Abstract

A high-spectral-resolution lidar can measure vertical profiles of atmospheric temperature, pressure, the aerosol backscatter ratio, and the aerosol extinction coefficient simultaneously. We describe a system with these characteristics. The transmitter is a narrow-band (FWHM of the order of 74 MHz), injection-seeded, pulsed, double YAG laser at 532 nm. Iodine-vapor filters in the detection system spectrally separate the molecular and aerosol scattering and greatly reduce the latter (−41 dB). Operating at a selected frequency to take advantage of two neighboring lines in vapor filters, one can obtain a sensitivity of the measured signal-to-air temperature ratio equal to 0.42%/K. Using a relatively modest size transmitter and receiver system (laser power times telescope aperture equals 0.19 Wm2), our measured temperature profiles (0.5−15 km) over 11 nights are in agreement with balloon soundings to within 2.0 K over an altitude range of 2−5 km. There is good agreement in the lapse rates, tropopause altitudes, and inversions. In principle, to invert the signal requires a known density at one altitude, but in practice it is convenient to also use a known temperature at that altitude. This is a scalable system for high spatial resolution of vertical temperature profiles in the troposphere and lower stratosphere, even in the presence of aerosols.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Fiocco, G. Beneditti-Michelangeli, K. Maischberger, and E. Madonna, “Measurement of temperature and aerosol to molecule ratio in the troposphere by optical radar,” Nature (London) Phys. Sci. 229, 78–79 (1971).
    [CrossRef]
  2. A. T. Young, “Rayleigh scattering,” Phys. Today 35, 42–48 (1982).
    [CrossRef]
  3. R. L. Schwiesow and L. Lading, “Temperature profiling by Rayleigh-scattering lidar,” Appl. Opt. 20, 1972–1979 (1981).
    [CrossRef] [PubMed]
  4. L. Elterman, “Stratospheric temperature profiles obtained from searchlight measurements,” Phys. Rev. 92, 1080 (1953).
  5. L. Elterman, “Seasonal trends of temperature, density, and pressure to 67.6 km obtained with the searchlight probing technique,” J. Geophys. Res. 59, 351–358 (1954).
    [CrossRef]
  6. G. S. Kent and R. W. H. Wright, “A review of laser radar measurements of atmospheric properties,” J. Atmos. Terr. Phys. 32, 917–943 (1970).
    [CrossRef]
  7. A. Hauchecorne and M. L. Chanin, “Density and temperature profiles obtained by lidar between 35 and 70 km,” Geophys. Res. Lett. 7, 565–568 (1980).
    [CrossRef]
  8. P. Keckhut, M. L. Chanin, and A. Hauchecorne, “Stratosphere temperature measurement using Raman lidar,” Appl. Opt. 29, 5182–5185 (1990).
    [CrossRef] [PubMed]
  9. J. Cooney, “Measurement of atmospheric temperature profiles by Raman backscatter,” J. Appl. Meteorol. 11, 108–112 (1972).
    [CrossRef]
  10. J. Cooney, “Atmospheric temperature measurement using a pure rotational Raman lidar: comment,” Appl. Opt. 23, 653–654 (1984).
    [CrossRef] [PubMed]
  11. N. Nedeljkovic, A. Hauchecorne, and M.-L. Chanin, “Rotational Raman lidar to measure the atmospheric temperature from the ground to 30 km,” IEEE Trans. Geosci. Remote Sens. 31, 90–101 (1993).
    [CrossRef]
  12. A. Behrendt and J. Reichardt, “Atmospheric temperature profiling in the presence of clouds with a pure rotational Raman lidar by use of an interference-filter-based polychromator,” Appl. Opt. 39, 1372–1378 (2000).
    [CrossRef]
  13. S. T. Shipley, D. H. Tracy, E. W. Eloranta, J. T. Tauger, J. T. Sroga, F. L. Roesler, and J. A. Weinman, “High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 1: Theory and instrumentation,” Appl. Opt. 22, 3716–3724 (1983).
    [CrossRef] [PubMed]
  14. H. Shimizu, S. A. Lee, and C. Y. She, “High spectral resolution lidar system with atomic blocking filters for measuring atmospheric parameters,” Appl. Opt. 22, 1373–1381 (1983).
    [CrossRef] [PubMed]
  15. R. J. Alvarez II, L. M. Caldwell, Y. H. Li, D. A. Krueger, and C. Y. She, “High-spectral-resolution lidar measurement of tropospheric backscatter-ratio with barium atomic blocking filters,” J. Atmos. Oceanic Technol. 7, 876–881 (1990).
    [CrossRef]
  16. P. Piironen and E. W. Eloranta, “Demonstration of a high-spectral-resolution lidar based on an iodine absorption filter,” Opt. Lett. 19, 234–236 (1994).
    [CrossRef] [PubMed]
  17. E. Voss, C. Weitkamp, and W. Michaelis, “Lead-vapor filters for high-spectral-resolution temperature lidar,” Appl. Opt. 33, 3250–3260 (1994).
    [CrossRef] [PubMed]
  18. C. Y. She, R. J. Alvarez II, L. M. Caldwell, and D. A. Krueger, “High-spectral-resolution Rayleigh–Mie lidar measurement of aerosol and atmospheric profiles,” Opt. Lett. 17, 541–543 (1992).
    [CrossRef] [PubMed]
  19. R. J. Alvarez II, L. M. Caldwell, P. G. Wolyn, D. A. Krueger, T. B. McKee, and C. Y. She, “Profiling temperature, pressure, and aerosol properties using a high spectral resolution lidar employing atomic blocking filters,” J. Atmos. Oceanic Technol. 10, 546–556 (1993).
    [CrossRef]
  20. L. M. Caldwell, “A high spectral resolution lidar using an iodine vapor filter at 589 nm,” Ph.D. dissertation (Department of Physics, Colorado State University, Fort Collins, Colo., 1994).
  21. M. D. Levenson and A. L. Schawlow, “Hyperfine interactions in molecular iodine,” Phys. Rev. A 6, 946–951 (1972).
    [CrossRef]
  22. A. Arie, S. Schiller, E. K. Gustafson, and R. L. Byer, “Absolute frequency stabilization of diode-laser-pumped Nd:YAG lasers to hyperfine transitions in molecular iodine,” Opt. Lett. 17, 1204–1206 (1992).
    [CrossRef] [PubMed]
  23. C. Y. She, “Spectral structure of laser light scattering revisited: bandwidths of nonresonant scattering lidars,” Appl. Opt. (In press). LP17498.
  24. D. A. Krueger, L. M. Caldwell, R. J. Alvarez II, and C. Y. She, “Self-consistent method for determining vertical profiles of aerosol and atmospheric properties using a high spectral resolution Rayleigh-Mie lidar,” J. Atmos. Oceanic Technol. 10, 534–545 (1993).
    [CrossRef]
  25. J. W. Hair, “A high spectral resolution lidar at 532 nm for simultaneous measurement of atmospheric state and aerosol profiles using iodine vapor filters,” Ph.D. dissertation (Department of Physics, Colorado State University, Fort Collins, Colo., 1998).
  26. G. Tenti, C. D. Boley, and R. C. Desai, “On the kinetic model description of Rayleigh-Brillouin scattering from molecular gases,” Can. J. Phys. 52, 285–290 (1974).
  27. J. Tellinghuisen, “Transition strengths in the visible-infared absorption spectrum of I2,” J. Chem. Phys. 76, 2821–2834 (1982).
    [CrossRef]
  28. J. N. Forkey, “Development and demonstration of filtered Rayleigh scattering—a laser based flow diagnostic for planar measurement of velocity, temperature and pressure,” Ph.D. dissertation (Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, N.J., 1996).
  29. C. Y. She and J. R. Yu, “Simultaneous 3-frequency Na lidar measurements of radial wind and temperature in the mesopause region,” Geophys. Res. Lett. 21, 1771–1774 (1994).
    [CrossRef]
  30. M. A. White, D. A. Golias, D. A. Krueger, and C. Y. She, “Frequency-agile lidar for simultaneous measurement of temperature and radial wind in the mesopause region without sodium density contamination,” in Application of Lidar to Current Atmospheric Topics, A. J. Sedlacek, ed., Proc. SPIE 2833, 136–140 (1996).
    [CrossRef]
  31. Z. Liu, I. Matsui, and N. Sugimoto, “High-spectral-resolution lidar using an iodine absorption filter for atmospheric measurements,” Opt. Eng. 38, 1661–1670 (1999).
    [CrossRef]
  32. Z. S. Liu, W. B. Chen, T. L. Zhang, J. W. Hair, and C. Y. She, “An incoherent Doppler lidar for ground-based atmospheric wind profiling,” Appl. Phys. B 46, 561–566 (1997).
    [CrossRef]
  33. J. S. Friedman, C. A. Tepley, P. A. Castleberg, and H. Roe, “Middle-atmosphere Doppler lidar using an iodine-vapor edge filter,” Opt. Lett. 22, 1648–1650 (1997).
    [CrossRef]

