livingston, P. Hignett, B. N. Bolben, L. A. Remer, “LASE measurements of aerosols and water vapor during TARFOX,” (NASA Langley Research Center, Hampton, Va., (1998), pp. 11–14.

Lopez, M.

P. Quaglia, D. Bruneau, A. Abchiche, M. Lopez, F. Fassina, J. P. Marcovici, P. Genau, T. Danguy, B. Brient, B. Romand, C. Loth, M. Meissonnier, P. Flamant, J. Pelon, “The airborne water-vapor lidar LEANDREII: design, realization, tests, and first validations,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, R. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 281–288.

Loth, C.

D. Bruneau, H. Cazeneuve, C. Loth, J. Pelon, “Double-pulse dual-wavelength alexandrite laser for atmospheric water vapor measurement,” Appl. Opt. 30, 3930–3937 (1991).
[CrossRef] [PubMed]

P. Quaglia, D. Bruneau, A. Abchiche, M. Lopez, F. Fassina, J. P. Marcovici, P. Genau, T. Danguy, B. Brient, B. Romand, C. Loth, M. Meissonnier, P. Flamant, J. Pelon, “The airborne water-vapor lidar LEANDREII: design, realization, tests, and first validations,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, R. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 281–288.

Lü, Q.

G. Ehret, H. H. Klingenberg, U. Hefter, A. Assion, A. Fix, G. Proberaj, S. Berger, S. Geiger, Q. Lü, “High peak and average power all solid-state laser systems for airborne LIDAR applications,” LaserOpto 32, 29–37 (2000).

Luck, W. S.

A. S. Moore, K. E. Brown, W. M. Hall, J. C. Barnes, W. C. Edwards, L. B. Petway, A. D. Little, W. S. Luck, I. W. Jones, C. W. Antill, E. V. Browell, S. Ismail, “Development of the Lidar Atmospheric Sensing Experiment (LASE)—an advanced airborne DIAL instrument,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, R. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 281–288.

Machol, J. L.

J. L. Machol, R. M. Hardesty, B. J. Rye, C. J. Grund, “Proposed compact, eye-safe lidar for measuring atmospheric water vapor,” in Proceedings, 18th International Laser Radar Conference (Institut für Troposphärenforschung, Leipzig, Germany, 57 (1996), p. 57.

Marcovici, J. P.

P. Quaglia, D. Bruneau, A. Abchiche, M. Lopez, F. Fassina, J. P. Marcovici, P. Genau, T. Danguy, B. Brient, B. Romand, C. Loth, M. Meissonnier, P. Flamant, J. Pelon, “The airborne water-vapor lidar LEANDREII: design, realization, tests, and first validations,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, R. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 281–288.

Margolis, J. S.

Measures, R. M.

R. M. Measures, Laser Remote Sensing (Wiley-Interscience, New York, 1983).

Megie, G.

Meissonnier, M.

P. Quaglia, D. Bruneau, A. Abchiche, M. Lopez, F. Fassina, J. P. Marcovici, P. Genau, T. Danguy, B. Brient, B. Romand, C. Loth, M. Meissonnier, P. Flamant, J. Pelon, “The airborne water-vapor lidar LEANDREII: design, realization, tests, and first validations,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, R. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 281–288.

Melfi, S. H.

D. N. Whiteman, S. H. Melfi, R. A. Ferrare, “Raman lidar system for the measurement of water vapor and aerosols in the Earth’s atmosphere,” Appl. Opt. 31, 3068–3082 (1992).
[CrossRef] [PubMed]

D. C. O’Starr, S. H. Melfi, Implementation Plan for the Pilot Phase of the Global Water Vapor Project, Publ. 2 (International GEWEX Project Office, 1010 Wayne Ave., Silver Spring, Md. 20910, 1991).

R. A. Ferrare, S. Ismail, E. V. Browell, V. C. Brackett, S. A. Kooi, M. B. Clayton, S. H. Melfi, D. N. Whiteman, G. Schwemmer, K. D. Evans, P. V. Hobbs, J. P. Veefkind, P. B. Russell, J. M. Livingston, P. Hignett, B. N. Bolben, L. A. Remer, “LASE measurements of aerosols and water vapor during TARFOX,” (NASA Langley Research Center, Hampton, Va., (1998), pp. 11–14.

E. V. Browell, S. Ismail, W. M. Hall, A. S. Moore, S. A. Kooi, V. G. Brackett, M. B. Clayton, J. D. W. Barrick, F. J. Schmidlin, N. S. Higdon, S. H. Melfi, D. N. Whiteman, “LASE validation experiment,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, R. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 289–295.

Menzies, R. T.

J. Rothermel, D. R. Cutten, R. M. Hardesty, R. T. Menzies, J. N. Howell, S. C. Johnson, D. M. Tratt, L. D. Olivier, R. M. Banta, “The multi-center airborne coherent atmospheric wind sensor,” Bull. Am. Meteorol. Soc. 79, 581–599 (1998).
[CrossRef]

G. Megie, R. T. Menzies, “Complementarity of UV and IR differential absorption lidar for global measurements of atmospheric species,” Appl. Opt. 19, 1173–1183 (1980).
[CrossRef] [PubMed]

Michaelis, W.

A. Ansmann, M. Riebesell, U. Wandinger, C. Weitkamp, E. Voss, W. Lahmann, W. Michaelis, “Combined Raman elastic-backscatter lidar for vertical profiling of moisture, aerosol extinction, backscatter, and lidar ratio,” Appl. Phys. B 55, 18–28 (1992).
[CrossRef]

Miller, E.

F. Guichard, D. Parsons, E. Miller, “Thermodynamics and radiative impact of the correction of sounding humidity bias in the tropics,” J. Climate 13, 3611–3624 (2000).
[CrossRef]

Moore, A. S.

A. S. Moore, K. E. Brown, W. M. Hall, J. C. Barnes, W. C. Edwards, L. B. Petway, A. D. Little, W. S. Luck, I. W. Jones, C. W. Antill, E. V. Browell, S. Ismail, “Development of the Lidar Atmospheric Sensing Experiment (LASE)—an advanced airborne DIAL instrument,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, R. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 281–288.

E. V. Browell, S. Ismail, W. M. Hall, A. S. Moore, S. A. Kooi, V. G. Brackett, M. B. Clayton, J. D. W. Barrick, F. J. Schmidlin, N. S. Higdon, S. H. Melfi, D. N. Whiteman, “LASE validation experiment,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, R. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 289–295.

Murray, E. R.

E. R. Murray, R. D. Hake, J. E. Van der Laan, J. G. Hawley, “Atmospheric water vapor measurement with a 10 micrometer DIAL system,” Appl. Phys. Lett. 28, 542–543 (1976).
[CrossRef]

Neisser, J.

H. Steinhagen, S. Bakan, J. Bösenberg, H. Dier, D. Engelbart, J. Fischer, G. Gendt, U. Görsdorf, J. Güldner, F. Jansen, V. Lehmann, U. Leiterer, J. Neisser, V. Wulfmeyer, “Field campaign LINEX 96/1—possibilities of water vapor observations in the free atmosphere,” Meteorol. Z. 7, 377–391 (1998).

