Abstract

A sensor is described for which interference measurements of the phase delay between two propagating modes of different orders in a slab thin-film waveguide are used as the sensing technique. The basic building block of the sensor is a polymer film doped with an indicator dye such as Bromocresol Purple. The modes of two orders such as TM0 and TM1 are simultaneously excited in the light-guiding film with a focusing optics and a prism coupler. The modes are decoupled from the film and recombined to produce an interference pattern in the face of an output optical fiber. The sensitivity of the sensor to the ambient temperature change is 1.5 °C, and the sensitivity to NH3 is 200 parts in 106 for one full oscillation of the signal.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Dakin, B. Culshaw, eds., Applications, Analysis, and Future Trends, Vol. 4 of Optical Fiber Sensors (Artech House, Boston, Mass., 1997).
  2. G. Boisde, A. Harmer, Chemical and Biochemical Sensing with Optical Fibers and Waveguides (Artech House, Boston, Mass., 1996).
  3. K. E. Rochford, R. Zanoni, G. I. Stegeman, W. Krug, E. Miao, M. W. Beranek, “Pulse-modulated interferometer for measuring intensity-induced phase shifts,” IEEE J. Quantum Electron. 28, 2044–2050 (1992).
    [CrossRef]
  4. N. F. Hartman, J. L. Walsh, D. P. Campbell, U. Akki, “Integrated optic gaseous NH3 sensor for agricultural applications,” in Optics in Agriculture, Forestry, and Biological Processing, G. E. Meyer, J. A. DeShazer, eds., Proc. SPIE2345, 314–323 (1995).
    [CrossRef]
  5. N. F. Hartman, J. M. Cobb, J. G. Edwards, “Optical system-on-a-chip for chemical and biochemical sensing: the platform,” in Electro-Optic, Integrated Optic, and Electronic Technologies for Online Chemical Process Monitoring, M. Fallahi, R. J. Nordstrom, T. R. Todd, eds., Proc. SPIE3537, 0–7 (1999).
  6. P. Hlubina, P. Prochazka, “Sensor application of two-mode fiber in the Michelson interferometer configuration,” in Interferometry’94: Interferometry Fiber Sensing, E. Udd, R. P. Tatam, eds., Proc. SPIE2341, 202–211 (1994).
  7. L. M. Lechuda, A. T. M. Lenferink, R. P. H. Kooyman, J. Greve, “Feasibility of evanescent wave interferometer immunosensors for pesticide detection: chemical aspects,” Sensors Actuators B 25, 762–765 (1995).
    [CrossRef]
  8. R. M. Jenkins, R. W. J. Devereux, J. M. Heaton, “Novel waveguide Mach–Zehnder interferometer based on multimode interference phenomena,” Opt. Commun. 110, 410–424 (1994).
    [CrossRef]
  9. P. Plizka, W. Lukasz, “Integrated-optical acoustical sensor,” Sensors Actuators A 41, 93–97 (1994).
    [CrossRef]
  10. Ch. Fattinger, H. Koller, D. Schlatter, P. Wehrli, “Difference interferometer: a highly sensitive optical probe for quantification of molecular surface concentration,” Biosens. Bioelectron. 8, 99–107 (1993).
    [CrossRef]
  11. W. Ecke, W. Haubenreisser, H. Lehmann, S. Schroeter, G. Schwotzer, R. Willsch, “Phase-sensitive fibre-optic monoptodes for chemical sensing,” Sensors Actuators B 11, 475–479 (1993).
    [CrossRef]
  12. A. A. Boiarski, J. R. Busch, R. S. Brody, R. W. Ridgway, W. P. Altman, C. Golden, “Integrated optic sensor for measuring aflatoxin-B1 in corn,” in Integrated Optics and Microstructures III, M. Tabib-Azar, ed., Proc. SPIE2686, 45–52 (1996).
    [CrossRef]
  13. Yu. M. Shirshov, S. V. Svechnikov, A. P. Kiyanovskii, Yu. V. Ushenin, E. F. Venger, A. V. Samoylov, R. Merker, “A sensor based on the planar-polarization interferometer,” Sensors Actuators A 68, 384–387 (1998).
    [CrossRef]
  14. T. Tamir, ed., Integrated Optics (Springer-Verlag, Berlin, 1979), p. 47.
  15. S. S. Sarkisov, A. Wilkosz, P. Venkateswarlu, “Nonlinear optical waveguides based on polymeric films doped with phthalocyanines,” in Physics and Simulation of Optoelectronic Devices IV, W. W. Chow, M. Osinsky, eds., Proc. SPIE2693, 523–531 (1996).
    [CrossRef]
  16. R. B. Linscoff, ed., The Photonics Design and Applications Handbook (Laurin, Pittsfield, Mass., 1999).
  17. E. Nitanai, S. Miyanaga, “Measurements of dispersion properties of refractive indices and absorption coefficients in organic dye-doped thin films by a prism coupling method,” Opt. Eng. 35, 900–903 (1996).
    [CrossRef]
  18. R. Klein, E. I. Voges, “Integrated optics ammonia sensor,” in Advances in Fluorescence Sensing Technology, J. R. Lakiwicz, R. B. Thompson, eds., Proc. SPIE1885, 81–92 (1993).
    [CrossRef]
  19. R. Ulrich, R. Torge, “Measurement of thin film parameters with a prism coupler,” Appl. Opt. 12, 2901–2908 (1973).
    [CrossRef] [PubMed]
  20. D. R. Lide, ed., Handbook of Chemistry and Physics (CRC Press, New York, 1996), p. D-148.
  21. P. Caglar, R. Narayanaswamy, “Ammonia-sensitive fibre optic probe utilizing an immobilized spectrophotometric indicator,” Analyst 112, 1285–1288 (1987).
    [CrossRef]
  22. R. G. Hunsperger, Integrated Optics (Springer-Verlag, Berlin, 1995), p. 25.