2000 (1)

1999 (1)

Z. Liu, I. Matsui, and N. Sugimoto, “High-spectral-resolution lidar using an iodine absorption filter for atmospheric measurements,” Opt. Eng. 38, 1661–1670 (1999).
[CrossRef]

1997 (2)

Z. S. Liu, W. B. Chen, T. L. Zhang, J. W. Hair, and C. Y. She, “An incoherent Doppler lidar for ground-based atmospheric wind profiling,” Appl. Phys. B 46, 561–566 (1997).
[CrossRef]

J. S. Friedman, C. A. Tepley, P. A. Castleberg, and H. Roe, “Middle-atmosphere Doppler lidar using an iodine-vapor edge filter,” Opt. Lett. 22, 1648–1650 (1997).
[CrossRef]

1996 (1)

M. A. White, D. A. Golias, D. A. Krueger, and C. Y. She, “Frequency-agile lidar for simultaneous measurement of temperature and radial wind in the mesopause region without sodium density contamination,” in Application of Lidar to Current Atmospheric Topics, A. J. Sedlacek, ed., Proc. SPIE 2833, 136–140 (1996).
[CrossRef]

1994 (3)

1993 (3)

R. J. Alvarez II, L. M. Caldwell, P. G. Wolyn, D. A. Krueger, T. B. McKee, and C. Y. She, “Profiling temperature, pressure, and aerosol properties using a high spectral resolution lidar employing atomic blocking filters,” J. Atmos. Oceanic Technol. 10, 546–556 (1993).
[CrossRef]

