Abstract

We describe and demonstrate an adaptive optical system based on the combination of a micromachined membrane deformable mirror and the stochastic parallel gradient descent control algorithm. This compact and relatively inexpensive adaptive optical system is used to maximize the coupling of a distorted laser beam into a single-mode optical fiber. The coupling efficiency is improved by 12 dB, and the coupling efficiency after correction is 64% of the diffraction-limited coupling efficiency.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. OKO Technologies, Reinier de Graafweg 300, 2625 DJ Delft, The Netherlands.
  2. G. W. Carhart, J. C. Ricklin, V. P. Sivokon, M. A. Vorontsov, “Parallel perturbation gradient descent algorithm for adaptive wavefront correction,” in Adaptive Optics and Applications, R. K. Tyson, R. Q. Fugate, eds., Proc. SPIE3126, 221–227 (1997).
    [CrossRef]
  3. V. I. Polejaev, P. R. Barbier, G. W. Carhart, M. L. Plett, D. W. Rush, M. A. Voronstov, “Adaptive compensation of dynamic wavefront aberrations based on blind optimization technique,” in High-Resolution Wavefront Control: Methods, Devices, and Applications, J. D. Gonglewski, M. A. Vorontsov, eds., Proc. SPIE3760, 88–95 (1999).
    [CrossRef]
  4. WaveScope Adaptive Optics Associates, 10 Wilson Road, Cambridge, Mass. 02138.
  5. V. P. Sivorkon, M. A. Vorontsov, “High-resolution adaptive phase-distortion suppression based solely on intensity information,” J. Opt. Soc. Am. A 15, 234–247 (1998).
    [CrossRef]

1998 (1)

Barbier, P. R.

V. I. Polejaev, P. R. Barbier, G. W. Carhart, M. L. Plett, D. W. Rush, M. A. Voronstov, “Adaptive compensation of dynamic wavefront aberrations based on blind optimization technique,” in High-Resolution Wavefront Control: Methods, Devices, and Applications, J. D. Gonglewski, M. A. Vorontsov, eds., Proc. SPIE3760, 88–95 (1999).
[CrossRef]

Carhart, G. W.

V. I. Polejaev, P. R. Barbier, G. W. Carhart, M. L. Plett, D. W. Rush, M. A. Voronstov, “Adaptive compensation of dynamic wavefront aberrations based on blind optimization technique,” in High-Resolution Wavefront Control: Methods, Devices, and Applications, J. D. Gonglewski, M. A. Vorontsov, eds., Proc. SPIE3760, 88–95 (1999).
[CrossRef]

G. W. Carhart, J. C. Ricklin, V. P. Sivokon, M. A. Vorontsov, “Parallel perturbation gradient descent algorithm for adaptive wavefront correction,” in Adaptive Optics and Applications, R. K. Tyson, R. Q. Fugate, eds., Proc. SPIE3126, 221–227 (1997).
[CrossRef]

Plett, M. L.

V. I. Polejaev, P. R. Barbier, G. W. Carhart, M. L. Plett, D. W. Rush, M. A. Voronstov, “Adaptive compensation of dynamic wavefront aberrations based on blind optimization technique,” in High-Resolution Wavefront Control: Methods, Devices, and Applications, J. D. Gonglewski, M. A. Vorontsov, eds., Proc. SPIE3760, 88–95 (1999).
[CrossRef]

Polejaev, V. I.

V. I. Polejaev, P. R. Barbier, G. W. Carhart, M. L. Plett, D. W. Rush, M. A. Voronstov, “Adaptive compensation of dynamic wavefront aberrations based on blind optimization technique,” in High-Resolution Wavefront Control: Methods, Devices, and Applications, J. D. Gonglewski, M. A. Vorontsov, eds., Proc. SPIE3760, 88–95 (1999).
[CrossRef]

Ricklin, J. C.