O’Starr, D. C.

D. C. O’Starr, S. H. Melfi, Implementation Plan for the Pilot Phase of the Global Water Vapor Project, Publ. 2 (International GEWEX Project Office, 1010 Wayne Ave., Silver Spring, Md. 20910, 1991).

Olivier, L. D.

J. Rothermel, D. R. Cutten, R. M. Hardesty, R. T. Menzies, J. N. Howell, S. C. Johnson, D. M. Tratt, L. D. Olivier, R. M. Banta, “The multi-center airborne coherent atmospheric wind sensor,” Bull. Am. Meteorol. Soc. 79, 581–599 (1998).
[CrossRef]

Papen, G. C.

L. M. Little, P. D. Dragic, S. D. Roh, J. J. Coleman, G. C. Papen, “Initial development of a fiber-based LIDAR system for atmospheric water vapor measurements,” (NASA Langley Research Center, Hampton, Va., (1998), pp. 301–303.

Parsons, D.

F. Guichard, D. Parsons, E. Miller, “Thermodynamics and radiative impact of the correction of sounding humidity bias in the tropics,” J. Climate 13, 3611–3624 (2000).
[CrossRef]

Pelon, J.

D. Bruneau, H. Cazeneuve, C. Loth, J. Pelon, “Double-pulse dual-wavelength alexandrite laser for atmospheric water vapor measurement,” Appl. Opt. 30, 3930–3937 (1991).
[CrossRef] [PubMed]

P. Quaglia, D. Bruneau, A. Abchiche, M. Lopez, F. Fassina, J. P. Marcovici, P. Genau, T. Danguy, B. Brient, B. Romand, C. Loth, M. Meissonnier, P. Flamant, J. Pelon, “The airborne water-vapor lidar LEANDREII: design, realization, tests, and first validations,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, R. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 281–288.

Petway, L. B.

A. S. Moore, K. E. Brown, W. M. Hall, J. C. Barnes, W. C. Edwards, L. B. Petway, A. D. Little, W. S. Luck, I. W. Jones, C. W. Antill, E. V. Browell, S. Ismail, “Development of the Lidar Atmospheric Sensing Experiment (LASE)—an advanced airborne DIAL instrument,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, R. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 281–288.

Poberaj, G.

G. Ehret, K. P. Hoinka, J. Stein, A. Fix, C. Kiemle, G. Poberaj, “Low stratospheric water vapor measured by an airborne DIAL,” J. Geophys. Res. 104, 31,351–31,359 (1999).
[CrossRef]

G. Ehret, A. Fix, V. Weiss, G. Poberaj, T. Baumert, “Diode-laser-seeded optical parametric oscillator for airborne water vapor DIAL application in the upper troposphere and lower stratosphere,” Appl. Phys. B 67, 427–431 (1998).
[CrossRef]

Post, M. J.

C. J. Grund, R. M. Banta, J. L. George, J. N. Howell, M. J. Post, R. A. Richter, A. M. Weickmann, “High resolution Doppler lidar for boundary layer and cloud research,” J. Ocean. Atmos. Technol. 18, 376–393 (2001).
[CrossRef]

Proberaj, G.

G. Ehret, H. H. Klingenberg, U. Hefter, A. Assion, A. Fix, G. Proberaj, S. Berger, S. Geiger, Q. Lü, “High peak and average power all solid-state laser systems for airborne LIDAR applications,” LaserOpto 32, 29–37 (2000).

Quaglia, P.

P. Quaglia, D. Bruneau, A. Abchiche, M. Lopez, F. Fassina, J. P. Marcovici, P. Genau, T. Danguy, B. Brient, B. Romand, C. Loth, M. Meissonnier, P. Flamant, J. Pelon, “The airborne water-vapor lidar LEANDREII: design, realization, tests, and first validations,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, R. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 281–288.

Raymond, D.

K. Emanuel, D. Raymond, A. Betts, L. Bosart, C. Bretherton, K. Droegemeier, B. Farell, J. M. Fritsch, R. Houze, M. LeMone, D. Lilly, R. Rotunno, M. Shapiro, R. Smith, A. Thorpe, “Report of the first prospectus development team of the U.S. Weather Research Program to NOAA and the NSF,” Bull. Am. Meteorol. Soc. 76, 1194–1208 (1995).

Remer, L. A.

R. A. Ferrare, S. Ismail, E. V. Browell, V. C. Brackett, S. A. Kooi, M. B. Clayton, S. H. Melfi, D. N. Whiteman, G. Schwemmer, K. D. Evans, P. V. Hobbs, J. P. Veefkind, P. B. Russell, J. M. Livingston, P. Hignett, B. N. Bolben, L. A. Remer, “LASE measurements of aerosols and water vapor during TARFOX,” (NASA Langley Research Center, Hampton, Va., (1998), pp. 11–14.

Remsberg, E. E.

Richter, R.

V. Wulfmeyer, A. Brewer, A. Weickmann, R. Richter, J. Vanandel, J. Howell, R. Richter, C. Grund, M. Hardesty, P. Hildebrand, “NCAR/NOAA high-resolution Doppler lidar for wind measurements and its potential for water-vapor differential absorption lidar,” presented at the Fourth International Symposium on Tropospheric Profiling, Snowmass, Colo., September 21–25, 1998.

V. Wulfmeyer, A. Brewer, A. Weickmann, R. Richter, J. Vanandel, J. Howell, R. Richter, C. Grund, M. Hardesty, P. Hildebrand, “NCAR/NOAA high-resolution Doppler lidar for wind measurements and its potential for water-vapor differential absorption lidar,” presented at the Fourth International Symposium on Tropospheric Profiling, Snowmass, Colo., September 21–25, 1998.

Richter, R. A.

C. J. Grund, R. M. Banta, J. L. George, J. N. Howell, M. J. Post, R. A. Richter, A. M. Weickmann, “High resolution Doppler lidar for boundary layer and cloud research,” J. Ocean. Atmos. Technol. 18, 376–393 (2001).
[CrossRef]

Riebesell, M.

A. Ansmann, M. Riebesell, U. Wandinger, C. Weitkamp, E. Voss, W. Lahmann, W. Michaelis, “Combined Raman elastic-backscatter lidar for vertical profiling of moisture, aerosol extinction, backscatter, and lidar ratio,” Appl. Phys. B 55, 18–28 (1992).
[CrossRef]

Rinsland, C. P.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, “The HITRAN Molecular Database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

Robertson, D. C.

A. Berk, L. S. Bernstein, D. C. Robertson, “MODTRAN: a moderate resolution model for LOWTRAN 7,” (Spectral Sciences, Burlington, Mass., 1989).

Roh, S. D.

L. M. Little, P. D. Dragic, S. D. Roh, J. J. Coleman, G. C. Papen, “Initial development of a fiber-based LIDAR system for atmospheric water vapor measurements,” (NASA Langley Research Center, Hampton, Va., (1998), pp. 301–303.

Romand, B.