N. Nedeljkovic, A. Hauchecorne, and M.-L. Chanin, “Rotational Raman lidar to measure the atmospheric temperature from the ground to 30 km,” IEEE Trans. Geosci. Remote Sens. 31, 90–101 (1993).
[CrossRef]

D. A. Krueger, L. M. Caldwell, R. J. Alvarez II, and C. Y. She, “Self-consistent method for determining vertical profiles of aerosol and atmospheric properties using a high spectral resolution Rayleigh-Mie lidar,” J. Atmos. Oceanic Technol. 10, 534–545 (1993).
[CrossRef]

1992 (2)

1990 (2)

P. Keckhut, M. L. Chanin, and A. Hauchecorne, “Stratosphere temperature measurement using Raman lidar,” Appl. Opt. 29, 5182–5185 (1990).
[CrossRef] [PubMed]

R. J. Alvarez II, L. M. Caldwell, Y. H. Li, D. A. Krueger, and C. Y. She, “High-spectral-resolution lidar measurement of tropospheric backscatter-ratio with barium atomic blocking filters,” J. Atmos. Oceanic Technol. 7, 876–881 (1990).
[CrossRef]

1984 (1)

1983 (2)

1982 (2)

A. T. Young, “Rayleigh scattering,” Phys. Today 35, 42–48 (1982).
[CrossRef]

J. Tellinghuisen, “Transition strengths in the visible-infared absorption spectrum of I2,” J. Chem. Phys. 76, 2821–2834 (1982).
[CrossRef]

1981 (1)

1980 (1)

A. Hauchecorne and M. L. Chanin, “Density and temperature profiles obtained by lidar between 35 and 70 km,” Geophys. Res. Lett. 7, 565–568 (1980).
[CrossRef]

1974 (1)

G. Tenti, C. D. Boley, and R. C. Desai, “On the kinetic model description of Rayleigh-Brillouin scattering from molecular gases,” Can. J. Phys. 52, 285–290 (1974).

1972 (2)

J. Cooney, “Measurement of atmospheric temperature profiles by Raman backscatter,” J. Appl. Meteorol. 11, 108–112 (1972).
[CrossRef]

M. D. Levenson and A. L. Schawlow, “Hyperfine interactions in molecular iodine,” Phys. Rev. A 6, 946–951 (1972).
[CrossRef]

1971 (1)

G. Fiocco, G. Beneditti-Michelangeli, K. Maischberger, and E. Madonna, “Measurement of temperature and aerosol to molecule ratio in the troposphere by optical radar,” Nature (London) Phys. Sci. 229, 78–79 (1971).
[CrossRef]

1970 (1)

G. S. Kent and R. W. H. Wright, “A review of laser radar measurements of atmospheric properties,” J. Atmos. Terr. Phys. 32, 917–943 (1970).
[CrossRef]

1954 (1)

L. Elterman, “Seasonal trends of temperature, density, and pressure to 67.6 km obtained with the searchlight probing technique,” J. Geophys. Res. 59, 351–358 (1954).
[CrossRef]

1953 (1)

L. Elterman, “Stratospheric temperature profiles obtained from searchlight measurements,” Phys. Rev. 92, 1080 (1953).

Alvarez II, R. J.

R. J. Alvarez II, L. M. Caldwell, P. G. Wolyn, D. A. Krueger, T. B. McKee, and C. Y. She, “Profiling temperature, pressure, and aerosol properties using a high spectral resolution lidar employing atomic blocking filters,” J. Atmos. Oceanic Technol. 10, 546–556 (1993).
[CrossRef]

D. A. Krueger, L. M. Caldwell, R. J. Alvarez II, and C. Y. She, “Self-consistent method for determining vertical profiles of aerosol and atmospheric properties using a high spectral resolution Rayleigh-Mie lidar,” J. Atmos. Oceanic Technol. 10, 534–545 (1993).
[CrossRef]

C. Y. She, R. J. Alvarez II, L. M. Caldwell, and D. A. Krueger, “High-spectral-resolution Rayleigh–Mie lidar measurement of aerosol and atmospheric profiles,” Opt. Lett. 17, 541–543 (1992).
[CrossRef] [PubMed]

R. J. Alvarez II, L. M. Caldwell, Y. H. Li, D. A. Krueger, and C. Y. She, “High-spectral-resolution lidar measurement of tropospheric backscatter-ratio with barium atomic blocking filters,” J. Atmos. Oceanic Technol. 7, 876–881 (1990).
[CrossRef]

Arie, A.

Behrendt, A.

Beneditti-Michelangeli, G.

G. Fiocco, G. Beneditti-Michelangeli, K. Maischberger, and E. Madonna, “Measurement of temperature and aerosol to molecule ratio in the troposphere by optical radar,” Nature (London) Phys. Sci. 229, 78–79 (1971).
[CrossRef]

Boley, C. D.

G. Tenti, C. D. Boley, and R. C. Desai, “On the kinetic model description of Rayleigh-Brillouin scattering from molecular gases,” Can. J. Phys. 52, 285–290 (1974).

Byer, R. L.

Caldwell, L. M.

