Abstract

We have developed a sophisticated Raman lidar numerical model to simulate the performance of two ground-based Raman water-vapor lidar systems. After verifying the model using these ground-based measurements, we then used the model to simulate the water-vapor measurement capability of an airborne Raman lidar under both daytime and nighttime conditions for a wide range of water-vapor conditions. The results indicate that, under many circumstances, the daytime measurements possess comparable quality to an existing airborne differential absorption water-vapor lidar whereas the nighttime measurements have improved spatial and temporal resolution. In addition, an airborne Raman lidar can offer measurements that are difficult or impossible with the differential absorption lidar technique.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. H. Melfi, D. Whiteman, R. Ferrare, “Observation of atmospheric fronts using Raman lidar moisture measurements,” J. Appl. Meteorol. 28, 789–806 (1989).
    [CrossRef]
  2. R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, R. Leifer, “Raman lidar measurements of aerosol extinction and backscattering. 1. Methods and comparisons,” J. Geophys. Res. 103, 19663–19672 (1998).
    [CrossRef]
  3. K. Evans, S. H. Melfi, R. Ferrare, D. Whiteman, “Upper tropospheric temperature measurements with the use of a raman lidar,” Appl. Opt. 36, 2594–2602 (1997).
    [CrossRef] [PubMed]
  4. D. N. Whiteman, S. H. Melfi, “Cloud liquid water, mean droplet radius and number density measurements using a Raman lidar,” J. Geophys. Res. 104, 31411–31419 (1999).
    [CrossRef]
  5. J. E. M. Goldsmith, F. H. Blair, S. E. Bisson, D. D. Turner, “Turn-key Raman lidar for profiling atmospheric water vapor, clouds, and aerosols,” Appl. Opt. 37, 4979–4990 (1998).
    [CrossRef]
  6. G. M. Stokes, S. E. Schwartz, “The Atmospheric Radiation Measurement (ARM) Program: programmatic background and design of the cloud and radiation testbed,” Bull. Am. Meteorol. Soc. 75, 1201–1221 (1994).
    [CrossRef]
  7. W. S. Heaps, J. Burris, “Airborne Raman lidar,” Appl. Opt. 35, 7128–7135 (1996).
    [CrossRef] [PubMed]
  8. J. Burris, W. Heaps, B. Gary, W. Hoegy, L. Lait, T. McGee, M. Gross, U. Singh, “Lidar temperature measurements during the Topical Ozone Transport Experiment (TOTE)/Vortex Ozone Transport Experiment (VOTE) Mission,” J. Geophys. Res. 103, 3505–3510 (1998).
    [CrossRef]
  9. R. M. Measures, Laser Remote Sensing Fundamentals and Applications (Wiley-Interscience, New York, 1984).
  10. C. F. Bohren, B. A. Albrecht, Atmospheric Thermodynamics (Oxford U. Press, New York, 1998).
  11. G. Vaughan, D. P. Wareing, L. Thomas, V. Mitev, “Humidity measurements in the free troposphere using Raman backscatter,” Q. J. R. Meteorol. Soc. 114, 1471–1484 (1988).
    [CrossRef]
  12. D. N. Whiteman, S. H. Melfi, R. A. Ferrare, “Raman lidar system for the measurement of water vapor and aerosols in the Earth’s atmosphere,” Appl. Opt. 31, 3068–3082 (1992).
    [CrossRef] [PubMed]
  13. R. J. Barlow, Statistics: A Guide to the Use of Statistical Methods in the Physical Sciences (Wiley, New York, 1989).
  14. R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, F. J. Schmidlin, D. O’C. Starr, “A comparison of water vapor measurements made by Raman lidar and radiosondes,” J. Atmos. Oceanic Technol. 12, 1177–1195 (1995).
    [CrossRef]
  15. D. D. Turner, W. F. Feltz, R. A. Ferrare, “Continuous water vapor profiles from operational ground-based active and passive remote sensors,” Bull. Am. Meteorol. Soc. 81, 1301–1318 (2000).
    [CrossRef]
  16. C. M. Penney, M. Lapp, “Raman scattering cross sections for water vapor,” J. Opt. Soc. Am. 66, 422–425 (1976).
    [CrossRef]
  17. V. Sherlock, A. Hauchecorne, J. Lenoble, “Methodology for the independent calibration of Raman backscatter water-vapor lidar systems,” Appl. Opt. 38, 5816–5837 (1999).
    [CrossRef]
  18. G. Avila, J. M. Fernandez, B. Mate, G. Tejeda, S. Montero, “Ro-vibrational Raman cross sections of water vapor in the OH stretching region,” J. Mol. Spectrosc. 196, 77–92 (1999).
    [CrossRef] [PubMed]
  19. K. D. Evans, B. Demoz, M. Cadirola, H. Melfi, D. Whiteman, G. Schwemmer, D. Starr, F. Schmidlin, W. Feltz, D. Tobin, S. Gutman, “A new Raman water vapor lidar calibration technique and measurements in the vicinity of hurricane Bonnie,” presented at the 20th International Laser Radar Conference, Vichy, France, July 2000.
  20. D. N. Whiteman, T. Berkoff, D. Turner, T. Tooman, R. Ferrare, L. Heilman, “Research efforts in the absolute calibration of a Raman water vapor lidar,” presented at the 20th International Laser Radar Conference, Vichy, France, July 2000.
  21. D. N. Whiteman, K. D. Evans, B. Demoz, D. O’C. Starr, D. Tobin, W. Feltz, G. J. Jedlovec, S. I. Gutman, G. K. Schwemmer, M. Cadirola, S. H. Melfi, F. J. Schmidlin, “Raman lidar measurements of water vapor and cirrus clouds during the passage of hurricane Bonnie,” J. Geophys. Res. (to be published).
  22. E. V. Browell, “First lidar measurements of water vapor and aerosols from a high-altitude aircraft,” in Optical Remote Sensing of the Atmosphere, Vol. 2 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 212–214.
  23. E. V. Browell, S. Ismail, W. M. Hall, A. S. Moore, S. A. Kooi, V. G. Brackett, M. B. Clayton, J. D. W. Barrick, F. J. Schmidlin, N. S. Higdon, S. H. Melfi, D. N. Whiteman, “LASE validation experiment,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1997), pp. 289–295.
    [CrossRef]
  24. R. Ferrare, Atmospheric Sciences Division, NASA Langley Research Center, Mail Stop 401A, Hampton, Virginia 23681-0001 (personal communication, January2000).