1998 (1)

Yu. M. Shirshov, S. V. Svechnikov, A. P. Kiyanovskii, Yu. V. Ushenin, E. F. Venger, A. V. Samoylov, R. Merker, “A sensor based on the planar-polarization interferometer,” Sensors Actuators A 68, 384–387 (1998).
[CrossRef]

1996 (1)

E. Nitanai, S. Miyanaga, “Measurements of dispersion properties of refractive indices and absorption coefficients in organic dye-doped thin films by a prism coupling method,” Opt. Eng. 35, 900–903 (1996).
[CrossRef]

1995 (1)

L. M. Lechuda, A. T. M. Lenferink, R. P. H. Kooyman, J. Greve, “Feasibility of evanescent wave interferometer immunosensors for pesticide detection: chemical aspects,” Sensors Actuators B 25, 762–765 (1995).
[CrossRef]

1994 (2)

R. M. Jenkins, R. W. J. Devereux, J. M. Heaton, “Novel waveguide Mach–Zehnder interferometer based on multimode interference phenomena,” Opt. Commun. 110, 410–424 (1994).
[CrossRef]

P. Plizka, W. Lukasz, “Integrated-optical acoustical sensor,” Sensors Actuators A 41, 93–97 (1994).
[CrossRef]

1993 (2)

Ch. Fattinger, H. Koller, D. Schlatter, P. Wehrli, “Difference interferometer: a highly sensitive optical probe for quantification of molecular surface concentration,” Biosens. Bioelectron. 8, 99–107 (1993).
[CrossRef]

W. Ecke, W. Haubenreisser, H. Lehmann, S. Schroeter, G. Schwotzer, R. Willsch, “Phase-sensitive fibre-optic monoptodes for chemical sensing,” Sensors Actuators B 11, 475–479 (1993).
[CrossRef]

1992 (1)

K. E. Rochford, R. Zanoni, G. I. Stegeman, W. Krug, E. Miao, M. W. Beranek, “Pulse-modulated interferometer for measuring intensity-induced phase shifts,” IEEE J. Quantum Electron. 28, 2044–2050 (1992).
[CrossRef]

1987 (1)

P. Caglar, R. Narayanaswamy, “Ammonia-sensitive fibre optic probe utilizing an immobilized spectrophotometric indicator,” Analyst 112, 1285–1288 (1987).
[CrossRef]

1973 (1)

Akki, U.

N. F. Hartman, J. L. Walsh, D. P. Campbell, U. Akki, “Integrated optic gaseous NH3 sensor for agricultural applications,” in Optics in Agriculture, Forestry, and Biological Processing, G. E. Meyer, J. A. DeShazer, eds., Proc. SPIE2345, 314–323 (1995).
[CrossRef]

Altman, W. P.

A. A. Boiarski, J. R. Busch, R. S. Brody, R. W. Ridgway, W. P. Altman, C. Golden, “Integrated optic sensor for measuring aflatoxin-B1 in corn,” in Integrated Optics and Microstructures III, M. Tabib-Azar, ed., Proc. SPIE2686, 45–52 (1996).
[CrossRef]

Beranek, M. W.

K. E. Rochford, R. Zanoni, G. I. Stegeman, W. Krug, E. Miao, M. W. Beranek, “Pulse-modulated interferometer for measuring intensity-induced phase shifts,” IEEE J. Quantum Electron. 28, 2044–2050 (1992).
[CrossRef]

Boiarski, A. A.