D. A. Krueger, L. M. Caldwell, R. J. Alvarez II, and C. Y. She, “Self-consistent method for determining vertical profiles of aerosol and atmospheric properties using a high spectral resolution Rayleigh-Mie lidar,” J. Atmos. Oceanic Technol. 10, 534–545 (1993).
[CrossRef]

R. J. Alvarez II, L. M. Caldwell, P. G. Wolyn, D. A. Krueger, T. B. McKee, and C. Y. She, “Profiling temperature, pressure, and aerosol properties using a high spectral resolution lidar employing atomic blocking filters,” J. Atmos. Oceanic Technol. 10, 546–556 (1993).
[CrossRef]

C. Y. She, R. J. Alvarez II, L. M. Caldwell, and D. A. Krueger, “High-spectral-resolution Rayleigh–Mie lidar measurement of aerosol and atmospheric profiles,” Opt. Lett. 17, 541–543 (1992).
[CrossRef] [PubMed]

R. J. Alvarez II, L. M. Caldwell, Y. H. Li, D. A. Krueger, and C. Y. She, “High-spectral-resolution lidar measurement of tropospheric backscatter-ratio with barium atomic blocking filters,” J. Atmos. Oceanic Technol. 7, 876–881 (1990).
[CrossRef]

Castleberg, P. A.

Chanin, M. L.

P. Keckhut, M. L. Chanin, and A. Hauchecorne, “Stratosphere temperature measurement using Raman lidar,” Appl. Opt. 29, 5182–5185 (1990).
[CrossRef] [PubMed]

A. Hauchecorne and M. L. Chanin, “Density and temperature profiles obtained by lidar between 35 and 70 km,” Geophys. Res. Lett. 7, 565–568 (1980).
[CrossRef]

Chanin, M.-L.

N. Nedeljkovic, A. Hauchecorne, and M.-L. Chanin, “Rotational Raman lidar to measure the atmospheric temperature from the ground to 30 km,” IEEE Trans. Geosci. Remote Sens. 31, 90–101 (1993).
[CrossRef]

Chen, W. B.

Z. S. Liu, W. B. Chen, T. L. Zhang, J. W. Hair, and C. Y. She, “An incoherent Doppler lidar for ground-based atmospheric wind profiling,” Appl. Phys. B 46, 561–566 (1997).
[CrossRef]

Cooney, J.

J. Cooney, “Atmospheric temperature measurement using a pure rotational Raman lidar: comment,” Appl. Opt. 23, 653–654 (1984).
[CrossRef] [PubMed]

J. Cooney, “Measurement of atmospheric temperature profiles by Raman backscatter,” J. Appl. Meteorol. 11, 108–112 (1972).
[CrossRef]

Desai, R. C.

G. Tenti, C. D. Boley, and R. C. Desai, “On the kinetic model description of Rayleigh-Brillouin scattering from molecular gases,” Can. J. Phys. 52, 285–290 (1974).

Eloranta, E. W.

Elterman, L.

L. Elterman, “Seasonal trends of temperature, density, and pressure to 67.6 km obtained with the searchlight probing technique,” J. Geophys. Res. 59, 351–358 (1954).
[CrossRef]

L. Elterman, “Stratospheric temperature profiles obtained from searchlight measurements,” Phys. Rev. 92, 1080 (1953).

Fiocco, G.

G. Fiocco, G. Beneditti-Michelangeli, K. Maischberger, and E. Madonna, “Measurement of temperature and aerosol to molecule ratio in the troposphere by optical radar,” Nature (London) Phys. Sci. 229, 78–79 (1971).
[CrossRef]

Friedman, J. S.

Golias, D. A.

M. A. White, D. A. Golias, D. A. Krueger, and C. Y. She, “Frequency-agile lidar for simultaneous measurement of temperature and radial wind in the mesopause region without sodium density contamination,” in Application of Lidar to Current Atmospheric Topics, A. J. Sedlacek, ed., Proc. SPIE 2833, 136–140 (1996).
[CrossRef]

Gustafson, E. K.

Hair, J. W.

Z. S. Liu, W. B. Chen, T. L. Zhang, J. W. Hair, and C. Y. She, “An incoherent Doppler lidar for ground-based atmospheric wind profiling,” Appl. Phys. B 46, 561–566 (1997).
[CrossRef]

Hauchecorne, A.

N. Nedeljkovic, A. Hauchecorne, and M.-L. Chanin, “Rotational Raman lidar to measure the atmospheric temperature from the ground to 30 km,” IEEE Trans. Geosci. Remote Sens. 31, 90–101 (1993).
[CrossRef]

P. Keckhut, M. L. Chanin, and A. Hauchecorne, “Stratosphere temperature measurement using Raman lidar,” Appl. Opt. 29, 5182–5185 (1990).
[CrossRef] [PubMed]

A. Hauchecorne and M. L. Chanin, “Density and temperature profiles obtained by lidar between 35 and 70 km,” Geophys. Res. Lett. 7, 565–568 (1980).
[CrossRef]

Keckhut, P.

Kent, G. S.

G. S. Kent and R. W. H. Wright, “A review of laser radar measurements of atmospheric properties,” J. Atmos. Terr. Phys. 32, 917–943 (1970).
[CrossRef]

Krueger, D. A.