2000 (1)

D. D. Turner, W. F. Feltz, R. A. Ferrare, “Continuous water vapor profiles from operational ground-based active and passive remote sensors,” Bull. Am. Meteorol. Soc. 81, 1301–1318 (2000).
[CrossRef]

1999 (3)

V. Sherlock, A. Hauchecorne, J. Lenoble, “Methodology for the independent calibration of Raman backscatter water-vapor lidar systems,” Appl. Opt. 38, 5816–5837 (1999).
[CrossRef]

G. Avila, J. M. Fernandez, B. Mate, G. Tejeda, S. Montero, “Ro-vibrational Raman cross sections of water vapor in the OH stretching region,” J. Mol. Spectrosc. 196, 77–92 (1999).
[CrossRef] [PubMed]

D. N. Whiteman, S. H. Melfi, “Cloud liquid water, mean droplet radius and number density measurements using a Raman lidar,” J. Geophys. Res. 104, 31411–31419 (1999).
[CrossRef]

1998 (3)

J. E. M. Goldsmith, F. H. Blair, S. E. Bisson, D. D. Turner, “Turn-key Raman lidar for profiling atmospheric water vapor, clouds, and aerosols,” Appl. Opt. 37, 4979–4990 (1998).
[CrossRef]

R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, R. Leifer, “Raman lidar measurements of aerosol extinction and backscattering. 1. Methods and comparisons,” J. Geophys. Res. 103, 19663–19672 (1998).
[CrossRef]

J. Burris, W. Heaps, B. Gary, W. Hoegy, L. Lait, T. McGee, M. Gross, U. Singh, “Lidar temperature measurements during the Topical Ozone Transport Experiment (TOTE)/Vortex Ozone Transport Experiment (VOTE) Mission,” J. Geophys. Res. 103, 3505–3510 (1998).
[CrossRef]

1997 (1)

1996 (1)

1995 (1)

R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, F. J. Schmidlin, D. O’C. Starr, “A comparison of water vapor measurements made by Raman lidar and radiosondes,” J. Atmos. Oceanic Technol. 12, 1177–1195 (1995).
[CrossRef]

1994 (1)

G. M. Stokes, S. E. Schwartz, “The Atmospheric Radiation Measurement (ARM) Program: programmatic background and design of the cloud and radiation testbed,” Bull. Am. Meteorol. Soc. 75, 1201–1221 (1994).
[CrossRef]

1992 (1)

1989 (1)

S. H. Melfi, D. Whiteman, R. Ferrare, “Observation of atmospheric fronts using Raman lidar moisture measurements,” J. Appl. Meteorol. 28, 789–806 (1989).
[CrossRef]

1988 (1)

G. Vaughan, D. P. Wareing, L. Thomas, V. Mitev, “Humidity measurements in the free troposphere using Raman backscatter,” Q. J. R. Meteorol. Soc. 114, 1471–1484 (1988).
[CrossRef]

1976 (1)

Albrecht, B. A.

C. F. Bohren, B. A. Albrecht, Atmospheric Thermodynamics (Oxford U. Press, New York, 1998).

Avila, G.

G. Avila, J. M. Fernandez, B. Mate, G. Tejeda, S. Montero, “Ro-vibrational Raman cross sections of water vapor in the OH stretching region,” J. Mol. Spectrosc. 196, 77–92 (1999).
[CrossRef] [PubMed]

Barlow, R. J.

R. J. Barlow, Statistics: A Guide to the Use of Statistical Methods in the Physical Sciences (Wiley, New York, 1989).

Barrick, J. D. W.

E. V. Browell, S. Ismail, W. M. Hall, A. S. Moore, S. A. Kooi, V. G. Brackett, M. B. Clayton, J. D. W. Barrick, F. J. Schmidlin, N. S. Higdon, S. H. Melfi, D. N. Whiteman, “LASE validation experiment,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1997), pp. 289–295.
[CrossRef]

Berkoff, T.

D. N. Whiteman, T. Berkoff, D. Turner, T. Tooman, R. Ferrare, L. Heilman, “Research efforts in the absolute calibration of a Raman water vapor lidar,” presented at the 20th International Laser Radar Conference, Vichy, France, July 2000.

Bisson, S. E.

Blair, F. H.

Bohren, C. F.

C. F. Bohren, B. A. Albrecht, Atmospheric Thermodynamics (Oxford U. Press, New York, 1998).

Brackett, V. G.

E. V. Browell, S. Ismail, W. M. Hall, A. S. Moore, S. A. Kooi, V. G. Brackett, M. B. Clayton, J. D. W. Barrick, F. J. Schmidlin, N. S. Higdon, S. H. Melfi, D. N. Whiteman, “LASE validation experiment,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1997), pp. 289–295.
[CrossRef]

Browell, E. V.

E. V. Browell, “First lidar measurements of water vapor and aerosols from a high-altitude aircraft,” in Optical Remote Sensing of the Atmosphere, Vol. 2 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 212–214.

E. V. Browell, S. Ismail, W. M. Hall, A. S. Moore, S. A. Kooi, V. G. Brackett, M. B. Clayton, J. D. W. Barrick, F. J. Schmidlin, N. S. Higdon, S. H. Melfi, D. N. Whiteman, “LASE validation experiment,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1997), pp. 289–295.
[CrossRef]

Burris, J.

J. Burris, W. Heaps, B. Gary, W. Hoegy, L. Lait, T. McGee, M. Gross, U. Singh, “Lidar temperature measurements during the Topical Ozone Transport Experiment (TOTE)/Vortex Ozone Transport Experiment (VOTE) Mission,” J. Geophys. Res. 103, 3505–3510 (1998).
[CrossRef]

W. S. Heaps, J. Burris, “Airborne Raman lidar,” Appl. Opt. 35, 7128–7135 (1996).
[CrossRef] [PubMed]

Cadirola, M.