G. W. Carhart, J. C. Ricklin, V. P. Sivokon, M. A. Vorontsov, “Parallel perturbation gradient descent algorithm for adaptive wavefront correction,” in Adaptive Optics and Applications, R. K. Tyson, R. Q. Fugate, eds., Proc. SPIE3126, 221–227 (1997).
[CrossRef]

Rush, D. W.

V. I. Polejaev, P. R. Barbier, G. W. Carhart, M. L. Plett, D. W. Rush, M. A. Voronstov, “Adaptive compensation of dynamic wavefront aberrations based on blind optimization technique,” in High-Resolution Wavefront Control: Methods, Devices, and Applications, J. D. Gonglewski, M. A. Vorontsov, eds., Proc. SPIE3760, 88–95 (1999).
[CrossRef]

Sivokon, V. P.

G. W. Carhart, J. C. Ricklin, V. P. Sivokon, M. A. Vorontsov, “Parallel perturbation gradient descent algorithm for adaptive wavefront correction,” in Adaptive Optics and Applications, R. K. Tyson, R. Q. Fugate, eds., Proc. SPIE3126, 221–227 (1997).
[CrossRef]

Sivorkon, V. P.

Voronstov, M. A.

V. I. Polejaev, P. R. Barbier, G. W. Carhart, M. L. Plett, D. W. Rush, M. A. Voronstov, “Adaptive compensation of dynamic wavefront aberrations based on blind optimization technique,” in High-Resolution Wavefront Control: Methods, Devices, and Applications, J. D. Gonglewski, M. A. Vorontsov, eds., Proc. SPIE3760, 88–95 (1999).
[CrossRef]

Vorontsov, M. A.

V. P. Sivorkon, M. A. Vorontsov, “High-resolution adaptive phase-distortion suppression based solely on intensity information,” J. Opt. Soc. Am. A 15, 234–247 (1998).
[CrossRef]

G. W. Carhart, J. C. Ricklin, V. P. Sivokon, M. A. Vorontsov, “Parallel perturbation gradient descent algorithm for adaptive wavefront correction,” in Adaptive Optics and Applications, R. K. Tyson, R. Q. Fugate, eds., Proc. SPIE3126, 221–227 (1997).
[CrossRef]

J. Opt. Soc. Am. A (1)

Other (4)

OKO Technologies, Reinier de Graafweg 300, 2625 DJ Delft, The Netherlands.

G. W. Carhart, J. C. Ricklin, V. P. Sivokon, M. A. Vorontsov, “Parallel perturbation gradient descent algorithm for adaptive wavefront correction,” in Adaptive Optics and Applications, R. K. Tyson, R. Q. Fugate, eds., Proc. SPIE3126, 221–227 (1997).
[CrossRef]

V. I. Polejaev, P. R. Barbier, G. W. Carhart, M. L. Plett, D. W. Rush, M. A. Voronstov, “Adaptive compensation of dynamic wavefront aberrations based on blind optimization technique,” in High-Resolution Wavefront Control: Methods, Devices, and Applications, J. D. Gonglewski, M. A. Vorontsov, eds., Proc. SPIE3760, 88–95 (1999).
[CrossRef]

WaveScope Adaptive Optics Associates, 10 Wilson Road, Cambridge, Mass. 02138.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Adaptive optical system experiment.

Fig. 2
Fig. 2

Pinhole performance metric SPGDA convergence curve (average of ten realizations).

Fig. 3
Fig. 3

Reduction of wave-front aberration through the convergence of the SPGDA for the pinhole performance metric.

Fig. 4
Fig. 4

Optical fiber performance metric SPGDA convergence curves (average of ten realizations): a, rms OPD of 0.04 µm; b, rms OPD of 0.12 µm; c, rms OPD of 0.21 µm; d, rms OPD of 0.35 µm.

Fig. 5
Fig. 5

Reduction of wave-front aberration through convergence of the SPGDA for the optical fiber performance metric.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Un+1m=Unm+γ δJnδUnm,
Sexp(-2).

Metrics