M. A. White, D. A. Golias, D. A. Krueger, and C. Y. She, “Frequency-agile lidar for simultaneous measurement of temperature and radial wind in the mesopause region without sodium density contamination,” in Application of Lidar to Current Atmospheric Topics, A. J. Sedlacek, ed., Proc. SPIE 2833, 136–140 (1996).
[CrossRef]

D. A. Krueger, L. M. Caldwell, R. J. Alvarez II, and C. Y. She, “Self-consistent method for determining vertical profiles of aerosol and atmospheric properties using a high spectral resolution Rayleigh-Mie lidar,” J. Atmos. Oceanic Technol. 10, 534–545 (1993).
[CrossRef]

R. J. Alvarez II, L. M. Caldwell, P. G. Wolyn, D. A. Krueger, T. B. McKee, and C. Y. She, “Profiling temperature, pressure, and aerosol properties using a high spectral resolution lidar employing atomic blocking filters,” J. Atmos. Oceanic Technol. 10, 546–556 (1993).
[CrossRef]

C. Y. She, R. J. Alvarez II, L. M. Caldwell, and D. A. Krueger, “High-spectral-resolution Rayleigh–Mie lidar measurement of aerosol and atmospheric profiles,” Opt. Lett. 17, 541–543 (1992).
[CrossRef] [PubMed]

R. J. Alvarez II, L. M. Caldwell, Y. H. Li, D. A. Krueger, and C. Y. She, “High-spectral-resolution lidar measurement of tropospheric backscatter-ratio with barium atomic blocking filters,” J. Atmos. Oceanic Technol. 7, 876–881 (1990).
[CrossRef]

Lading, L.

Lee, S. A.

Levenson, M. D.

M. D. Levenson and A. L. Schawlow, “Hyperfine interactions in molecular iodine,” Phys. Rev. A 6, 946–951 (1972).
[CrossRef]

Li, Y. H.

R. J. Alvarez II, L. M. Caldwell, Y. H. Li, D. A. Krueger, and C. Y. She, “High-spectral-resolution lidar measurement of tropospheric backscatter-ratio with barium atomic blocking filters,” J. Atmos. Oceanic Technol. 7, 876–881 (1990).
[CrossRef]

Liu, Z.

Z. Liu, I. Matsui, and N. Sugimoto, “High-spectral-resolution lidar using an iodine absorption filter for atmospheric measurements,” Opt. Eng. 38, 1661–1670 (1999).
[CrossRef]

Liu, Z. S.

Z. S. Liu, W. B. Chen, T. L. Zhang, J. W. Hair, and C. Y. She, “An incoherent Doppler lidar for ground-based atmospheric wind profiling,” Appl. Phys. B 46, 561–566 (1997).
[CrossRef]

Madonna, E.

G. Fiocco, G. Beneditti-Michelangeli, K. Maischberger, and E. Madonna, “Measurement of temperature and aerosol to molecule ratio in the troposphere by optical radar,” Nature (London) Phys. Sci. 229, 78–79 (1971).
[CrossRef]

Maischberger, K.

G. Fiocco, G. Beneditti-Michelangeli, K. Maischberger, and E. Madonna, “Measurement of temperature and aerosol to molecule ratio in the troposphere by optical radar,” Nature (London) Phys. Sci. 229, 78–79 (1971).
[CrossRef]

Matsui, I.

Z. Liu, I. Matsui, and N. Sugimoto, “High-spectral-resolution lidar using an iodine absorption filter for atmospheric measurements,” Opt. Eng. 38, 1661–1670 (1999).
[CrossRef]

McKee, T. B.

R. J. Alvarez II, L. M. Caldwell, P. G. Wolyn, D. A. Krueger, T. B. McKee, and C. Y. She, “Profiling temperature, pressure, and aerosol properties using a high spectral resolution lidar employing atomic blocking filters,” J. Atmos. Oceanic Technol. 10, 546–556 (1993).
[CrossRef]

Michaelis, W.

Nedeljkovic, N.

N. Nedeljkovic, A. Hauchecorne, and M.-L. Chanin, “Rotational Raman lidar to measure the atmospheric temperature from the ground to 30 km,” IEEE Trans. Geosci. Remote Sens. 31, 90–101 (1993).
[CrossRef]

Piironen, P.

Reichardt, J.

Roe, H.

Roesler, F. L.

Schawlow, A. L.

M. D. Levenson and A. L. Schawlow, “Hyperfine interactions in molecular iodine,” Phys. Rev. A 6, 946–951 (1972).
[CrossRef]

Schiller, S.

Schwiesow, R. L.

She, C. Y.

Z. S. Liu, W. B. Chen, T. L. Zhang, J. W. Hair, and C. Y. She, “An incoherent Doppler lidar for ground-based atmospheric wind profiling,” Appl. Phys. B 46, 561–566 (1997).
[CrossRef]

M. A. White, D. A. Golias, D. A. Krueger, and C. Y. She, “Frequency-agile lidar for simultaneous measurement of temperature and radial wind in the mesopause region without sodium density contamination,” in Application of Lidar to Current Atmospheric Topics, A. J. Sedlacek, ed., Proc. SPIE 2833, 136–140 (1996).
[CrossRef]

C. Y. She and J. R. Yu, “Simultaneous 3-frequency Na lidar measurements of radial wind and temperature in the mesopause region,” Geophys. Res. Lett. 21, 1771–1774 (1994).
[CrossRef]

D. A. Krueger, L. M. Caldwell, R. J. Alvarez II, and C. Y. She, “Self-consistent method for determining vertical profiles of aerosol and atmospheric properties using a high spectral resolution Rayleigh-Mie lidar,” J. Atmos. Oceanic Technol. 10, 534–545 (1993).
[CrossRef]