P. Quaglia, D. Bruneau, A. Abchiche, M. Lopez, F. Fassina, J. P. Marcovici, P. Genau, T. Danguy, B. Brient, B. Romand, C. Loth, M. Meissonnier, P. Flamant, J. Pelon, “The airborne water-vapor lidar LEANDREII: design, realization, tests, and first validations,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, R. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 281–288.

Rothermel, J.

J. Rothermel, D. R. Cutten, R. M. Hardesty, R. T. Menzies, J. N. Howell, S. C. Johnson, D. M. Tratt, L. D. Olivier, R. M. Banta, “The multi-center airborne coherent atmospheric wind sensor,” Bull. Am. Meteorol. Soc. 79, 581–599 (1998).
[CrossRef]

Rothman, L. S.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, “The HITRAN Molecular Database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

Rotunno, R.

K. Emanuel, D. Raymond, A. Betts, L. Bosart, C. Bretherton, K. Droegemeier, B. Farell, J. M. Fritsch, R. Houze, M. LeMone, D. Lilly, R. Rotunno, M. Shapiro, R. Smith, A. Thorpe, “Report of the first prospectus development team of the U.S. Weather Research Program to NOAA and the NSF,” Bull. Am. Meteorol. Soc. 76, 1194–1208 (1995).

Russell, P. B.

R. A. Ferrare, S. Ismail, E. V. Browell, V. C. Brackett, S. A. Kooi, M. B. Clayton, S. H. Melfi, D. N. Whiteman, G. Schwemmer, K. D. Evans, P. V. Hobbs, J. P. Veefkind, P. B. Russell, J. M. Livingston, P. Hignett, B. N. Bolben, L. A. Remer, “LASE measurements of aerosols and water vapor during TARFOX,” (NASA Langley Research Center, Hampton, Va., (1998), pp. 11–14.

Rye, B.

W. A. Brewer, V. Wulfmeyer, R. M. Hardesty, B. Rye, “Combined wind and water-vapor measurements using the NOAA Mini-MOPA Doppler lidar,” in 19th International Laser Radar Conference, NASA/CP-1998-207671/PT1NASA, Washington, D.C., (1998), pp. 565–568.

Rye, B. J.

B. J. Rye, R. M. Hardesty, “Estimate optimization parameters for incoherent backscatter heterodyne lidar,” Appl. Opt. 36, 9425–9436 (1997).
[CrossRef]

B. J. Rye, “Power ratio estimation in incoherent backscatter lidar: direct detection with Gaussian noise,” Appl. Opt. 28, 3639–3646 (1989).
[CrossRef] [PubMed]

J. L. Machol, R. M. Hardesty, B. J. Rye, C. J. Grund, “Proposed compact, eye-safe lidar for measuring atmospheric water vapor,” in Proceedings, 18th International Laser Radar Conference (Institut für Troposphärenforschung, Leipzig, Germany, 57 (1996), p. 57.

Schmidlin, F. J.

E. V. Browell, S. Ismail, W. M. Hall, A. S. Moore, S. A. Kooi, V. G. Brackett, M. B. Clayton, J. D. W. Barrick, F. J. Schmidlin, N. S. Higdon, S. H. Melfi, D. N. Whiteman, “LASE validation experiment,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, R. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 289–295.

Schmitz, St.

Schotland, R. M.

R. M. Schotland, “Some observations of the vertical profile of water vapor by means of a ground based optical radar,” in Proceedings of the Fourth Symposium on Remote Sensing of the Environment (Environmental Research Institute of Michigan, Ann Arbor, Mich., 1966), pp. 273–283.

Schwartz, S. E.

G. M. Stokes, S. E. Schwartz, “The Atmospheric Radiation Measurement (ARM) program: programmatic background and design of the cloud and radiation test bed,” Bull. Am. Meteorol. Soc. 75, 1201–1221 (1994).
[CrossRef]

Schwemmer, G.

R. A. Ferrare, S. Ismail, E. V. Browell, V. C. Brackett, S. A. Kooi, M. B. Clayton, S. H. Melfi, D. N. Whiteman, G. Schwemmer, K. D. Evans, P. V. Hobbs, J. P. Veefkind, P. B. Russell, J. M. Livingston, P. Hignett, B. N. Bolben, L. A. Remer, “LASE measurements of aerosols and water vapor during TARFOX,” (NASA Langley Research Center, Hampton, Va., (1998), pp. 11–14.

Senff, C.

Shapiro, M.

K. Emanuel, D. Raymond, A. Betts, L. Bosart, C. Bretherton, K. Droegemeier, B. Farell, J. M. Fritsch, R. Houze, M. LeMone, D. Lilly, R. Rotunno, M. Shapiro, R. Smith, A. Thorpe, “Report of the first prospectus development team of the U.S. Weather Research Program to NOAA and the NSF,” Bull. Am. Meteorol. Soc. 76, 1194–1208 (1995).

Shine, K. P.

K. P. Shine, A. Sinha, “Sensitivity of the Earth’s climate to height-dependent changes in water vapor mixing ratio,” Nature (London) 354, 382–384 (1991).
[CrossRef]

Sinha, A.

K. P. Shine, A. Sinha, “Sensitivity of the Earth’s climate to height-dependent changes in water vapor mixing ratio,” Nature (London) 354, 382–384 (1991).
[CrossRef]

Smith, M. A. H.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, “The HITRAN Molecular Database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

Smith, R.

K. Emanuel, D. Raymond, A. Betts, L. Bosart, C. Bretherton, K. Droegemeier, B. Farell, J. M. Fritsch, R. Houze, M. LeMone, D. Lilly, R. Rotunno, M. Shapiro, R. Smith, A. Thorpe, “Report of the first prospectus development team of the U.S. Weather Research Program to NOAA and the NSF,” Bull. Am. Meteorol. Soc. 76, 1194–1208 (1995).

Stankov, B. B.

E. E. Gossard, D. E. Wolfe, B. B. Stankov, “Measurement of humidity profiles in the atmosphere by the global positioning system and radar wind profilers,” J. Atmos. Ocean. Technol. 16, 156–164 (1999).
[CrossRef]

Stein, J.

G. Ehret, K. P. Hoinka, J. Stein, A. Fix, C. Kiemle, G. Poberaj, “Low stratospheric water vapor measured by an airborne DIAL,” J. Geophys. Res. 104, 31,351–31,359 (1999).
[CrossRef]

Steinhagen, H.

H. Steinhagen, S. Bakan, J. Bösenberg, H. Dier, D. Engelbart, J. Fischer, G. Gendt, U. Görsdorf, J. Güldner, F. Jansen, V. Lehmann, U. Leiterer, J. Neisser, V. Wulfmeyer, “Field campaign LINEX 96/1—possibilities of water vapor observations in the free atmosphere,” Meteorol. Z. 7, 377–391 (1998).

Stokes, G. M.

G. M. Stokes, S. E. Schwartz, “The Atmospheric Radiation Measurement (ARM) program: programmatic background and design of the cloud and radiation test bed,” Bull. Am. Meteorol. Soc. 75, 1201–1221 (1994).
[CrossRef]

Stremler, F. G.

F. G. Stremler, Introduction to Communication Systems, 2nd ed. (Addison-Wesley, Reading, Mass.1982), p. 511.

Thorpe, A.