K. D. Evans, B. Demoz, M. Cadirola, H. Melfi, D. Whiteman, G. Schwemmer, D. Starr, F. Schmidlin, W. Feltz, D. Tobin, S. Gutman, “A new Raman water vapor lidar calibration technique and measurements in the vicinity of hurricane Bonnie,” presented at the 20th International Laser Radar Conference, Vichy, France, July 2000.

D. N. Whiteman, K. D. Evans, B. Demoz, D. O’C. Starr, D. Tobin, W. Feltz, G. J. Jedlovec, S. I. Gutman, G. K. Schwemmer, M. Cadirola, S. H. Melfi, F. J. Schmidlin, “Raman lidar measurements of water vapor and cirrus clouds during the passage of hurricane Bonnie,” J. Geophys. Res. (to be published).

Clayton, M. B.

E. V. Browell, S. Ismail, W. M. Hall, A. S. Moore, S. A. Kooi, V. G. Brackett, M. B. Clayton, J. D. W. Barrick, F. J. Schmidlin, N. S. Higdon, S. H. Melfi, D. N. Whiteman, “LASE validation experiment,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1997), pp. 289–295.
[CrossRef]

Demoz, B.

D. N. Whiteman, K. D. Evans, B. Demoz, D. O’C. Starr, D. Tobin, W. Feltz, G. J. Jedlovec, S. I. Gutman, G. K. Schwemmer, M. Cadirola, S. H. Melfi, F. J. Schmidlin, “Raman lidar measurements of water vapor and cirrus clouds during the passage of hurricane Bonnie,” J. Geophys. Res. (to be published).

K. D. Evans, B. Demoz, M. Cadirola, H. Melfi, D. Whiteman, G. Schwemmer, D. Starr, F. Schmidlin, W. Feltz, D. Tobin, S. Gutman, “A new Raman water vapor lidar calibration technique and measurements in the vicinity of hurricane Bonnie,” presented at the 20th International Laser Radar Conference, Vichy, France, July 2000.

Evans, K.

Evans, K. D.

R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, R. Leifer, “Raman lidar measurements of aerosol extinction and backscattering. 1. Methods and comparisons,” J. Geophys. Res. 103, 19663–19672 (1998).
[CrossRef]

R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, F. J. Schmidlin, D. O’C. Starr, “A comparison of water vapor measurements made by Raman lidar and radiosondes,” J. Atmos. Oceanic Technol. 12, 1177–1195 (1995).
[CrossRef]

K. D. Evans, B. Demoz, M. Cadirola, H. Melfi, D. Whiteman, G. Schwemmer, D. Starr, F. Schmidlin, W. Feltz, D. Tobin, S. Gutman, “A new Raman water vapor lidar calibration technique and measurements in the vicinity of hurricane Bonnie,” presented at the 20th International Laser Radar Conference, Vichy, France, July 2000.

D. N. Whiteman, K. D. Evans, B. Demoz, D. O’C. Starr, D. Tobin, W. Feltz, G. J. Jedlovec, S. I. Gutman, G. K. Schwemmer, M. Cadirola, S. H. Melfi, F. J. Schmidlin, “Raman lidar measurements of water vapor and cirrus clouds during the passage of hurricane Bonnie,” J. Geophys. Res. (to be published).

Feltz, W.

D. N. Whiteman, K. D. Evans, B. Demoz, D. O’C. Starr, D. Tobin, W. Feltz, G. J. Jedlovec, S. I. Gutman, G. K. Schwemmer, M. Cadirola, S. H. Melfi, F. J. Schmidlin, “Raman lidar measurements of water vapor and cirrus clouds during the passage of hurricane Bonnie,” J. Geophys. Res. (to be published).

K. D. Evans, B. Demoz, M. Cadirola, H. Melfi, D. Whiteman, G. Schwemmer, D. Starr, F. Schmidlin, W. Feltz, D. Tobin, S. Gutman, “A new Raman water vapor lidar calibration technique and measurements in the vicinity of hurricane Bonnie,” presented at the 20th International Laser Radar Conference, Vichy, France, July 2000.

Feltz, W. F.

D. D. Turner, W. F. Feltz, R. A. Ferrare, “Continuous water vapor profiles from operational ground-based active and passive remote sensors,” Bull. Am. Meteorol. Soc. 81, 1301–1318 (2000).
[CrossRef]

Fernandez, J. M.

G. Avila, J. M. Fernandez, B. Mate, G. Tejeda, S. Montero, “Ro-vibrational Raman cross sections of water vapor in the OH stretching region,” J. Mol. Spectrosc. 196, 77–92 (1999).
[CrossRef] [PubMed]

Ferrare, R.

K. Evans, S. H. Melfi, R. Ferrare, D. Whiteman, “Upper tropospheric temperature measurements with the use of a raman lidar,” Appl. Opt. 36, 2594–2602 (1997).
[CrossRef] [PubMed]

S. H. Melfi, D. Whiteman, R. Ferrare, “Observation of atmospheric fronts using Raman lidar moisture measurements,” J. Appl. Meteorol. 28, 789–806 (1989).
[CrossRef]

D. N. Whiteman, T. Berkoff, D. Turner, T. Tooman, R. Ferrare, L. Heilman, “Research efforts in the absolute calibration of a Raman water vapor lidar,” presented at the 20th International Laser Radar Conference, Vichy, France, July 2000.

R. Ferrare, Atmospheric Sciences Division, NASA Langley Research Center, Mail Stop 401A, Hampton, Virginia 23681-0001 (personal communication, January2000).

Ferrare, R. A.

D. D. Turner, W. F. Feltz, R. A. Ferrare, “Continuous water vapor profiles from operational ground-based active and passive remote sensors,” Bull. Am. Meteorol. Soc. 81, 1301–1318 (2000).
[CrossRef]

R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, R. Leifer, “Raman lidar measurements of aerosol extinction and backscattering. 1. Methods and comparisons,” J. Geophys. Res. 103, 19663–19672 (1998).
[CrossRef]

R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, F. J. Schmidlin, D. O’C. Starr, “A comparison of water vapor measurements made by Raman lidar and radiosondes,” J. Atmos. Oceanic Technol. 12, 1177–1195 (1995).
[CrossRef]

D. N. Whiteman, S. H. Melfi, R. A. Ferrare, “Raman lidar system for the measurement of water vapor and aerosols in the Earth’s atmosphere,” Appl. Opt. 31, 3068–3082 (1992).
[CrossRef] [PubMed]

Gary, B.