A. A. Boiarski, J. R. Busch, R. S. Brody, R. W. Ridgway, W. P. Altman, C. Golden, “Integrated optic sensor for measuring aflatoxin-B1 in corn,” in Integrated Optics and Microstructures III, M. Tabib-Azar, ed., Proc. SPIE2686, 45–52 (1996).
[CrossRef]

Boisde, G.

G. Boisde, A. Harmer, Chemical and Biochemical Sensing with Optical Fibers and Waveguides (Artech House, Boston, Mass., 1996).

Brody, R. S.

A. A. Boiarski, J. R. Busch, R. S. Brody, R. W. Ridgway, W. P. Altman, C. Golden, “Integrated optic sensor for measuring aflatoxin-B1 in corn,” in Integrated Optics and Microstructures III, M. Tabib-Azar, ed., Proc. SPIE2686, 45–52 (1996).
[CrossRef]

Busch, J. R.

A. A. Boiarski, J. R. Busch, R. S. Brody, R. W. Ridgway, W. P. Altman, C. Golden, “Integrated optic sensor for measuring aflatoxin-B1 in corn,” in Integrated Optics and Microstructures III, M. Tabib-Azar, ed., Proc. SPIE2686, 45–52 (1996).
[CrossRef]

Caglar, P.

P. Caglar, R. Narayanaswamy, “Ammonia-sensitive fibre optic probe utilizing an immobilized spectrophotometric indicator,” Analyst 112, 1285–1288 (1987).
[CrossRef]

Campbell, D. P.

N. F. Hartman, J. L. Walsh, D. P. Campbell, U. Akki, “Integrated optic gaseous NH3 sensor for agricultural applications,” in Optics in Agriculture, Forestry, and Biological Processing, G. E. Meyer, J. A. DeShazer, eds., Proc. SPIE2345, 314–323 (1995).
[CrossRef]

Cobb, J. M.

N. F. Hartman, J. M. Cobb, J. G. Edwards, “Optical system-on-a-chip for chemical and biochemical sensing: the platform,” in Electro-Optic, Integrated Optic, and Electronic Technologies for Online Chemical Process Monitoring, M. Fallahi, R. J. Nordstrom, T. R. Todd, eds., Proc. SPIE3537, 0–7 (1999).

Devereux, R. W. J.

R. M. Jenkins, R. W. J. Devereux, J. M. Heaton, “Novel waveguide Mach–Zehnder interferometer based on multimode interference phenomena,” Opt. Commun. 110, 410–424 (1994).
[CrossRef]

Ecke, W.

W. Ecke, W. Haubenreisser, H. Lehmann, S. Schroeter, G. Schwotzer, R. Willsch, “Phase-sensitive fibre-optic monoptodes for chemical sensing,” Sensors Actuators B 11, 475–479 (1993).
[CrossRef]

Edwards, J. G.

N. F. Hartman, J. M. Cobb, J. G. Edwards, “Optical system-on-a-chip for chemical and biochemical sensing: the platform,” in Electro-Optic, Integrated Optic, and Electronic Technologies for Online Chemical Process Monitoring, M. Fallahi, R. J. Nordstrom, T. R. Todd, eds., Proc. SPIE3537, 0–7 (1999).

Fattinger, Ch.

Ch. Fattinger, H. Koller, D. Schlatter, P. Wehrli, “Difference interferometer: a highly sensitive optical probe for quantification of molecular surface concentration,” Biosens. Bioelectron. 8, 99–107 (1993).
[CrossRef]

Golden, C.

A. A. Boiarski, J. R. Busch, R. S. Brody, R. W. Ridgway, W. P. Altman, C. Golden, “Integrated optic sensor for measuring aflatoxin-B1 in corn,” in Integrated Optics and Microstructures III, M. Tabib-Azar, ed., Proc. SPIE2686, 45–52 (1996).
[CrossRef]

Greve, J.

L. M. Lechuda, A. T. M. Lenferink, R. P. H. Kooyman, J. Greve, “Feasibility of evanescent wave interferometer immunosensors for pesticide detection: chemical aspects,” Sensors Actuators B 25, 762–765 (1995).
[CrossRef]

Harmer, A.

G. Boisde, A. Harmer, Chemical and Biochemical Sensing with Optical Fibers and Waveguides (Artech House, Boston, Mass., 1996).

Hartman, N. F.