K. Emanuel, D. Raymond, A. Betts, L. Bosart, C. Bretherton, K. Droegemeier, B. Farell, J. M. Fritsch, R. Houze, M. LeMone, D. Lilly, R. Rotunno, M. Shapiro, R. Smith, A. Thorpe, “Report of the first prospectus development team of the U.S. Weather Research Program to NOAA and the NSF,” Bull. Am. Meteorol. Soc. 76, 1194–1208 (1995).

Tipping, R. H.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, “The HITRAN Molecular Database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

Tooman, T. P.

H. Linné, D. D. Turner, J. E. M. Goldsmith, T. P. Tooman, J. Bösenberg, K. Ertel, S. Lehmann, “Intercomparison of DIAL and Raman lidar measurements of humidity profiles,” in Advances in Laser Remote Sensing, Editions de l’Ecole Polytechnique (Service d’Aéronomy, Paris, 2001), pp. 293–298.

Tratt, D. M.

J. Rothermel, D. R. Cutten, R. M. Hardesty, R. T. Menzies, J. N. Howell, S. C. Johnson, D. M. Tratt, L. D. Olivier, R. M. Banta, “The multi-center airborne coherent atmospheric wind sensor,” Bull. Am. Meteorol. Soc. 79, 581–599 (1998).
[CrossRef]

W. B. Grant, J. S. Margolis, A. M. Brothers, D. M. Tratt, “CO2 DIAL measurements of water vapor,” Appl. Opt. 26, 3033–3042 (1987).
[CrossRef] [PubMed]

Turner, D. D.

J. E. M. Goldsmith, F. H. Blair, S. E. Bisson, D. D. Turner, “Turn-key Raman lidar for profiling atmospheric water vapor, clouds, and aerosols,” Appl. Opt. 37, 4979–4990 (1998).
[CrossRef]

H. Linné, D. D. Turner, J. E. M. Goldsmith, T. P. Tooman, J. Bösenberg, K. Ertel, S. Lehmann, “Intercomparison of DIAL and Raman lidar measurements of humidity profiles,” in Advances in Laser Remote Sensing, Editions de l’Ecole Polytechnique (Service d’Aéronomy, Paris, 2001), pp. 293–298.

Van der Laan, J. E.

E. R. Murray, R. D. Hake, J. E. Van der Laan, J. G. Hawley, “Atmospheric water vapor measurement with a 10 micrometer DIAL system,” Appl. Phys. Lett. 28, 542–543 (1976).
[CrossRef]

Vanandel, J.

V. Wulfmeyer, A. Brewer, A. Weickmann, R. Richter, J. Vanandel, J. Howell, R. Richter, C. Grund, M. Hardesty, P. Hildebrand, “NCAR/NOAA high-resolution Doppler lidar for wind measurements and its potential for water-vapor differential absorption lidar,” presented at the Fourth International Symposium on Tropospheric Profiling, Snowmass, Colo., September 21–25, 1998.

Veefkind, J. P.

R. A. Ferrare, S. Ismail, E. V. Browell, V. C. Brackett, S. A. Kooi, M. B. Clayton, S. H. Melfi, D. N. Whiteman, G. Schwemmer, K. D. Evans, P. V. Hobbs, J. P. Veefkind, P. B. Russell, J. M. Livingston, P. Hignett, B. N. Bolben, L. A. Remer, “LASE measurements of aerosols and water vapor during TARFOX,” (NASA Langley Research Center, Hampton, Va., (1998), pp. 11–14.

Voss, E.

A. Ansmann, M. Riebesell, U. Wandinger, C. Weitkamp, E. Voss, W. Lahmann, W. Michaelis, “Combined Raman elastic-backscatter lidar for vertical profiling of moisture, aerosol extinction, backscatter, and lidar ratio,” Appl. Phys. B 55, 18–28 (1992).
[CrossRef]

Wakimoto, R. M.

T. M. Weckwerth, V. Wulfmeyer, R. M. Wakimoto, R. M. Hardesty, J. W. Wilson, R. M. Banta, “NCAR–NOAA lower tropospheric water vapor workshop,” Bull. Am. Meteorol. Soc. 80, 2339–2357 (1999).
[CrossRef]

Walther, C.

Wandinger, U.

A. Ansmann, M. Riebesell, U. Wandinger, C. Weitkamp, E. Voss, W. Lahmann, W. Michaelis, “Combined Raman elastic-backscatter lidar for vertical profiling of moisture, aerosol extinction, backscatter, and lidar ratio,” Appl. Phys. B 55, 18–28 (1992).
[CrossRef]

Weckwerth, T. M.

T. M. Weckwerth, “The effect of small-scale moisture variability on thunderstorm initiation,” Mon. Weather Rev. 128, 4017–4030 (2000).
[CrossRef]

T. M. Weckwerth, V. Wulfmeyer, R. M. Wakimoto, R. M. Hardesty, J. W. Wilson, R. M. Banta, “NCAR–NOAA lower tropospheric water vapor workshop,” Bull. Am. Meteorol. Soc. 80, 2339–2357 (1999).
[CrossRef]

Weickmann, A.

V. Wulfmeyer, A. Brewer, A. Weickmann, R. Richter, J. Vanandel, J. Howell, R. Richter, C. Grund, M. Hardesty, P. Hildebrand, “NCAR/NOAA high-resolution Doppler lidar for wind measurements and its potential for water-vapor differential absorption lidar,” presented at the Fourth International Symposium on Tropospheric Profiling, Snowmass, Colo., September 21–25, 1998.

Weickmann, A. M.

C. J. Grund, R. M. Banta, J. L. George, J. N. Howell, M. J. Post, R. A. Richter, A. M. Weickmann, “High resolution Doppler lidar for boundary layer and cloud research,” J. Ocean. Atmos. Technol. 18, 376–393 (2001).
[CrossRef]

Weiss, V.

G. Ehret, A. Fix, V. Weiss, G. Poberaj, T. Baumert, “Diode-laser-seeded optical parametric oscillator for airborne water vapor DIAL application in the upper troposphere and lower stratosphere,” Appl. Phys. B 67, 427–431 (1998).
[CrossRef]

Weitkamp, C.

A. Ansmann, M. Riebesell, U. Wandinger, C. Weitkamp, E. Voss, W. Lahmann, W. Michaelis, “Combined Raman elastic-backscatter lidar for vertical profiling of moisture, aerosol extinction, backscatter, and lidar ratio,” Appl. Phys. B 55, 18–28 (1992).
[CrossRef]

Whiteman, D. N.

D. N. Whiteman, S. H. Melfi, R. A. Ferrare, “Raman lidar system for the measurement of water vapor and aerosols in the Earth’s atmosphere,” Appl. Opt. 31, 3068–3082 (1992).
[CrossRef] [PubMed]

R. A. Ferrare, S. Ismail, E. V. Browell, V. C. Brackett, S. A. Kooi, M. B. Clayton, S. H. Melfi, D. N. Whiteman, G. Schwemmer, K. D. Evans, P. V. Hobbs, J. P. Veefkind, P. B. Russell, J. M. Livingston, P. Hignett, B. N. Bolben, L. A. Remer, “LASE measurements of aerosols and water vapor during TARFOX,” (NASA Langley Research Center, Hampton, Va., (1998), pp. 11–14.