J. Burris, W. Heaps, B. Gary, W. Hoegy, L. Lait, T. McGee, M. Gross, U. Singh, “Lidar temperature measurements during the Topical Ozone Transport Experiment (TOTE)/Vortex Ozone Transport Experiment (VOTE) Mission,” J. Geophys. Res. 103, 3505–3510 (1998).
[CrossRef]

Goldsmith, J. E. M.

Gross, M.

J. Burris, W. Heaps, B. Gary, W. Hoegy, L. Lait, T. McGee, M. Gross, U. Singh, “Lidar temperature measurements during the Topical Ozone Transport Experiment (TOTE)/Vortex Ozone Transport Experiment (VOTE) Mission,” J. Geophys. Res. 103, 3505–3510 (1998).
[CrossRef]

Gutman, S.

K. D. Evans, B. Demoz, M. Cadirola, H. Melfi, D. Whiteman, G. Schwemmer, D. Starr, F. Schmidlin, W. Feltz, D. Tobin, S. Gutman, “A new Raman water vapor lidar calibration technique and measurements in the vicinity of hurricane Bonnie,” presented at the 20th International Laser Radar Conference, Vichy, France, July 2000.

Gutman, S. I.

D. N. Whiteman, K. D. Evans, B. Demoz, D. O’C. Starr, D. Tobin, W. Feltz, G. J. Jedlovec, S. I. Gutman, G. K. Schwemmer, M. Cadirola, S. H. Melfi, F. J. Schmidlin, “Raman lidar measurements of water vapor and cirrus clouds during the passage of hurricane Bonnie,” J. Geophys. Res. (to be published).

Hall, W. M.

E. V. Browell, S. Ismail, W. M. Hall, A. S. Moore, S. A. Kooi, V. G. Brackett, M. B. Clayton, J. D. W. Barrick, F. J. Schmidlin, N. S. Higdon, S. H. Melfi, D. N. Whiteman, “LASE validation experiment,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1997), pp. 289–295.
[CrossRef]

Hauchecorne, A.

Heaps, W.

J. Burris, W. Heaps, B. Gary, W. Hoegy, L. Lait, T. McGee, M. Gross, U. Singh, “Lidar temperature measurements during the Topical Ozone Transport Experiment (TOTE)/Vortex Ozone Transport Experiment (VOTE) Mission,” J. Geophys. Res. 103, 3505–3510 (1998).
[CrossRef]

Heaps, W. S.

Heilman, L.

D. N. Whiteman, T. Berkoff, D. Turner, T. Tooman, R. Ferrare, L. Heilman, “Research efforts in the absolute calibration of a Raman water vapor lidar,” presented at the 20th International Laser Radar Conference, Vichy, France, July 2000.

Higdon, N. S.

E. V. Browell, S. Ismail, W. M. Hall, A. S. Moore, S. A. Kooi, V. G. Brackett, M. B. Clayton, J. D. W. Barrick, F. J. Schmidlin, N. S. Higdon, S. H. Melfi, D. N. Whiteman, “LASE validation experiment,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1997), pp. 289–295.
[CrossRef]

Hoegy, W.

J. Burris, W. Heaps, B. Gary, W. Hoegy, L. Lait, T. McGee, M. Gross, U. Singh, “Lidar temperature measurements during the Topical Ozone Transport Experiment (TOTE)/Vortex Ozone Transport Experiment (VOTE) Mission,” J. Geophys. Res. 103, 3505–3510 (1998).
[CrossRef]

Ismail, S.

E. V. Browell, S. Ismail, W. M. Hall, A. S. Moore, S. A. Kooi, V. G. Brackett, M. B. Clayton, J. D. W. Barrick, F. J. Schmidlin, N. S. Higdon, S. H. Melfi, D. N. Whiteman, “LASE validation experiment,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1997), pp. 289–295.
[CrossRef]

Jedlovec, G. J.

D. N. Whiteman, K. D. Evans, B. Demoz, D. O’C. Starr, D. Tobin, W. Feltz, G. J. Jedlovec, S. I. Gutman, G. K. Schwemmer, M. Cadirola, S. H. Melfi, F. J. Schmidlin, “Raman lidar measurements of water vapor and cirrus clouds during the passage of hurricane Bonnie,” J. Geophys. Res. (to be published).

Kooi, S. A.

E. V. Browell, S. Ismail, W. M. Hall, A. S. Moore, S. A. Kooi, V. G. Brackett, M. B. Clayton, J. D. W. Barrick, F. J. Schmidlin, N. S. Higdon, S. H. Melfi, D. N. Whiteman, “LASE validation experiment,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1997), pp. 289–295.
[CrossRef]

Lait, L.

J. Burris, W. Heaps, B. Gary, W. Hoegy, L. Lait, T. McGee, M. Gross, U. Singh, “Lidar temperature measurements during the Topical Ozone Transport Experiment (TOTE)/Vortex Ozone Transport Experiment (VOTE) Mission,” J. Geophys. Res. 103, 3505–3510 (1998).
[CrossRef]

Lapp, M.

Leifer, R.

R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, R. Leifer, “Raman lidar measurements of aerosol extinction and backscattering. 1. Methods and comparisons,” J. Geophys. Res. 103, 19663–19672 (1998).
[CrossRef]

Lenoble, J.

Mate, B.

G. Avila, J. M. Fernandez, B. Mate, G. Tejeda, S. Montero, “Ro-vibrational Raman cross sections of water vapor in the OH stretching region,” J. Mol. Spectrosc. 196, 77–92 (1999).
[CrossRef] [PubMed]

McGee, T.

J. Burris, W. Heaps, B. Gary, W. Hoegy, L. Lait, T. McGee, M. Gross, U. Singh, “Lidar temperature measurements during the Topical Ozone Transport Experiment (TOTE)/Vortex Ozone Transport Experiment (VOTE) Mission,” J. Geophys. Res. 103, 3505–3510 (1998).
[CrossRef]

Measures, R. M.

R. M. Measures, Laser Remote Sensing Fundamentals and Applications (Wiley-Interscience, New York, 1984).

Melfi, H.