R. J. Alvarez II, L. M. Caldwell, P. G. Wolyn, D. A. Krueger, T. B. McKee, and C. Y. She, “Profiling temperature, pressure, and aerosol properties using a high spectral resolution lidar employing atomic blocking filters,” J. Atmos. Oceanic Technol. 10, 546–556 (1993).
[CrossRef]

C. Y. She, R. J. Alvarez II, L. M. Caldwell, and D. A. Krueger, “High-spectral-resolution Rayleigh–Mie lidar measurement of aerosol and atmospheric profiles,” Opt. Lett. 17, 541–543 (1992).
[CrossRef] [PubMed]

R. J. Alvarez II, L. M. Caldwell, Y. H. Li, D. A. Krueger, and C. Y. She, “High-spectral-resolution lidar measurement of tropospheric backscatter-ratio with barium atomic blocking filters,” J. Atmos. Oceanic Technol. 7, 876–881 (1990).
[CrossRef]

H. Shimizu, S. A. Lee, and C. Y. She, “High spectral resolution lidar system with atomic blocking filters for measuring atmospheric parameters,” Appl. Opt. 22, 1373–1381 (1983).
[CrossRef] [PubMed]

Shimizu, H.

Shipley, S. T.

Sroga, J. T.

Sugimoto, N.

Z. Liu, I. Matsui, and N. Sugimoto, “High-spectral-resolution lidar using an iodine absorption filter for atmospheric measurements,” Opt. Eng. 38, 1661–1670 (1999).
[CrossRef]

Tauger, J. T.

Tellinghuisen, J.

J. Tellinghuisen, “Transition strengths in the visible-infared absorption spectrum of I2,” J. Chem. Phys. 76, 2821–2834 (1982).
[CrossRef]

Tenti, G.

G. Tenti, C. D. Boley, and R. C. Desai, “On the kinetic model description of Rayleigh-Brillouin scattering from molecular gases,” Can. J. Phys. 52, 285–290 (1974).

Tepley, C. A.

Tracy, D. H.

Voss, E.

Weinman, J. A.

Weitkamp, C.

White, M. A.

M. A. White, D. A. Golias, D. A. Krueger, and C. Y. She, “Frequency-agile lidar for simultaneous measurement of temperature and radial wind in the mesopause region without sodium density contamination,” in Application of Lidar to Current Atmospheric Topics, A. J. Sedlacek, ed., Proc. SPIE 2833, 136–140 (1996).
[CrossRef]

Wolyn, P. G.

R. J. Alvarez II, L. M. Caldwell, P. G. Wolyn, D. A. Krueger, T. B. McKee, and C. Y. She, “Profiling temperature, pressure, and aerosol properties using a high spectral resolution lidar employing atomic blocking filters,” J. Atmos. Oceanic Technol. 10, 546–556 (1993).
[CrossRef]

Wright, R. W. H.

G. S. Kent and R. W. H. Wright, “A review of laser radar measurements of atmospheric properties,” J. Atmos. Terr. Phys. 32, 917–943 (1970).
[CrossRef]

Young, A. T.

A. T. Young, “Rayleigh scattering,” Phys. Today 35, 42–48 (1982).
[CrossRef]

Yu, J. R.

C. Y. She and J. R. Yu, “Simultaneous 3-frequency Na lidar measurements of radial wind and temperature in the mesopause region,” Geophys. Res. Lett. 21, 1771–1774 (1994).
[CrossRef]

Zhang, T. L.

Z. S. Liu, W. B. Chen, T. L. Zhang, J. W. Hair, and C. Y. She, “An incoherent Doppler lidar for ground-based atmospheric wind profiling,” Appl. Phys. B 46, 561–566 (1997).
[CrossRef]

Appl. Opt. (7)

Appl. Phys. B (1)

Z. S. Liu, W. B. Chen, T. L. Zhang, J. W. Hair, and C. Y. She, “An incoherent Doppler lidar for ground-based atmospheric wind profiling,” Appl. Phys. B 46, 561–566 (1997).
[CrossRef]

Can. J. Phys. (1)

G. Tenti, C. D. Boley, and R. C. Desai, “On the kinetic model description of Rayleigh-Brillouin scattering from molecular gases,” Can. J. Phys. 52, 285–290 (1974).

Geophys. Res. Lett. (2)

C. Y. She and J. R. Yu, “Simultaneous 3-frequency Na lidar measurements of radial wind and temperature in the mesopause region,” Geophys. Res. Lett. 21, 1771–1774 (1994).
[CrossRef]

A. Hauchecorne and M. L. Chanin, “Density and temperature profiles obtained by lidar between 35 and 70 km,” Geophys. Res. Lett. 7, 565–568 (1980).
[CrossRef]

IEEE Trans. Geosci. Remote Sens. (1)

N. Nedeljkovic, A. Hauchecorne, and M.-L. Chanin, “Rotational Raman lidar to measure the atmospheric temperature from the ground to 30 km,” IEEE Trans. Geosci. Remote Sens. 31, 90–101 (1993).
[CrossRef]

J. Appl. Meteorol. (1)

J. Cooney, “Measurement of atmospheric temperature profiles by Raman backscatter,” J. Appl. Meteorol. 11, 108–112 (1972).
[CrossRef]

J. Atmos. Oceanic Technol. (3)

R. J. Alvarez II, L. M. Caldwell, Y. H. Li, D. A. Krueger, and C. Y. She, “High-spectral-resolution lidar measurement of tropospheric backscatter-ratio with barium atomic blocking filters,” J. Atmos. Oceanic Technol. 7, 876–881 (1990).
[CrossRef]