E. V. Browell, S. Ismail, W. M. Hall, A. S. Moore, S. A. Kooi, V. G. Brackett, M. B. Clayton, J. D. W. Barrick, F. J. Schmidlin, N. S. Higdon, S. H. Melfi, D. N. Whiteman, “LASE validation experiment,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, R. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 289–295.

Wilkerson, T. D.

Wilson, J. W.

T. M. Weckwerth, V. Wulfmeyer, R. M. Wakimoto, R. M. Hardesty, J. W. Wilson, R. M. Banta, “NCAR–NOAA lower tropospheric water vapor workshop,” Bull. Am. Meteorol. Soc. 80, 2339–2357 (1999).
[CrossRef]

Wolf, E.

M. Born, E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, Cambridge, 1999).
[CrossRef]

Wolfe, D. E.

E. E. Gossard, D. E. Wolfe, B. B. Stankov, “Measurement of humidity profiles in the atmosphere by the global positioning system and radar wind profilers,” J. Atmos. Ocean. Technol. 16, 156–164 (1999).
[CrossRef]

Wulfmeyer, V.

V. Wulfmeyer, C. Walther, “Future performance of ground-based and airborne water-vapor differential absorption lidar. II. Simulations of the precision of a near-infrared, high-power system,” Appl. Opt. 40, 5321–5336 (2001).
[CrossRef]

D. Lenschow, V. Wulfmeyer, C. Senff, “Measuring second- through fourth-order moments in noisy data,” J. Atmos. Ocean. Technol. 17, 1330–1347 (2000).
[CrossRef]

V. Wulfmeyer, “Investigation of turbulent processes in the lower troposphere with water-vapor DIAL and radar-RASS,” J. Atmos. Sci. 56, 1055–1076 (1999).
[CrossRef]

V. Wulfmeyer, “Investigations of humidity skewness and variance profiles in the convective boundary layer and comparison of the latter with large eddy simulation results,” J. Atmos. Sci. 56, 1077–1087 (1999).
[CrossRef]

T. M. Weckwerth, V. Wulfmeyer, R. M. Wakimoto, R. M. Hardesty, J. W. Wilson, R. M. Banta, “NCAR–NOAA lower tropospheric water vapor workshop,” Bull. Am. Meteorol. Soc. 80, 2339–2357 (1999).
[CrossRef]

H. Steinhagen, S. Bakan, J. Bösenberg, H. Dier, D. Engelbart, J. Fischer, G. Gendt, U. Görsdorf, J. Güldner, F. Jansen, V. Lehmann, U. Leiterer, J. Neisser, V. Wulfmeyer, “Field campaign LINEX 96/1—possibilities of water vapor observations in the free atmosphere,” Meteorol. Z. 7, 377–391 (1998).

V. Wulfmeyer, J. Bösenberg, “Ground-based differential absorption lidar for water-vapor profiling: assessment of accuracy, resolution, and meteorological applications,” Appl. Opt. 37, 3825–3844 (1998).
[CrossRef]

V. Wulfmeyer, “Ground-based differential absorption lidar for water-vapor profiling: development and specifications of a high-performance laser transmitter,” Appl. Opt. 37, 3804–3824 (1998).
[CrossRef]

S. Lehmann, V. Wulfmeyer, J. Bösenberg, “Time-dependent attenuator for dynamic range reduction of lidar signals,” Appl. Opt. 36, 3469–3474 (1997).
[CrossRef] [PubMed]

V. Wulfmeyer, J. Bösenberg, “Single-mode operation of an injection-seeded alexandrite ring laser for application in water-vapor and temperature differential absorption lidar,” Opt. Lett. 21, 1150–1152 (1996).
[CrossRef] [PubMed]

V. Wulfmeyer, J. Bösenberg, S. Lehmann, C. Senff, St. Schmitz, “Injection-seeded alexandrite ring laser: performance and application in a water-vapor differential absorption lidar,” Opt. Lett. 20, 638–640 (1995).
[CrossRef] [PubMed]

V. Wulfmeyer, A. Brewer, A. Weickmann, R. Richter, J. Vanandel, J. Howell, R. Richter, C. Grund, M. Hardesty, P. Hildebrand, “NCAR/NOAA high-resolution Doppler lidar for wind measurements and its potential for water-vapor differential absorption lidar,” presented at the Fourth International Symposium on Tropospheric Profiling, Snowmass, Colo., September 21–25, 1998.

W. A. Brewer, V. Wulfmeyer, R. M. Hardesty, B. Rye, “Combined wind and water-vapor measurements using the NOAA Mini-MOPA Doppler lidar,” in 19th International Laser Radar Conference, NASA/CP-1998-207671/PT1NASA, Washington, D.C., (1998), pp. 565–568.

Zawadzki, I.

F. Fabry, C. Frush, I. Zawadzki, A. Kilambi, “On the extraction of near-surface index of refraction using radar phase measurements from ground targets,” J. Atmos. Ocean. Technol. 14, 978–987 (1997).
[CrossRef]

Appl. Opt. (20)

M. Elbaum, P. Diamant, “SNR in photocounting images of rough objects in partially coherent light,” Appl. Opt. 15, 2268–2275 (1976).
[CrossRef] [PubMed]

E. E. Remsberg, L. L. Gordley, “Analysis of differential absorption lidar from the Space Shuttle,” Appl. Opt. 17, 624–630 (1978).
[CrossRef] [PubMed]

E. V. Browell, T. D. Wilkerson, T. J. Illrath, “Water vapor differential absorption lidar development and evaluation,” Appl. Opt. 18, 3474–3483 (1979).
[CrossRef] [PubMed]

G. Megie, R. T. Menzies, “Complementarity of UV and IR differential absorption lidar for global measurements of atmospheric species,” Appl. Opt. 19, 1173–1183 (1980).
[CrossRef] [PubMed]

R. M. Hardesty, “Coherent DIAL measurement of range-resolved water vapor concentration,” Appl. Opt. 23, 2545–2553 (1984).
[CrossRef] [PubMed]

A. Ansmann, “Errors in ground-based water-vapor DIAL measurements due to Doppler-broadened Rayleigh backscattering,” Appl. Opt. 24, 3476–3480 (1985).
[CrossRef] [PubMed]

W. B. Grant, J. S. Margolis, A. M. Brothers, D. M. Tratt, “CO2 DIAL measurements of water vapor,” Appl. Opt. 26, 3033–3042 (1987).
[CrossRef] [PubMed]

S. Ismail, E. V. Browell, “Airborne and spaceborne lidar measurements of water vapor profiles: a sensitivity analysis,” Appl. Opt. 28, 3603–3614 (1989).
[CrossRef] [PubMed]

B. J. Rye, “Power ratio estimation in incoherent backscatter lidar: direct detection with Gaussian noise,” Appl. Opt. 28, 3639–3646 (1989).
[CrossRef] [PubMed]