N. F. Hartman, J. L. Walsh, D. P. Campbell, U. Akki, “Integrated optic gaseous NH3 sensor for agricultural applications,” in Optics in Agriculture, Forestry, and Biological Processing, G. E. Meyer, J. A. DeShazer, eds., Proc. SPIE2345, 314–323 (1995).
[CrossRef]

N. F. Hartman, J. M. Cobb, J. G. Edwards, “Optical system-on-a-chip for chemical and biochemical sensing: the platform,” in Electro-Optic, Integrated Optic, and Electronic Technologies for Online Chemical Process Monitoring, M. Fallahi, R. J. Nordstrom, T. R. Todd, eds., Proc. SPIE3537, 0–7 (1999).

Haubenreisser, W.

W. Ecke, W. Haubenreisser, H. Lehmann, S. Schroeter, G. Schwotzer, R. Willsch, “Phase-sensitive fibre-optic monoptodes for chemical sensing,” Sensors Actuators B 11, 475–479 (1993).
[CrossRef]

Heaton, J. M.

R. M. Jenkins, R. W. J. Devereux, J. M. Heaton, “Novel waveguide Mach–Zehnder interferometer based on multimode interference phenomena,” Opt. Commun. 110, 410–424 (1994).
[CrossRef]

Hlubina, P.

P. Hlubina, P. Prochazka, “Sensor application of two-mode fiber in the Michelson interferometer configuration,” in Interferometry’94: Interferometry Fiber Sensing, E. Udd, R. P. Tatam, eds., Proc. SPIE2341, 202–211 (1994).

Hunsperger, R. G.

R. G. Hunsperger, Integrated Optics (Springer-Verlag, Berlin, 1995), p. 25.

Jenkins, R. M.

R. M. Jenkins, R. W. J. Devereux, J. M. Heaton, “Novel waveguide Mach–Zehnder interferometer based on multimode interference phenomena,” Opt. Commun. 110, 410–424 (1994).
[CrossRef]

Kiyanovskii, A. P.

Yu. M. Shirshov, S. V. Svechnikov, A. P. Kiyanovskii, Yu. V. Ushenin, E. F. Venger, A. V. Samoylov, R. Merker, “A sensor based on the planar-polarization interferometer,” Sensors Actuators A 68, 384–387 (1998).
[CrossRef]

Klein, R.

R. Klein, E. I. Voges, “Integrated optics ammonia sensor,” in Advances in Fluorescence Sensing Technology, J. R. Lakiwicz, R. B. Thompson, eds., Proc. SPIE1885, 81–92 (1993).
[CrossRef]

Koller, H.

Ch. Fattinger, H. Koller, D. Schlatter, P. Wehrli, “Difference interferometer: a highly sensitive optical probe for quantification of molecular surface concentration,” Biosens. Bioelectron. 8, 99–107 (1993).
[CrossRef]

Kooyman, R. P. H.

L. M. Lechuda, A. T. M. Lenferink, R. P. H. Kooyman, J. Greve, “Feasibility of evanescent wave interferometer immunosensors for pesticide detection: chemical aspects,” Sensors Actuators B 25, 762–765 (1995).
[CrossRef]

Krug, W.

K. E. Rochford, R. Zanoni, G. I. Stegeman, W. Krug, E. Miao, M. W. Beranek, “Pulse-modulated interferometer for measuring intensity-induced phase shifts,” IEEE J. Quantum Electron. 28, 2044–2050 (1992).
[CrossRef]

Lechuda, L. M.

L. M. Lechuda, A. T. M. Lenferink, R. P. H. Kooyman, J. Greve, “Feasibility of evanescent wave interferometer immunosensors for pesticide detection: chemical aspects,” Sensors Actuators B 25, 762–765 (1995).
[CrossRef]

Lehmann, H.

W. Ecke, W. Haubenreisser, H. Lehmann, S. Schroeter, G. Schwotzer, R. Willsch, “Phase-sensitive fibre-optic monoptodes for chemical sensing,” Sensors Actuators B 11, 475–479 (1993).
[CrossRef]

Lenferink, A. T. M.

L. M. Lechuda, A. T. M. Lenferink, R. P. H. Kooyman, J. Greve, “Feasibility of evanescent wave interferometer immunosensors for pesticide detection: chemical aspects,” Sensors Actuators B 25, 762–765 (1995).
[CrossRef]

Lukasz, W.

P. Plizka, W. Lukasz, “Integrated-optical acoustical sensor,” Sensors Actuators A 41, 93–97 (1994).
[CrossRef]

Merker, R.

Yu. M. Shirshov, S. V. Svechnikov, A. P. Kiyanovskii, Yu. V. Ushenin, E. F. Venger, A. V. Samoylov, R. Merker, “A sensor based on the planar-polarization interferometer,” Sensors Actuators A 68, 384–387 (1998).
[CrossRef]

Miao, E.