K. D. Evans, B. Demoz, M. Cadirola, H. Melfi, D. Whiteman, G. Schwemmer, D. Starr, F. Schmidlin, W. Feltz, D. Tobin, S. Gutman, “A new Raman water vapor lidar calibration technique and measurements in the vicinity of hurricane Bonnie,” presented at the 20th International Laser Radar Conference, Vichy, France, July 2000.

Melfi, S. H.

D. N. Whiteman, S. H. Melfi, “Cloud liquid water, mean droplet radius and number density measurements using a Raman lidar,” J. Geophys. Res. 104, 31411–31419 (1999).
[CrossRef]

R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, R. Leifer, “Raman lidar measurements of aerosol extinction and backscattering. 1. Methods and comparisons,” J. Geophys. Res. 103, 19663–19672 (1998).
[CrossRef]

K. Evans, S. H. Melfi, R. Ferrare, D. Whiteman, “Upper tropospheric temperature measurements with the use of a raman lidar,” Appl. Opt. 36, 2594–2602 (1997).
[CrossRef] [PubMed]

R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, F. J. Schmidlin, D. O’C. Starr, “A comparison of water vapor measurements made by Raman lidar and radiosondes,” J. Atmos. Oceanic Technol. 12, 1177–1195 (1995).
[CrossRef]

D. N. Whiteman, S. H. Melfi, R. A. Ferrare, “Raman lidar system for the measurement of water vapor and aerosols in the Earth’s atmosphere,” Appl. Opt. 31, 3068–3082 (1992).
[CrossRef] [PubMed]

S. H. Melfi, D. Whiteman, R. Ferrare, “Observation of atmospheric fronts using Raman lidar moisture measurements,” J. Appl. Meteorol. 28, 789–806 (1989).
[CrossRef]

E. V. Browell, S. Ismail, W. M. Hall, A. S. Moore, S. A. Kooi, V. G. Brackett, M. B. Clayton, J. D. W. Barrick, F. J. Schmidlin, N. S. Higdon, S. H. Melfi, D. N. Whiteman, “LASE validation experiment,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1997), pp. 289–295.
[CrossRef]

D. N. Whiteman, K. D. Evans, B. Demoz, D. O’C. Starr, D. Tobin, W. Feltz, G. J. Jedlovec, S. I. Gutman, G. K. Schwemmer, M. Cadirola, S. H. Melfi, F. J. Schmidlin, “Raman lidar measurements of water vapor and cirrus clouds during the passage of hurricane Bonnie,” J. Geophys. Res. (to be published).

Mitev, V.

G. Vaughan, D. P. Wareing, L. Thomas, V. Mitev, “Humidity measurements in the free troposphere using Raman backscatter,” Q. J. R. Meteorol. Soc. 114, 1471–1484 (1988).
[CrossRef]

Montero, S.

G. Avila, J. M. Fernandez, B. Mate, G. Tejeda, S. Montero, “Ro-vibrational Raman cross sections of water vapor in the OH stretching region,” J. Mol. Spectrosc. 196, 77–92 (1999).
[CrossRef] [PubMed]

Moore, A. S.

E. V. Browell, S. Ismail, W. M. Hall, A. S. Moore, S. A. Kooi, V. G. Brackett, M. B. Clayton, J. D. W. Barrick, F. J. Schmidlin, N. S. Higdon, S. H. Melfi, D. N. Whiteman, “LASE validation experiment,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1997), pp. 289–295.
[CrossRef]

Penney, C. M.

Schmidlin, F.

K. D. Evans, B. Demoz, M. Cadirola, H. Melfi, D. Whiteman, G. Schwemmer, D. Starr, F. Schmidlin, W. Feltz, D. Tobin, S. Gutman, “A new Raman water vapor lidar calibration technique and measurements in the vicinity of hurricane Bonnie,” presented at the 20th International Laser Radar Conference, Vichy, France, July 2000.

Schmidlin, F. J.

R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, F. J. Schmidlin, D. O’C. Starr, “A comparison of water vapor measurements made by Raman lidar and radiosondes,” J. Atmos. Oceanic Technol. 12, 1177–1195 (1995).
[CrossRef]

D. N. Whiteman, K. D. Evans, B. Demoz, D. O’C. Starr, D. Tobin, W. Feltz, G. J. Jedlovec, S. I. Gutman, G. K. Schwemmer, M. Cadirola, S. H. Melfi, F. J. Schmidlin, “Raman lidar measurements of water vapor and cirrus clouds during the passage of hurricane Bonnie,” J. Geophys. Res. (to be published).

E. V. Browell, S. Ismail, W. M. Hall, A. S. Moore, S. A. Kooi, V. G. Brackett, M. B. Clayton, J. D. W. Barrick, F. J. Schmidlin, N. S. Higdon, S. H. Melfi, D. N. Whiteman, “LASE validation experiment,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1997), pp. 289–295.
[CrossRef]

Schwartz, S. E.

G. M. Stokes, S. E. Schwartz, “The Atmospheric Radiation Measurement (ARM) Program: programmatic background and design of the cloud and radiation testbed,” Bull. Am. Meteorol. Soc. 75, 1201–1221 (1994).
[CrossRef]

Schwemmer, G.

K. D. Evans, B. Demoz, M. Cadirola, H. Melfi, D. Whiteman, G. Schwemmer, D. Starr, F. Schmidlin, W. Feltz, D. Tobin, S. Gutman, “A new Raman water vapor lidar calibration technique and measurements in the vicinity of hurricane Bonnie,” presented at the 20th International Laser Radar Conference, Vichy, France, July 2000.

Schwemmer, G. K.

D. N. Whiteman, K. D. Evans, B. Demoz, D. O’C. Starr, D. Tobin, W. Feltz, G. J. Jedlovec, S. I. Gutman, G. K. Schwemmer, M. Cadirola, S. H. Melfi, F. J. Schmidlin, “Raman lidar measurements of water vapor and cirrus clouds during the passage of hurricane Bonnie,” J. Geophys. Res. (to be published).

Sherlock, V.

Singh, U.

J. Burris, W. Heaps, B. Gary, W. Hoegy, L. Lait, T. McGee, M. Gross, U. Singh, “Lidar temperature measurements during the Topical Ozone Transport Experiment (TOTE)/Vortex Ozone Transport Experiment (VOTE) Mission,” J. Geophys. Res. 103, 3505–3510 (1998).
[CrossRef]

Starr, D.