D. Bruneau, H. Cazeneuve, C. Loth, J. Pelon, “Double-pulse dual-wavelength alexandrite laser for atmospheric water vapor measurement,” Appl. Opt. 30, 3930–3937 (1991).
[CrossRef] [PubMed]

D. N. Whiteman, S. H. Melfi, R. A. Ferrare, “Raman lidar system for the measurement of water vapor and aerosols in the Earth’s atmosphere,” Appl. Opt. 31, 3068–3082 (1992).
[CrossRef] [PubMed]

S. Lehmann, V. Wulfmeyer, J. Bösenberg, “Time-dependent attenuator for dynamic range reduction of lidar signals,” Appl. Opt. 36, 3469–3474 (1997).
[CrossRef] [PubMed]

V. Wulfmeyer, “Ground-based differential absorption lidar for water-vapor profiling: development and specifications of a high-performance laser transmitter,” Appl. Opt. 37, 3804–3824 (1998).
[CrossRef]

V. Wulfmeyer, J. Bösenberg, “Ground-based differential absorption lidar for water-vapor profiling: assessment of accuracy, resolution, and meteorological applications,” Appl. Opt. 37, 3825–3844 (1998).
[CrossRef]

J. Bösenberg, “Ground-based differential absorption lidar for water-vapor profiling: methodology,” Appl. Opt. 37, 3845–3860 (1998).
[CrossRef]

J. E. M. Goldsmith, F. H. Blair, S. E. Bisson, D. D. Turner, “Turn-key Raman lidar for profiling atmospheric water vapor, clouds, and aerosols,” Appl. Opt. 37, 4979–4990 (1998).
[CrossRef]

G. S. Kent, G. M. Hansen, “Scanning lidar with a coupled radar safety system,” Appl. Opt. 38, 6383–6387 (1999).
[CrossRef]

B. J. Rye, R. M. Hardesty, “Estimate optimization parameters for incoherent backscatter heterodyne lidar,” Appl. Opt. 36, 9425–9436 (1997).
[CrossRef]

A. Ansmann, J. Bösenberg, “Correction scheme for spectral broadening by Rayleigh scattering in differential absorption lidar measurements of water vapor in the troposphere,” Appl. Opt. 26, 3026–3032 (1987).
[CrossRef] [PubMed]

V. Wulfmeyer, C. Walther, “Future performance of ground-based and airborne water-vapor differential absorption lidar. II. Simulations of the precision of a near-infrared, high-power system,” Appl. Opt. 40, 5321–5336 (2001).
[CrossRef]

Appl. Phys. B (2)

A. Ansmann, M. Riebesell, U. Wandinger, C. Weitkamp, E. Voss, W. Lahmann, W. Michaelis, “Combined Raman elastic-backscatter lidar for vertical profiling of moisture, aerosol extinction, backscatter, and lidar ratio,” Appl. Phys. B 55, 18–28 (1992).
[CrossRef]

G. Ehret, A. Fix, V. Weiss, G. Poberaj, T. Baumert, “Diode-laser-seeded optical parametric oscillator for airborne water vapor DIAL application in the upper troposphere and lower stratosphere,” Appl. Phys. B 67, 427–431 (1998).
[CrossRef]

Appl. Phys. Lett. (1)

E. R. Murray, R. D. Hake, J. E. Van der Laan, J. G. Hawley, “Atmospheric water vapor measurement with a 10 micrometer DIAL system,” Appl. Phys. Lett. 28, 542–543 (1976).
[CrossRef]

Bull. Am. Meteorol. Soc. (4)

J. Rothermel, D. R. Cutten, R. M. Hardesty, R. T. Menzies, J. N. Howell, S. C. Johnson, D. M. Tratt, L. D. Olivier, R. M. Banta, “The multi-center airborne coherent atmospheric wind sensor,” Bull. Am. Meteorol. Soc. 79, 581–599 (1998).
[CrossRef]

K. Emanuel, D. Raymond, A. Betts, L. Bosart, C. Bretherton, K. Droegemeier, B. Farell, J. M. Fritsch, R. Houze, M. LeMone, D. Lilly, R. Rotunno, M. Shapiro, R. Smith, A. Thorpe, “Report of the first prospectus development team of the U.S. Weather Research Program to NOAA and the NSF,” Bull. Am. Meteorol. Soc. 76, 1194–1208 (1995).

G. M. Stokes, S. E. Schwartz, “The Atmospheric Radiation Measurement (ARM) program: programmatic background and design of the cloud and radiation test bed,” Bull. Am. Meteorol. Soc. 75, 1201–1221 (1994).
[CrossRef]

T. M. Weckwerth, V. Wulfmeyer, R. M. Wakimoto, R. M. Hardesty, J. W. Wilson, R. M. Banta, “NCAR–NOAA lower tropospheric water vapor workshop,” Bull. Am. Meteorol. Soc. 80, 2339–2357 (1999).
[CrossRef]

J. Atmos. Ocean. Technol. (3)

F. Fabry, C. Frush, I. Zawadzki, A. Kilambi, “On the extraction of near-surface index of refraction using radar phase measurements from ground targets,” J. Atmos. Ocean. Technol. 14, 978–987 (1997).
[CrossRef]

E. E. Gossard, D. E. Wolfe, B. B. Stankov, “Measurement of humidity profiles in the atmosphere by the global positioning system and radar wind profilers,” J. Atmos. Ocean. Technol. 16, 156–164 (1999).
[CrossRef]

D. Lenschow, V. Wulfmeyer, C. Senff, “Measuring second- through fourth-order moments in noisy data,” J. Atmos. Ocean. Technol. 17, 1330–1347 (2000).
[CrossRef]

J. Atmos. Sci. (2)

V. Wulfmeyer, “Investigation of turbulent processes in the lower troposphere with water-vapor DIAL and radar-RASS,” J. Atmos. Sci. 56, 1055–1076 (1999).
[CrossRef]

V. Wulfmeyer, “Investigations of humidity skewness and variance profiles in the convective boundary layer and comparison of the latter with large eddy simulation results,” J. Atmos. Sci. 56, 1077–1087 (1999).
[CrossRef]

J. Climate (1)

F. Guichard, D. Parsons, E. Miller, “Thermodynamics and radiative impact of the correction of sounding humidity bias in the tropics,” J. Climate 13, 3611–3624 (2000).
[CrossRef]

J. Geophys. Res. (1)

G. Ehret, K. P. Hoinka, J. Stein, A. Fix, C. Kiemle, G. Poberaj, “Low stratospheric water vapor measured by an airborne DIAL,” J. Geophys. Res. 104, 31,351–31,359 (1999).
[CrossRef]

J. Mol. Spectrosc. (2)

B. Grossmann, E. V. Browell, “Spectroscopy of water vapor in the 720 nm wavelength region: line strengths, self-induced pressure broadenings and shifts, and temperature dependence of linewidths and shifts,” J. Mol. Spectrosc. 136, 264–293 (1989).
[CrossRef]

B. Grossmann, E. V. Browell, “Water-vapor line broadening and shifting by air, nitrogen, oxygen, and argon in the 720-nm wavelength region,” J. Mol. Spectrosc. 138, 562–595 (1989).
[CrossRef]

J. Ocean. Atmos. Technol. (1)

C. J. Grund, R. M. Banta, J. L. George, J. N. Howell, M. J. Post, R. A. Richter, A. M. Weickmann, “High resolution Doppler lidar for boundary layer and cloud research,” J. Ocean. Atmos. Technol. 18, 376–393 (2001).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (1)

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, “The HITRAN Molecular Database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

LaserOpto (1)

G. Ehret, H. H. Klingenberg, U. Hefter, A. Assion, A. Fix, G. Proberaj, S. Berger, S. Geiger, Q. Lü, “High peak and average power all solid-state laser systems for airborne LIDAR applications,” LaserOpto 32, 29–37 (2000).