R. J. Alvarez II, L. M. Caldwell, P. G. Wolyn, D. A. Krueger, T. B. McKee, and C. Y. She, “Profiling temperature, pressure, and aerosol properties using a high spectral resolution lidar employing atomic blocking filters,” J. Atmos. Oceanic Technol. 10, 546–556 (1993).
[CrossRef]

D. A. Krueger, L. M. Caldwell, R. J. Alvarez II, and C. Y. She, “Self-consistent method for determining vertical profiles of aerosol and atmospheric properties using a high spectral resolution Rayleigh-Mie lidar,” J. Atmos. Oceanic Technol. 10, 534–545 (1993).
[CrossRef]

J. Atmos. Terr. Phys. (1)

G. S. Kent and R. W. H. Wright, “A review of laser radar measurements of atmospheric properties,” J. Atmos. Terr. Phys. 32, 917–943 (1970).
[CrossRef]

J. Chem. Phys. (1)

J. Tellinghuisen, “Transition strengths in the visible-infared absorption spectrum of I2,” J. Chem. Phys. 76, 2821–2834 (1982).
[CrossRef]

J. Geophys. Res. (1)

L. Elterman, “Seasonal trends of temperature, density, and pressure to 67.6 km obtained with the searchlight probing technique,” J. Geophys. Res. 59, 351–358 (1954).
[CrossRef]

Nature (London) Phys. Sci. (1)

G. Fiocco, G. Beneditti-Michelangeli, K. Maischberger, and E. Madonna, “Measurement of temperature and aerosol to molecule ratio in the troposphere by optical radar,” Nature (London) Phys. Sci. 229, 78–79 (1971).
[CrossRef]

Opt. Eng. (1)

Z. Liu, I. Matsui, and N. Sugimoto, “High-spectral-resolution lidar using an iodine absorption filter for atmospheric measurements,” Opt. Eng. 38, 1661–1670 (1999).
[CrossRef]

Opt. Lett. (4)

Phys. Rev. (1)

L. Elterman, “Stratospheric temperature profiles obtained from searchlight measurements,” Phys. Rev. 92, 1080 (1953).

Phys. Rev. A (1)

M. D. Levenson and A. L. Schawlow, “Hyperfine interactions in molecular iodine,” Phys. Rev. A 6, 946–951 (1972).
[CrossRef]

Phys. Today (1)

A. T. Young, “Rayleigh scattering,” Phys. Today 35, 42–48 (1982).
[CrossRef]

Other (5)

L. M. Caldwell, “A high spectral resolution lidar using an iodine vapor filter at 589 nm,” Ph.D. dissertation (Department of Physics, Colorado State University, Fort Collins, Colo., 1994).

C. Y. She, “Spectral structure of laser light scattering revisited: bandwidths of nonresonant scattering lidars,” Appl. Opt. (In press). LP17498.

J. W. Hair, “A high spectral resolution lidar at 532 nm for simultaneous measurement of atmospheric state and aerosol profiles using iodine vapor filters,” Ph.D. dissertation (Department of Physics, Colorado State University, Fort Collins, Colo., 1998).

J. N. Forkey, “Development and demonstration of filtered Rayleigh scattering—a laser based flow diagnostic for planar measurement of velocity, temperature and pressure,” Ph.D. dissertation (Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, N.J., 1996).

M. A. White, D. A. Golias, D. A. Krueger, and C. Y. She, “Frequency-agile lidar for simultaneous measurement of temperature and radial wind in the mesopause region without sodium density contamination,” in Application of Lidar to Current Atmospheric Topics, A. J. Sedlacek, ed., Proc. SPIE 2833, 136–140 (1996).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Schematic of the HSRL system, (a) The transmitter system consists of a seeded, pulsed YAG laser of 74-MHz linewidth. (b) Details of the Doppler-free frequency monitor. (c) The receiver consists of two molecular and one total scattering channels. A schematic of the detection box is shown for the HSRL field measurements. The collected light is directed into a multimode fiber and then is input into the detection box where the light is passed through the Daystar Corporation filter and is then split into two channels that have iodine-vapor filters and one without a vapor filter. PBS, polarizing beam splitter; BS, dielectric plate beam splitter; FM, flip mirror; FB, flip beam splitter; PMT, photomultiplier tube; PD, photodiode; FC, fiber coupler.

Fig. 2
Fig. 2

(a) Detailed drawing of the iodine-vapor filter oven without the external housing. (b) Iodine cell finger and iodine cell temperatures as a function of time. The data presented here were taken every 15 s over a 10-hr period.

Fig. 3
Fig. 3

Normalized bandpass transmission curves for the Daystar Corporation filters operated near 532 and 589 nm. The first few pure rotational Raman lines are plotted; they are effectively blocked.

Fig. 4
Fig. 4

Iodine transmission curves for filters 1 and 2 that have cell (finger) temperatures of 82.19 (72.03) °C and 56.18 (47.74) °C, respectively. Also plotted is the Doppler-free spectrum for lines 1107 and 1108. The laser locking is marked for reference.

Fig. 5
Fig. 5

One-channel sensitivity in percent change in the lidar signal for a 1 K change in the air temperature and the fraction of the Cabannes–Brillouin signal (T = 275 K and P = 0.75 atm at 532 nm) transmitted through an ideal square filter as a function of the filter full width.