K. D. Evans, B. Demoz, M. Cadirola, H. Melfi, D. Whiteman, G. Schwemmer, D. Starr, F. Schmidlin, W. Feltz, D. Tobin, S. Gutman, “A new Raman water vapor lidar calibration technique and measurements in the vicinity of hurricane Bonnie,” presented at the 20th International Laser Radar Conference, Vichy, France, July 2000.

Starr, D. O’C.

R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, F. J. Schmidlin, D. O’C. Starr, “A comparison of water vapor measurements made by Raman lidar and radiosondes,” J. Atmos. Oceanic Technol. 12, 1177–1195 (1995).
[CrossRef]

D. N. Whiteman, K. D. Evans, B. Demoz, D. O’C. Starr, D. Tobin, W. Feltz, G. J. Jedlovec, S. I. Gutman, G. K. Schwemmer, M. Cadirola, S. H. Melfi, F. J. Schmidlin, “Raman lidar measurements of water vapor and cirrus clouds during the passage of hurricane Bonnie,” J. Geophys. Res. (to be published).

Stokes, G. M.

G. M. Stokes, S. E. Schwartz, “The Atmospheric Radiation Measurement (ARM) Program: programmatic background and design of the cloud and radiation testbed,” Bull. Am. Meteorol. Soc. 75, 1201–1221 (1994).
[CrossRef]

Tejeda, G.

G. Avila, J. M. Fernandez, B. Mate, G. Tejeda, S. Montero, “Ro-vibrational Raman cross sections of water vapor in the OH stretching region,” J. Mol. Spectrosc. 196, 77–92 (1999).
[CrossRef] [PubMed]

Thomas, L.

G. Vaughan, D. P. Wareing, L. Thomas, V. Mitev, “Humidity measurements in the free troposphere using Raman backscatter,” Q. J. R. Meteorol. Soc. 114, 1471–1484 (1988).
[CrossRef]

Tobin, D.

D. N. Whiteman, K. D. Evans, B. Demoz, D. O’C. Starr, D. Tobin, W. Feltz, G. J. Jedlovec, S. I. Gutman, G. K. Schwemmer, M. Cadirola, S. H. Melfi, F. J. Schmidlin, “Raman lidar measurements of water vapor and cirrus clouds during the passage of hurricane Bonnie,” J. Geophys. Res. (to be published).

K. D. Evans, B. Demoz, M. Cadirola, H. Melfi, D. Whiteman, G. Schwemmer, D. Starr, F. Schmidlin, W. Feltz, D. Tobin, S. Gutman, “A new Raman water vapor lidar calibration technique and measurements in the vicinity of hurricane Bonnie,” presented at the 20th International Laser Radar Conference, Vichy, France, July 2000.

Tooman, T.

D. N. Whiteman, T. Berkoff, D. Turner, T. Tooman, R. Ferrare, L. Heilman, “Research efforts in the absolute calibration of a Raman water vapor lidar,” presented at the 20th International Laser Radar Conference, Vichy, France, July 2000.

Turner, D.

D. N. Whiteman, T. Berkoff, D. Turner, T. Tooman, R. Ferrare, L. Heilman, “Research efforts in the absolute calibration of a Raman water vapor lidar,” presented at the 20th International Laser Radar Conference, Vichy, France, July 2000.

Turner, D. D.

D. D. Turner, W. F. Feltz, R. A. Ferrare, “Continuous water vapor profiles from operational ground-based active and passive remote sensors,” Bull. Am. Meteorol. Soc. 81, 1301–1318 (2000).
[CrossRef]

J. E. M. Goldsmith, F. H. Blair, S. E. Bisson, D. D. Turner, “Turn-key Raman lidar for profiling atmospheric water vapor, clouds, and aerosols,” Appl. Opt. 37, 4979–4990 (1998).
[CrossRef]

Vaughan, G.

G. Vaughan, D. P. Wareing, L. Thomas, V. Mitev, “Humidity measurements in the free troposphere using Raman backscatter,” Q. J. R. Meteorol. Soc. 114, 1471–1484 (1988).
[CrossRef]

Wareing, D. P.

G. Vaughan, D. P. Wareing, L. Thomas, V. Mitev, “Humidity measurements in the free troposphere using Raman backscatter,” Q. J. R. Meteorol. Soc. 114, 1471–1484 (1988).
[CrossRef]

Whiteman, D.

K. Evans, S. H. Melfi, R. Ferrare, D. Whiteman, “Upper tropospheric temperature measurements with the use of a raman lidar,” Appl. Opt. 36, 2594–2602 (1997).
[CrossRef] [PubMed]

S. H. Melfi, D. Whiteman, R. Ferrare, “Observation of atmospheric fronts using Raman lidar moisture measurements,” J. Appl. Meteorol. 28, 789–806 (1989).
[CrossRef]

K. D. Evans, B. Demoz, M. Cadirola, H. Melfi, D. Whiteman, G. Schwemmer, D. Starr, F. Schmidlin, W. Feltz, D. Tobin, S. Gutman, “A new Raman water vapor lidar calibration technique and measurements in the vicinity of hurricane Bonnie,” presented at the 20th International Laser Radar Conference, Vichy, France, July 2000.

Whiteman, D. N.

D. N. Whiteman, S. H. Melfi, “Cloud liquid water, mean droplet radius and number density measurements using a Raman lidar,” J. Geophys. Res. 104, 31411–31419 (1999).
[CrossRef]

R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, R. Leifer, “Raman lidar measurements of aerosol extinction and backscattering. 1. Methods and comparisons,” J. Geophys. Res. 103, 19663–19672 (1998).
[CrossRef]

R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, F. J. Schmidlin, D. O’C. Starr, “A comparison of water vapor measurements made by Raman lidar and radiosondes,” J. Atmos. Oceanic Technol. 12, 1177–1195 (1995).
[CrossRef]

D. N. Whiteman, S. H. Melfi, R. A. Ferrare, “Raman lidar system for the measurement of water vapor and aerosols in the Earth’s atmosphere,” Appl. Opt. 31, 3068–3082 (1992).
[CrossRef] [PubMed]

D. N. Whiteman, K. D. Evans, B. Demoz, D. O’C. Starr, D. Tobin, W. Feltz, G. J. Jedlovec, S. I. Gutman, G. K. Schwemmer, M. Cadirola, S. H. Melfi, F. J. Schmidlin, “Raman lidar measurements of water vapor and cirrus clouds during the passage of hurricane Bonnie,” J. Geophys. Res. (to be published).