K. E. Rochford, R. Zanoni, G. I. Stegeman, W. Krug, E. Miao, M. W. Beranek, “Pulse-modulated interferometer for measuring intensity-induced phase shifts,” IEEE J. Quantum Electron. 28, 2044–2050 (1992).
[CrossRef]

Miyanaga, S.

E. Nitanai, S. Miyanaga, “Measurements of dispersion properties of refractive indices and absorption coefficients in organic dye-doped thin films by a prism coupling method,” Opt. Eng. 35, 900–903 (1996).
[CrossRef]

Narayanaswamy, R.

P. Caglar, R. Narayanaswamy, “Ammonia-sensitive fibre optic probe utilizing an immobilized spectrophotometric indicator,” Analyst 112, 1285–1288 (1987).
[CrossRef]

Nitanai, E.

E. Nitanai, S. Miyanaga, “Measurements of dispersion properties of refractive indices and absorption coefficients in organic dye-doped thin films by a prism coupling method,” Opt. Eng. 35, 900–903 (1996).
[CrossRef]

Plizka, P.

P. Plizka, W. Lukasz, “Integrated-optical acoustical sensor,” Sensors Actuators A 41, 93–97 (1994).
[CrossRef]

Prochazka, P.

P. Hlubina, P. Prochazka, “Sensor application of two-mode fiber in the Michelson interferometer configuration,” in Interferometry’94: Interferometry Fiber Sensing, E. Udd, R. P. Tatam, eds., Proc. SPIE2341, 202–211 (1994).

Ridgway, R. W.

A. A. Boiarski, J. R. Busch, R. S. Brody, R. W. Ridgway, W. P. Altman, C. Golden, “Integrated optic sensor for measuring aflatoxin-B1 in corn,” in Integrated Optics and Microstructures III, M. Tabib-Azar, ed., Proc. SPIE2686, 45–52 (1996).
[CrossRef]

Rochford, K. E.

K. E. Rochford, R. Zanoni, G. I. Stegeman, W. Krug, E. Miao, M. W. Beranek, “Pulse-modulated interferometer for measuring intensity-induced phase shifts,” IEEE J. Quantum Electron. 28, 2044–2050 (1992).
[CrossRef]

Samoylov, A. V.

Yu. M. Shirshov, S. V. Svechnikov, A. P. Kiyanovskii, Yu. V. Ushenin, E. F. Venger, A. V. Samoylov, R. Merker, “A sensor based on the planar-polarization interferometer,” Sensors Actuators A 68, 384–387 (1998).
[CrossRef]

Sarkisov, S. S.

S. S. Sarkisov, A. Wilkosz, P. Venkateswarlu, “Nonlinear optical waveguides based on polymeric films doped with phthalocyanines,” in Physics and Simulation of Optoelectronic Devices IV, W. W. Chow, M. Osinsky, eds., Proc. SPIE2693, 523–531 (1996).
[CrossRef]

Schlatter, D.

Ch. Fattinger, H. Koller, D. Schlatter, P. Wehrli, “Difference interferometer: a highly sensitive optical probe for quantification of molecular surface concentration,” Biosens. Bioelectron. 8, 99–107 (1993).
[CrossRef]

Schroeter, S.

W. Ecke, W. Haubenreisser, H. Lehmann, S. Schroeter, G. Schwotzer, R. Willsch, “Phase-sensitive fibre-optic monoptodes for chemical sensing,” Sensors Actuators B 11, 475–479 (1993).
[CrossRef]

Schwotzer, G.

W. Ecke, W. Haubenreisser, H. Lehmann, S. Schroeter, G. Schwotzer, R. Willsch, “Phase-sensitive fibre-optic monoptodes for chemical sensing,” Sensors Actuators B 11, 475–479 (1993).
[CrossRef]

Shirshov, Yu. M.

Yu. M. Shirshov, S. V. Svechnikov, A. P. Kiyanovskii, Yu. V. Ushenin, E. F. Venger, A. V. Samoylov, R. Merker, “A sensor based on the planar-polarization interferometer,” Sensors Actuators A 68, 384–387 (1998).
[CrossRef]

Stegeman, G. I.

K. E. Rochford, R. Zanoni, G. I. Stegeman, W. Krug, E. Miao, M. W. Beranek, “Pulse-modulated interferometer for measuring intensity-induced phase shifts,” IEEE J. Quantum Electron. 28, 2044–2050 (1992).
[CrossRef]

Svechnikov, S. V.

Yu. M. Shirshov, S. V. Svechnikov, A. P. Kiyanovskii, Yu. V. Ushenin, E. F. Venger, A. V. Samoylov, R. Merker, “A sensor based on the planar-polarization interferometer,” Sensors Actuators A 68, 384–387 (1998).
[CrossRef]

Torge, R.