Fig. 6
Fig. 6

Measured iodine filter transmission curves near 532 nm. The fractional change in the signal ratio and the fraction of the Cabannes signal pass through the filters at selected frequencies for scattering calculated at T = 275 K and P = 0.75 atm. The two absorption bands overlap to give an effectively larger filter width for use in the HSRL.

Fig. 7
Fig. 7

HSRL 5-hr, 300-m averaged temperature profile for 19 June, 1998 plotted with the Fort Collins and Denver balloonsondes. The error bars give the effect of photon-counting statistical variations at selected heights for the HSRL data. (a) Lidar temperature profile is offset from balloon sounding. (b) With an adjustment factor as discussed in the text.

Fig. 8
Fig. 8

(a) HSRL 5-hr, 300-m averaged backscatter ratio profile for 19 June, 1998 plotted with photon-counting error bars at 1-km intervals. (b) The relative humidity from the Fort Collins and Denver balloons is plotted for comparison with the HSRL backscatter ratio. A persistent peak in the relative humidity can be seen at ~10 km.

Fig. 9
Fig. 9

(a) Sample HSRL 1-hr, 300-m averaged temperature profiles for 19 June, 1998 plotted with Fort Collins balloonsondes. The error bars give the photon-counting error at 1-km intervals for the first hourly HSRL profile. (b) Expanded plot of the inversion near 4 km; the altitude of the inversion moves up during the night from point A to point B.

Fig. 10
Fig. 10

(a) Sample HSRL 1-hr, 300-m averaged backscatter ratio profiles for 19 June, 1998. The error bars give the photon-counting error at 31-km intervals for the first hourly HSRL profile. (b) Sample HSRL 1-hr, 300-m averaged extinction coefficient profiles for 19 June, 1998.

Fig. 11
Fig. 11

Raw data profile averaged over 3 min and 300 m for one of the molecular-scattering channels and the total scattering channel for the night of 19 April, 1998. The total scattering channel shows a cloud at ~8 km.

Fig. 12
Fig. 12

(a) and (b) HSRL 2-hr, 300-m averaged temperature profiles for 19 April, 1998 plotted with Denver balloonsondes.

Fig. 13
Fig. 13

HSRL 2-hr, 300-m averaged backscatter ratio profiles for 19 April, 1998.

Tables (5)

Tables Icon

Table 1 System Parameters for Transmitter and Receiver

Tables Icon

Table 2 Summary of the 1998 HSRL Lidar Measurements

Tables Icon

Table 3 Summary of Temperature Calibration Errorsa

Tables Icon

Table 4 Summary of Temperature Measurement Errorsa

Tables Icon

Table 5 Rough Signal Strength and Bandwidth Comparison for Different Scattering Lidars for Atmospheric Temperature Measurements

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

N t = ( E 0 / h v ) ( A / z 2 ) Δ z ξ t [ β a ( z ) + β m ( z ) f D ] exp [ 2 d z α ( z ) ] ,
N i = ( E 0 / h v ) ( A / z 2 ) Δ z ξ m [ β m ( z ) f i ] × exp [ 2 d z α ( z ) ] ,
f D ( T , P ) = ( v , T , P ) D ( v ) d v ,
f m , i ( T , P ) = ( v , T , P ) F i ( v ) D ( v ) d v ,
( v , T , P ) d v = 1 .
N 1 / N 2 = ξ 1 f m , 1 ( T , P ) / ξ 2 f m , 2 ( T , P ) .
α ( z ) = 0 . 5 d [ β m ξ i f m , i ( T , P ) / ( N i z 2 ) ] / d z .
N t / N i = ( ξ t / ξ i ) [ β α ( z ) + β m ( z ) f D ] / [ β m ( z ) f m , i ] .
D ( v ) = ξ I 3 ( v ) / I 4 ( v ) , S i ( v ) = ξ i F i ( v ) D ( v ) = I i ( v ) / I 4 ( v ) ,
f i S ( T , P ) = ( v , T , P ) S i ( v ) D ( v ) d v = ξ i f m , i ( T , P ) ,
N 1 / N 2 = ( ξ 1 ξ 2 / ξ 2 ξ 1 ) [ f 1 S ( T , P ) / f 2 S ( T , P ) ] ,
α ( z ) = 0.5 d [ β m ( z ) ξ i f i S ( T , P ) / ( ξ i N i z 2 ) ] / d z ,
N t / N i = ( ξ i ξ t / ξ i ) [ β α ( z ) + β m ( z ) f D ] / [ β m ( z ) f i S ( T , P ) ] .
( N 1 / N 2 ) NORM = ξ 1 ξ 2 S 1 ( v 0 ) / ξ 2 ξ 1 S 2 ( v 0 ) , N 1 / N 2 = ( N 1 / N 2 ) NORM S 2 ( v 0 ) f 1 S ( T , P ) / S 1 ( v 0 ) f 2 S ( T , P ) ,
( N i / N i ) NORM = ξ T ξ i / ξ i S i ( v 0 ) , ( β m + β α ) / β m = ( N t / N i ) ( N i / N t ) NORM f i S ( T , P ) / S i ( v 0 ) .
S T = S T 1 S T 2 = Δ N 1 / N 1 Δ N 2 / N 2 .

Metrics