D. N. Whiteman, T. Berkoff, D. Turner, T. Tooman, R. Ferrare, L. Heilman, “Research efforts in the absolute calibration of a Raman water vapor lidar,” presented at the 20th International Laser Radar Conference, Vichy, France, July 2000.

E. V. Browell, S. Ismail, W. M. Hall, A. S. Moore, S. A. Kooi, V. G. Brackett, M. B. Clayton, J. D. W. Barrick, F. J. Schmidlin, N. S. Higdon, S. H. Melfi, D. N. Whiteman, “LASE validation experiment,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1997), pp. 289–295.
[CrossRef]

Appl. Opt. (5)

Bull. Am. Meteorol. Soc. (2)

D. D. Turner, W. F. Feltz, R. A. Ferrare, “Continuous water vapor profiles from operational ground-based active and passive remote sensors,” Bull. Am. Meteorol. Soc. 81, 1301–1318 (2000).
[CrossRef]

G. M. Stokes, S. E. Schwartz, “The Atmospheric Radiation Measurement (ARM) Program: programmatic background and design of the cloud and radiation testbed,” Bull. Am. Meteorol. Soc. 75, 1201–1221 (1994).
[CrossRef]

J. Appl. Meteorol. (1)

S. H. Melfi, D. Whiteman, R. Ferrare, “Observation of atmospheric fronts using Raman lidar moisture measurements,” J. Appl. Meteorol. 28, 789–806 (1989).
[CrossRef]

J. Atmos. Oceanic Technol. (1)

R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, F. J. Schmidlin, D. O’C. Starr, “A comparison of water vapor measurements made by Raman lidar and radiosondes,” J. Atmos. Oceanic Technol. 12, 1177–1195 (1995).
[CrossRef]

J. Geophys. Res. (3)

R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, R. Leifer, “Raman lidar measurements of aerosol extinction and backscattering. 1. Methods and comparisons,” J. Geophys. Res. 103, 19663–19672 (1998).
[CrossRef]

D. N. Whiteman, S. H. Melfi, “Cloud liquid water, mean droplet radius and number density measurements using a Raman lidar,” J. Geophys. Res. 104, 31411–31419 (1999).
[CrossRef]

J. Burris, W. Heaps, B. Gary, W. Hoegy, L. Lait, T. McGee, M. Gross, U. Singh, “Lidar temperature measurements during the Topical Ozone Transport Experiment (TOTE)/Vortex Ozone Transport Experiment (VOTE) Mission,” J. Geophys. Res. 103, 3505–3510 (1998).
[CrossRef]

J. Mol. Spectrosc. (1)

G. Avila, J. M. Fernandez, B. Mate, G. Tejeda, S. Montero, “Ro-vibrational Raman cross sections of water vapor in the OH stretching region,” J. Mol. Spectrosc. 196, 77–92 (1999).
[CrossRef] [PubMed]

J. Opt. Soc. Am. (1)

Q. J. R. Meteorol. Soc. (1)

G. Vaughan, D. P. Wareing, L. Thomas, V. Mitev, “Humidity measurements in the free troposphere using Raman backscatter,” Q. J. R. Meteorol. Soc. 114, 1471–1484 (1988).
[CrossRef]

Other (9)

R. J. Barlow, Statistics: A Guide to the Use of Statistical Methods in the Physical Sciences (Wiley, New York, 1989).

R. M. Measures, Laser Remote Sensing Fundamentals and Applications (Wiley-Interscience, New York, 1984).

C. F. Bohren, B. A. Albrecht, Atmospheric Thermodynamics (Oxford U. Press, New York, 1998).

K. D. Evans, B. Demoz, M. Cadirola, H. Melfi, D. Whiteman, G. Schwemmer, D. Starr, F. Schmidlin, W. Feltz, D. Tobin, S. Gutman, “A new Raman water vapor lidar calibration technique and measurements in the vicinity of hurricane Bonnie,” presented at the 20th International Laser Radar Conference, Vichy, France, July 2000.

D. N. Whiteman, T. Berkoff, D. Turner, T. Tooman, R. Ferrare, L. Heilman, “Research efforts in the absolute calibration of a Raman water vapor lidar,” presented at the 20th International Laser Radar Conference, Vichy, France, July 2000.

D. N. Whiteman, K. D. Evans, B. Demoz, D. O’C. Starr, D. Tobin, W. Feltz, G. J. Jedlovec, S. I. Gutman, G. K. Schwemmer, M. Cadirola, S. H. Melfi, F. J. Schmidlin, “Raman lidar measurements of water vapor and cirrus clouds during the passage of hurricane Bonnie,” J. Geophys. Res. (to be published).

E. V. Browell, “First lidar measurements of water vapor and aerosols from a high-altitude aircraft,” in Optical Remote Sensing of the Atmosphere, Vol. 2 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 212–214.

E. V. Browell, S. Ismail, W. M. Hall, A. S. Moore, S. A. Kooi, V. G. Brackett, M. B. Clayton, J. D. W. Barrick, F. J. Schmidlin, N. S. Higdon, S. H. Melfi, D. N. Whiteman, “LASE validation experiment,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1997), pp. 289–295.
[CrossRef]

R. Ferrare, Atmospheric Sciences Division, NASA Langley Research Center, Mail Stop 401A, Hampton, Virginia 23681-0001 (personal communication, January2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (19)

Fig. 1
Fig. 1

Comparison of the overlap function for a 0.6-m f/4 telescope with the ZeMax optical ray-trace program and the Raman lidar model for different telescope focus settings: 1, 2, 5 km, and infinity. The two sets of overlap functions show good qualitative agreement.

Fig. 2
Fig. 2

Comparison of water-vapor mixing ratio measurements of the airborne LASE differential absorption lidar and the ground-based SRL on the night of 22 August 1998. Also shown is a radiosonde launched at 0022 UTC which was approximately 30 min before the aircraft overflight. Both the LASE and the SRL profiles use 3-min integrations.