Ulrich, R.

Ushenin, Yu. V.

Yu. M. Shirshov, S. V. Svechnikov, A. P. Kiyanovskii, Yu. V. Ushenin, E. F. Venger, A. V. Samoylov, R. Merker, “A sensor based on the planar-polarization interferometer,” Sensors Actuators A 68, 384–387 (1998).
[CrossRef]

Venger, E. F.

Yu. M. Shirshov, S. V. Svechnikov, A. P. Kiyanovskii, Yu. V. Ushenin, E. F. Venger, A. V. Samoylov, R. Merker, “A sensor based on the planar-polarization interferometer,” Sensors Actuators A 68, 384–387 (1998).
[CrossRef]

Venkateswarlu, P.

S. S. Sarkisov, A. Wilkosz, P. Venkateswarlu, “Nonlinear optical waveguides based on polymeric films doped with phthalocyanines,” in Physics and Simulation of Optoelectronic Devices IV, W. W. Chow, M. Osinsky, eds., Proc. SPIE2693, 523–531 (1996).
[CrossRef]

Voges, E. I.

R. Klein, E. I. Voges, “Integrated optics ammonia sensor,” in Advances in Fluorescence Sensing Technology, J. R. Lakiwicz, R. B. Thompson, eds., Proc. SPIE1885, 81–92 (1993).
[CrossRef]

Walsh, J. L.

N. F. Hartman, J. L. Walsh, D. P. Campbell, U. Akki, “Integrated optic gaseous NH3 sensor for agricultural applications,” in Optics in Agriculture, Forestry, and Biological Processing, G. E. Meyer, J. A. DeShazer, eds., Proc. SPIE2345, 314–323 (1995).
[CrossRef]

Wehrli, P.

Ch. Fattinger, H. Koller, D. Schlatter, P. Wehrli, “Difference interferometer: a highly sensitive optical probe for quantification of molecular surface concentration,” Biosens. Bioelectron. 8, 99–107 (1993).
[CrossRef]

Wilkosz, A.

S. S. Sarkisov, A. Wilkosz, P. Venkateswarlu, “Nonlinear optical waveguides based on polymeric films doped with phthalocyanines,” in Physics and Simulation of Optoelectronic Devices IV, W. W. Chow, M. Osinsky, eds., Proc. SPIE2693, 523–531 (1996).
[CrossRef]

Willsch, R.

W. Ecke, W. Haubenreisser, H. Lehmann, S. Schroeter, G. Schwotzer, R. Willsch, “Phase-sensitive fibre-optic monoptodes for chemical sensing,” Sensors Actuators B 11, 475–479 (1993).
[CrossRef]

Zanoni, R.

K. E. Rochford, R. Zanoni, G. I. Stegeman, W. Krug, E. Miao, M. W. Beranek, “Pulse-modulated interferometer for measuring intensity-induced phase shifts,” IEEE J. Quantum Electron. 28, 2044–2050 (1992).
[CrossRef]

Analyst (1)

P. Caglar, R. Narayanaswamy, “Ammonia-sensitive fibre optic probe utilizing an immobilized spectrophotometric indicator,” Analyst 112, 1285–1288 (1987).
[CrossRef]

Appl. Opt. (1)

Biosens. Bioelectron. (1)

Ch. Fattinger, H. Koller, D. Schlatter, P. Wehrli, “Difference interferometer: a highly sensitive optical probe for quantification of molecular surface concentration,” Biosens. Bioelectron. 8, 99–107 (1993).
[CrossRef]

IEEE J. Quantum Electron. (1)

K. E. Rochford, R. Zanoni, G. I. Stegeman, W. Krug, E. Miao, M. W. Beranek, “Pulse-modulated interferometer for measuring intensity-induced phase shifts,” IEEE J. Quantum Electron. 28, 2044–2050 (1992).
[CrossRef]

Opt. Commun. (1)

R. M. Jenkins, R. W. J. Devereux, J. M. Heaton, “Novel waveguide Mach–Zehnder interferometer based on multimode interference phenomena,” Opt. Commun. 110, 410–424 (1994).
[CrossRef]

Opt. Eng. (1)

E. Nitanai, S. Miyanaga, “Measurements of dispersion properties of refractive indices and absorption coefficients in organic dye-doped thin films by a prism coupling method,” Opt. Eng. 35, 900–903 (1996).
[CrossRef]

Sensors Actuators A (2)

Yu. M. Shirshov, S. V. Svechnikov, A. P. Kiyanovskii, Yu. V. Ushenin, E. F. Venger, A. V. Samoylov, R. Merker, “A sensor based on the planar-polarization interferometer,” Sensors Actuators A 68, 384–387 (1998).
[CrossRef]