Meteorol. Z. (1)

H. Steinhagen, S. Bakan, J. Bösenberg, H. Dier, D. Engelbart, J. Fischer, G. Gendt, U. Görsdorf, J. Güldner, F. Jansen, V. Lehmann, U. Leiterer, J. Neisser, V. Wulfmeyer, “Field campaign LINEX 96/1—possibilities of water vapor observations in the free atmosphere,” Meteorol. Z. 7, 377–391 (1998).

Mon. Weather Rev. (2)

T. M. Weckwerth, “The effect of small-scale moisture variability on thunderstorm initiation,” Mon. Weather Rev. 128, 4017–4030 (2000).
[CrossRef]

N. A. Crook, “Sensitivity of moist convection forced by boundary layer processes to low-level thermodynamic fields,” Mon. Weather Rev. 124, 1767–1785 (1996).
[CrossRef]

Nature (London) (1)

K. P. Shine, A. Sinha, “Sensitivity of the Earth’s climate to height-dependent changes in water vapor mixing ratio,” Nature (London) 354, 382–384 (1991).
[CrossRef]

Opt. Lett. (2)

Other (30)

J. L. Machol, R. M. Hardesty, B. J. Rye, C. J. Grund, “Proposed compact, eye-safe lidar for measuring atmospheric water vapor,” in Proceedings, 18th International Laser Radar Conference (Institut für Troposphärenforschung, Leipzig, Germany, 57 (1996), p. 57.

L. M. Little, P. D. Dragic, S. D. Roh, J. J. Coleman, G. C. Papen, “Initial development of a fiber-based LIDAR system for atmospheric water vapor measurements,” (NASA Langley Research Center, Hampton, Va., (1998), pp. 301–303.

P. Quaglia, D. Bruneau, A. Abchiche, M. Lopez, F. Fassina, J. P. Marcovici, P. Genau, T. Danguy, B. Brient, B. Romand, C. Loth, M. Meissonnier, P. Flamant, J. Pelon, “The airborne water-vapor lidar LEANDREII: design, realization, tests, and first validations,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, R. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 281–288.

H. Linné, D. D. Turner, J. E. M. Goldsmith, T. P. Tooman, J. Bösenberg, K. Ertel, S. Lehmann, “Intercomparison of DIAL and Raman lidar measurements of humidity profiles,” in Advances in Laser Remote Sensing, Editions de l’Ecole Polytechnique (Service d’Aéronomy, Paris, 2001), pp. 293–298.

American Geophysical Union, Water Vapor in the Climate System (American Geophysical Union, Washington, D.C., 1995).

V. Wulfmeyer, A. Brewer, A. Weickmann, R. Richter, J. Vanandel, J. Howell, R. Richter, C. Grund, M. Hardesty, P. Hildebrand, “NCAR/NOAA high-resolution Doppler lidar for wind measurements and its potential for water-vapor differential absorption lidar,” presented at the Fourth International Symposium on Tropospheric Profiling, Snowmass, Colo., September 21–25, 1998.

W. A. Brewer, R. M. Hardesty, “Development of a dual-wavelength CO2 mini-MOPA Doppler lidar,” in Coherent Laser Radar: Technology and Applications, Vol. 19 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 293–296.

W. A. Brewer, V. Wulfmeyer, R. M. Hardesty, B. Rye, “Combined wind and water-vapor measurements using the NOAA Mini-MOPA Doppler lidar,” in 19th International Laser Radar Conference, NASA/CP-1998-207671/PT1NASA, Washington, D.C., (1998), pp. 565–568.

P. Beckmann, Probability in Communication Engineering (Harcourt, Brace, World, New York, 1967), Chap. 4.

M. Born, E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, Cambridge, 1999).
[CrossRef]

A. Ansmann, “Fehleranalyse der Differential-Absorption-Lidartechnik zur Ermittlung des troposphärischen Wasserdampfes anhand von Modellsimulationen,” diploma dissertation (University of Hamburg, Hamburg, Germany, 1984).

Committee on Global Change Research and Board on Sustainable Development, National Research Council, eds., Global Environmental Change: Research Pathways for the Next Decade (National Academy Press, Washington, D.C., 1998).

R. M. Schotland, “Some observations of the vertical profile of water vapor by means of a ground based optical radar,” in Proceedings of the Fourth Symposium on Remote Sensing of the Environment (Environmental Research Institute of Michigan, Ann Arbor, Mich., 1966), pp. 273–283.

Board on Atmospheric Sciences and Climate of the National Research Council, ed., The Atmospheric Sciences Entering the Twenty-First Century (National Academy Press, Washington, D.C., 1998).

World Meteorological Organization, Global Energy and Water Cycle Experiment (GEWEX)—Report on the First GEWEX Temperature/Humidity Retrieval Workshop, World Meteorological Organization, (International GEWEX Project Office, 1010 Wayne Ave., Silver Spring, Md. 20910).

D. C. O’Starr, S. H. Melfi, eds. “The role of water vapor in climate,” (NASA Goddard Space Flight Center, Greenbelt, Md., 1991).

D. C. O’Starr, S. H. Melfi, Implementation Plan for the Pilot Phase of the Global Water Vapor Project, Publ. 2 (International GEWEX Project Office, 1010 Wayne Ave., Silver Spring, Md. 20910, 1991).

World Meteorological Organization, The WCRP/GEWEX Global Water Vapor Project (GVaP): Science Plan, Publ. 27 (International GEWEX Project Office, 1010 Wayne Ave., Silver Spring, Md., 20910, 1999).

World Meteorological Organization, The WCRP/GEWEX Global Water Vapor Project (GVaP): Implementation Plan, Publ. 32 (International GEWEX Project Office, 1010 Wayne Ave., Silver Spring, Md. 20910, 1999).

World Meteorological Organization, GCIP Implementation Plan, 1994: Implementation Plan for GEWEX Continental-Scale Project (GCIP), Publ. 8 (International GEWEX Project Office, 1010 Wayne Ave., Silver Spring, Md., 20910, 1994), Vol. II.

L. Elterman, “UV, visible, and IR attenuation for altitudes to 50 km,” (Air Force Cambridge Research Laboratories, Bedford, Mass., 1968).

A. Berk, L. S. Bernstein, D. C. Robertson, “MODTRAN: a moderate resolution model for LOWTRAN 7,” (Spectral Sciences, Burlington, Mass., 1989).