Fig. 3
Fig. 3

Illustration of model tuning for the optical efficiency parameter. On the left is plotted the simulated SRL water-vapor signal for a range of optical efficiencies at 1-min integration times. On the right is plotted the ratio of the model output to the SRL data (smoothed to a 400-m resolution for easier interpretation). Note that the curves are separated throughout the profile. The value of 4% gives the best agreement between the data and the model.

Fig. 4
Fig. 4

On the left is the result of the use of a 4% optical efficiency and the change in the value of background radiance in units of 10-7 W cm-2 sr-1 µm-1. Here all curves converge in the lowest part of the profile where the background light level has essentially no influence. On the right is plotted the ratio of the model output to the SRL data (smoothed to a 400-m resolution for easier interpretation). The value of 0.25 × 10-7 gives the best agreement between the data and the model. An integration time of 1 min was used.

Fig. 5
Fig. 5

Comparison of actual 1-min SRLN channel data and the output of the Raman model. The two curves agree well up to an altitude of approximately 13 km where the SRL aerosol (SRLA) channel shows the presence of a cirrus cloud that was not accounted for in the model.

Fig. 6
Fig. 6

Comparison of the radiosonde water-vapor profile and the 1-min water-vapor mixing ratio as predicted by the model. The model used 1-min averaging and 75-m vertical resolution.

Fig. 7
Fig. 7

Comparison of DOE CART Raman lidar (CARL) high-channel (a) water-vapor and (b) nitrogen signals and model simulations. CARL uses a narrow-field-of-view detection technique to enhance daytime measurements. The model provides a good simulation of CARL narrow-field performance even in the overlap region.

Fig. 8
Fig. 8

Comparison of a 10-min nighttime water-vapor mixing ratio measurement by the DOE CART Raman lidar (CARL) and model predictions of the CART system for a 1-min measurement period. The agreement is excellent above 3 km. Below 3 km, the model result is influenced primarily by the lidar overlap function simulation.

Fig. 9
Fig. 9

Comparison of model output and actual CARL measurements during the daytime on 27 September 1997. (a) Water vapor and (b) nitrogen. The solar zenith angle was 60 deg.

Fig. 10
Fig. 10

Comparison of daytime water-vapor mixing ratio derived from simulated signals generated by the model and the actual CARL measurements made at 1500 UTC on 27 September 1997.

Fig. 11
Fig. 11

Model water-vapor and nitrogen signals for the described airborne Raman lidar at a flight altitude of 10 km. The data were converted to units of count rate (Hz). Both the water-vapor and the nitrogen signals show significant dynamic range compression when compared with Fig. 7.

Fig. 12
Fig. 12

Simulation of the airborne Raman lidar at a flight altitude of 10 km. A 15-s integration time was used. The profile was smoothed as follows: 0–6 km, 200 m; 6–8 km, 120 m; 8–10 km, 40 m. The model error is plotted multiplied by ten for easier viewing. The random error is approximately 5–7% near the surface.

Fig. 13
Fig. 13

Radiances (at 408 nm) looking downward from 10 km for a range of solar zenith angles and for three surfaces: ocean, grass, and fresh snow. The value of radiance required to match the uplooking daytime measurements (1.5 × 10-2 W cm-2 sr-1 µm-1) is as large as or larger than any downlooking radiance over ocean or grass surfaces.

Fig. 14
Fig. 14

Simulated airborne retrievals from a flight altitude of 10 km for daytime conditions. The background radiance used was for a 38-deg solar zenith angle over a grass surface which simulates the measurement conditions at the time of highest Sun angle on 27 September 1997 in northern Oklahoma. A 3-min integration time was used.

Fig. 15
Fig. 15

Simulated measurements of the airborne Raman lidar by use of the same atmospheric conditions as those shown in Fig. 2 (Andros Island, Bahamas). The integration time is 10 s and the vertical resolution is as follows: 0–4 km, 200 m; 4–7 km, 120 m; 7–10 km, 40 m.

Fig. 16
Fig. 16

Simulated airborne Raman lidar measurements from an altitude of 10 km for subtropical conditions (Andros Islands Bahamas) with background radiance equivalent to a 0-deg solar zenith angle over an ocean surface. The averaging time used was 3 min and the vertical smoothing is 0–9 km for 200 and 40 m above.

Fig. 17
Fig. 17

Modeled performance of the airborne Raman lidar system for simulated arctic conditions. Nighttime measurement performance with a 3-min integration is shown at left, and daytime performance with a 10-min integration is at right.

Fig. 18
Fig. 18

Model comparisons of a downlooking airborne Raman lidar with a 0.4-m telescope for the Andros Island case. The nighttime simulation used a 20-s integration and the daytime simulation used a 3-min integration.

Fig. 19
Fig. 19

Simulation of the water-vapor measurement performance of a 0.4-m aperture Raman lidar system looking upward from a 10-km flight altitude. A 10-min integration was used along with 1.05-km vertical smoothing.

Tables (1)

Tables Icon

Table 1 System Parameters for the Modeled Airborne Raman Lidar

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

PλH, r=OHrP0λLNHrdσHλL, πdΩ AξλHr2×exp-0rαλL, r+αλH, rdr,
PλN, r=ONrP0λLNNrdσNλL, πdΩ AξλNr2×exp-0rαλL, r+αλN, rdr.
PλH, rPλN, r=OHrNHrdσHπdΩ ξλHONrNNrdσNπdΩ ξλN×exp-0rαλH, r-αλN, rdr.
w=MWH2OMWdry airNHrNdry airrMWH2OMWdry airNHrNNr/0.780.485 NHrNNr,
w=k*rPλH, rPλN, r ΔτλN, λH, r,
k*r=k ONrOHrdσNπdΩdσHπdΩξλNξλH
σw2w2=σk*2k*2+σRw2Rw2+σΔτ2Δτ2,
σRw2Rw2=σSH2+σBH2SH-BH2+σSN2+σBN2SN-BN2,
σRw2=SH-BH2SN-BN2σSH2+σBH2SH-BH2+σSN2+σBN2SN-BN2,

Metrics