P. Plizka, W. Lukasz, “Integrated-optical acoustical sensor,” Sensors Actuators A 41, 93–97 (1994).
[CrossRef]

Sensors Actuators B (2)

W. Ecke, W. Haubenreisser, H. Lehmann, S. Schroeter, G. Schwotzer, R. Willsch, “Phase-sensitive fibre-optic monoptodes for chemical sensing,” Sensors Actuators B 11, 475–479 (1993).
[CrossRef]

L. M. Lechuda, A. T. M. Lenferink, R. P. H. Kooyman, J. Greve, “Feasibility of evanescent wave interferometer immunosensors for pesticide detection: chemical aspects,” Sensors Actuators B 25, 762–765 (1995).
[CrossRef]

Other (12)

D. R. Lide, ed., Handbook of Chemistry and Physics (CRC Press, New York, 1996), p. D-148.

R. G. Hunsperger, Integrated Optics (Springer-Verlag, Berlin, 1995), p. 25.

A. A. Boiarski, J. R. Busch, R. S. Brody, R. W. Ridgway, W. P. Altman, C. Golden, “Integrated optic sensor for measuring aflatoxin-B1 in corn,” in Integrated Optics and Microstructures III, M. Tabib-Azar, ed., Proc. SPIE2686, 45–52 (1996).
[CrossRef]

R. Klein, E. I. Voges, “Integrated optics ammonia sensor,” in Advances in Fluorescence Sensing Technology, J. R. Lakiwicz, R. B. Thompson, eds., Proc. SPIE1885, 81–92 (1993).
[CrossRef]

T. Tamir, ed., Integrated Optics (Springer-Verlag, Berlin, 1979), p. 47.

S. S. Sarkisov, A. Wilkosz, P. Venkateswarlu, “Nonlinear optical waveguides based on polymeric films doped with phthalocyanines,” in Physics and Simulation of Optoelectronic Devices IV, W. W. Chow, M. Osinsky, eds., Proc. SPIE2693, 523–531 (1996).
[CrossRef]

R. B. Linscoff, ed., The Photonics Design and Applications Handbook (Laurin, Pittsfield, Mass., 1999).

J. Dakin, B. Culshaw, eds., Applications, Analysis, and Future Trends, Vol. 4 of Optical Fiber Sensors (Artech House, Boston, Mass., 1997).

G. Boisde, A. Harmer, Chemical and Biochemical Sensing with Optical Fibers and Waveguides (Artech House, Boston, Mass., 1996).

N. F. Hartman, J. L. Walsh, D. P. Campbell, U. Akki, “Integrated optic gaseous NH3 sensor for agricultural applications,” in Optics in Agriculture, Forestry, and Biological Processing, G. E. Meyer, J. A. DeShazer, eds., Proc. SPIE2345, 314–323 (1995).
[CrossRef]

N. F. Hartman, J. M. Cobb, J. G. Edwards, “Optical system-on-a-chip for chemical and biochemical sensing: the platform,” in Electro-Optic, Integrated Optic, and Electronic Technologies for Online Chemical Process Monitoring, M. Fallahi, R. J. Nordstrom, T. R. Todd, eds., Proc. SPIE3537, 0–7 (1999).

P. Hlubina, P. Prochazka, “Sensor application of two-mode fiber in the Michelson interferometer configuration,” in Interferometry’94: Interferometry Fiber Sensing, E. Udd, R. P. Tatam, eds., Proc. SPIE2341, 202–211 (1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Sketch of an asymmetric planar slab waveguide that is used as a single-arm interferometric sensor.

Fig. 2
Fig. 2

Diagram illustrating the technique of recombining modes in a single-arm double-mode double-order interferometer.

Fig. 3
Fig. 3

Difference N 0 (TM) - N 1 (TM) for a double-order waveguide interferometer (solid curve) and difference N 0 (TE) - N 0 (TM) for a single-order polarimetric waveguide interferometer (dashed curve) versus waveguide index n w . The calculations were based on the parameters of a 2-µm-thick PMMA waveguide upon a fused-quartz substrate. The length of the waveguide is 6 cm. To simplify comparison, a constant bias of 1.7154325 × 10-2 is added to the data represented by the dashed curve.

Fig. 4
Fig. 4

Normalized intensity versus index for a double-order (solid curve) and a single-order polarimetric (dashed curve) interferometer. Parameters are the same as in Fig. 3.

Fig. 5
Fig. 5

Normalized intensity versus ambient temperature for a double-order interferometer. Parameters are the same as in Fig. 3.