E. D. Hinkley, ed. Laser Monitoring of the Atmosphere (Springer-Verlag, Berlin, 1976).
[CrossRef]

R. M. Measures, Laser Remote Sensing (Wiley-Interscience, New York, 1983).

F. G. Stremler, Introduction to Communication Systems, 2nd ed. (Addison-Wesley, Reading, Mass.1982), p. 511.

American National Standards Institute, “American National Standard Z136.1-1986: Safe Use of Lasers (American National Standards Institute, New York, 1986).

R. A. Ferrare, S. Ismail, E. V. Browell, V. C. Brackett, S. A. Kooi, M. B. Clayton, S. H. Melfi, D. N. Whiteman, G. Schwemmer, K. D. Evans, P. V. Hobbs, J. P. Veefkind, P. B. Russell, J. M. Livingston, P. Hignett, B. N. Bolben, L. A. Remer, “LASE measurements of aerosols and water vapor during TARFOX,” (NASA Langley Research Center, Hampton, Va., (1998), pp. 11–14.

E. V. Browell, S. Ismail, “First lidar measurements of water vapor and aerosols from a high-altitude aircraft,” in Optical Remote Sensing of the Atmosphere, Vol. 2 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 212–214, paper ThA4.

E. V. Browell, S. Ismail, W. M. Hall, A. S. Moore, S. A. Kooi, V. G. Brackett, M. B. Clayton, J. D. W. Barrick, F. J. Schmidlin, N. S. Higdon, S. H. Melfi, D. N. Whiteman, “LASE validation experiment,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, R. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 289–295.

A. S. Moore, K. E. Brown, W. M. Hall, J. C. Barnes, W. C. Edwards, L. B. Petway, A. D. Little, W. S. Luck, I. W. Jones, C. W. Antill, E. V. Browell, S. Ismail, “Development of the Lidar Atmospheric Sensing Experiment (LASE)—an advanced airborne DIAL instrument,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, R. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 281–288.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Global climatology of water-vapor, pressure, and temperature profiles.

Fig. 2
Fig. 2

Water-vapor absorption lines in the region from 740.7 to 714.3 nm.

Fig. 3
Fig. 3

Water-vapor absorption lines in the region from 833.3 to 806.5 nm.

Fig. 4
Fig. 4

Water-vapor absorption lines in the region from 980.4 to 892.9 nm.

Fig. 5
Fig. 5

Water-vapor absorption lines in the region from 1492.5 to 1298.7 nm.

Fig. 6
Fig. 6

Water-vapor absorption lines in the region from 2000 to 1754.4 nm.

Fig. 7
Fig. 7

Molecular backscatter, extinction, and optical thickness profiles for 940 and 1400 nm.

Fig. 8
Fig. 8

Atmospheric aerosol model at 940 and 1400 nm.

Fig. 9
Fig. 9

Dependence of wavelength on daylight background.

Fig. 10
Fig. 10

Dependence of the radius of an eye-safe laser beam on wavelength.

Fig. 11
Fig. 11

Comparison of theoretical and experimental system noise measured on 12 December 1994 at 19:13 UT in Hamburg, Germany.

Fig. 12
Fig. 12

Comparison of theoretical and experimental system noise measured on 29 April 1996 at 20:55 UT in Lindenberg, Germany.

Fig. 13
Fig. 13

Comparison of theoretical and experimental system noise measured on 29 April 1996 at 22:23 UT in Lindenberg, Germany.

Equations (36)

Equations on this page are rendered with MathJax. Learn more.

nH2OR=12ΔRσ¯on-σofflnPonR1PoffR2PoffR1PonR2+KβparR1, R2,
Δτ=nH2OσonΔR0.030.1
σ=SV,
σνcS/(πbc).
σνcln2π1/2Sbd.
bd=νc2 ln2kTMH2OC21/2,
σnnH2O12Δτ2νLTm1/21+1CNRon2+1+1CNRoff21/2,
σnnH2O1Δτ1νLTm1/2,
Nt=Ns+Nb+Ndc,
NsR=E0hν0cΔt2 Tlas,0Trec,0ORβRAR2×exp-20R αrdr,
PHt=Ns+Nb+NdcBeη,
It=Ns+Nb+NdcBeηG+Idc,0
=: Is+Ib+Idc+Idc,0
=: Is+Itb,
Idc,0=BeηNdc,0.
σn2=12σΔR21mk2i=1mj=1kΔIs,on,jR1,iIs,on,jR1,i2+1mk2i=1mj=1kΔIs,on,jR2,iIs,on,jR2,i2+1mk2i=1mj=1kΔIs,off,jR1,iIs,off,jR1,i2+1mk2i=1mj=1kΔIs,off,jR2,iIs,off,jR2,i2.
σn222σΔR21mkσIs,onIs,on¯R2+σIs,offIs,off¯R2.
σnnH2O2mk1/212ΔτσIs,onIs,on¯R2+σIs,offIs,off¯R21/2.
σIs2=σIt2+σIb2+σIdet2+σIamp2
σIs,pois2+σIs,speck2+2*σIb,pois2+2*σIb,speck2+σIs,E2+σIs,β2+2*BIdet2+2*BIamp2+σdig2,
σIs2BeG2ηNs¯+σIs,speck2+2*BeG2ηNb¯+2*σIb,speck2+σIs,E2+σIs,β2+2*BIdet2+Iamp2+σdig2.
σIsIs2FdetηDNs+σIs,speckIs¯2+ 2*FdetNbηDNs¯2 + 2*σIb,speckIs¯2+ 2* BIdet2 + Iamp2BeGηDNs¯2,
σNspeck2=N¯2/l,
σNspeck2=N¯2lΔνFTΔν.
lRL2Rt2R2λ2,
RL=RL,0+FθλπRL,0 R=RL,0+FθθR,
σnnH2O  1Δτ212mkFdetηDNs,off¯exp2τ+1+FdetηDNs,off¯2*Nb¯Ns,off¯exp4τ+1+2*BIdet2+Iamp2BeGηDNs,off¯2exp4τ+1+1l2ΔνFTΔνL+2*Nb¯2Ns,off¯2ΔνFTΔνfexp4τ+11/2
σnnH2O= 1Δτ212mkFdetηNs,off¯exp2τ+1+2*FdetNbηNs,off¯2exp4τ+11/2=1Δτ12mkηNs,off¯1/2Fdetexp2τ+1+Fdet2*Nb¯Ns,off¯exp4τ+11/2,
σnH2On=1ΔτR exp0R αrdr2ΔRη E0hννLTβRATlas,0Trec,01/2×Fdetexp2τ+1+Fdet2*Nb¯Ns,off¯exp4τ+11/2.
X<100ΔτY2mk1/2
Δγ=360°νLTR,
ΔS2πR Δγ360°=2πRνLTR.
ΔR=kΔS=k 2πRνLTR.
k=νLTRΔR2πR.
X<100nH2OσmΔRminΔRminmΔRminπRνLTRΔR Y1/2<100nH2OσΔR2πRΔRminYνLTR1/2,
ΔR>100nH2OσXπRΔRminYνLTR1/21/2.

Metrics