Fig. 6
Fig. 6

Optical absorption spectrum of PMMA–BCP film: 1, freshly made; 2, 3 months after making and before exposure to ammonia; 3, after holding in a closed container with saturated vapor of medical ammonia spirit (65% alcohol) for 10 min; 4, after ventilation of the container for 12 h. The film had a thickness of 3 µm. It was spin cast upon a fused-quartz substrate. The concentration of BCP in the PMMA host was 7% by weight (13.2 mM/L in an initial solution of PMMA in chlorobenzene).

Fig. 7
Fig. 7

Experimental setup for testing a single-arm double-mode double-order waveguide interferometric sensor. Dotted lines show electric signal channels.

Fig. 8
Fig. 8

Temperature (curve 1) and the signal of the sensor (curve 2) during a heating cycle performed inside the experimental chamber without current ramping (rectangular electric current pulse). The sensor is made from a 2-µm-thick PMMA–BCP film upon a fused-quartz substrate.

Fig. 9
Fig. 9

Signal of the sensor versus temperature for the cooling part of the cycle depicted in Fig. 8. Solid curve, data fitting.

Fig. 10
Fig. 10

Kinetics of the response of the sensor to various gas mixtures. Curves 1a and 1b correspond, respectively, to the concentration of ammonia and to the sensor response when the sensor was exposed to a mixture of ammonia and wet nitrogen (the maximum relative humidity was near 28.4%). A value of 4.5 × 10-5 V was added to actual readings of the sensor to make presentation of experimental data by curve 1b more convenient. Curves 2a and 2b correspond, respectively, to the pressure and to the sensor response when the sensor was exposed to pure nitrogen. Curves 3a and 3b correspond, respectively, to the concentration of ammonia and to the sensor response when the sensor was exposed to a mixture of ammonia and dry nitrogen. A value of 2.5 × 10-5 was added to actual readings of the sensor to make presentation of the experimental data by curve 3b more convenient.

Fig. 11
Fig. 11

Signal of the sensor versus concentration of ammonia in wet nitrogen for the experimental cycle depicted in Fig. 10, curves 1a and 1b. Solid curve, data fitting.

Fig. 12
Fig. 12

Signal of the sensor versus concentration of ammonia when the sensor was exposed to a mixture of NH3 and atmospheric air. Maximum relative humidity in the chamber was 98%. Solid curve, data fitting.

Equations (29)

Equations on this page are rendered with MathJax. Learn more.

γwmtwnw-1=tan-1nw/ns2φsm/γwm+tan-1nw/nc2φcm/γwm+πm,
γwm=knw2-NmTM21/2,
φsm=kNmTM2-ns21/2,
φcm=kNmTM2-nc21/2,
NmTMnw=nw2-γwm2nwk21/2.
N0TMnw-N1TMnw=R0+R1nw-ñw+R2nw-ñw2+,R0+R1nw-ñw,
ΔΦnw=kLN0TMnw-N1TMnw,2πLλ R0+2πLλ R1nw-ñw,2πLR1λ nw+ΔΦñw,
E0u, v=A0 expωt-k0r+ΔΦnw+ΔΦ0,
E1u, v=A1 expωt-k1r,
Inw; u, v=E0+E1E0*+E1*,=A02+A12+2A0A1×cosΔΦnw+Ku+ΔΦ0,A02+A12+2A0A1×cos2π nwDn+ΔΦñw, u,
γwmtw=tan-1φsm/γwm+tan-1φcm/γwm+πm.
ΔΦpnw=kLN0TEnw-N0TMnw.
nwt °C=nwti °C+nwt °Ct °C-ti °C,
twt °C=twti °C1+βtwt °C-ti °C,
Lt °C=Lti °C1+βLt °C-ti °C,
Δnwλ=cπ P 0Δαwλλ2-λ2 dλ,
ΔnwλcπΔαwλ0Δλλ2-λ02,=Fλ, λ0Δαwλ0,
Δαwλ0=ελ0ν,
ν=νtSbC1+SbCνtSbC,
ΔnwC, λFλ, λ0ελ0νtSbpC.
E0u, v=E0u, vexp-σ0ΔαwC,
E1u, v=E1u, vexp-σ1ΔαwC,
σ0σ00+η0C,
σ1σ10+η1C,
IC; u, vA0 exp-η0C2+A1 exp-η1C2+2A0 exp-η0CA1 exp-η1C×cos2π CDc+ΔΦu,
NH3vapor + H2O  NH4+ + OH-,
H Dye yellow+OH-  Dye-purple+H2O,
Dye-purple + NH4+  H Dyeyellow+ NH3vapor.
Ix=a-a1x+b-b1xcosx/Dt+c,

Metrics