Abstract

The two-color recording sensitivity S and the figure of merit M/# are measured in a reduced and congruent LiNbO3:In crystal of 2.2-mm thickness. The results are compared with those before reduction treatment. It is found that S increases by an order of magnitude through reduction treatment but the M/# is unchanged. Measured values for S and M/# in the reduced crystal are found to be 3 × 10-3 cm/J and 0.04, respectively, with a total writing intensity of 4.0 W/cm2 at 780 nm and a gating intensity of 1.15 W/cm2 at 488 nm. These values are close to those of near-stoichiometric LiNbO3 crystals under similar recording conditions. We also show that photoconductivity plays an important role in the improvement of S in LiNbO3:In.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. von der Linde, A. M. Glass, K. F. Rodgers, “Multiphoton photorefractive processes for optical storage in LiNbO3,” Appl. Phys. Lett. 25, 155–157 (1974).
    [CrossRef]
  2. D. von der Linde, A. M. Glass, K. F. Rodgers, “Optical storage using refractive index changes induced by two-step excitation,” J. Appl. Phys. 47, 217–220 (1976).
    [CrossRef]
  3. K. Buse, F. Jermann, E. Krätzig, “Infrared holographic recording in LiNbO3:Cu,” Appl. Phys. A 58, 191–195 (1994).
    [CrossRef]
  4. Y. S. Bai, R. Kachru, “Nonvolatile holographic storage with two-step recording in lithium niobate using cw lasers,” Phys. Rev. Lett. 78, 2944–2947 (1997).
    [CrossRef]
  5. K. Buse, A. Adibi, D. Psaltis, “Non-volatile holographic storage in doubly doped lithium niobate crystals,” Nature 393, 665–668 (1998).
    [CrossRef]
  6. M. Lee, S. Takekawa, Y. Furukawa, K. Kitamura, H. Hatano, S. Tanaka, “Non-volatile two-color holographic recording in Tb-doped LiNbO3,” Appl. Phys. Lett. 76, 1653–1655 (2000).
    [CrossRef]
  7. L. Hesselink, S. S. Orlov, A. Liu, A. Akella, D. Lande, R. R. Neurgaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089–1094 (1998).
    [CrossRef] [PubMed]
  8. H. Guenther, R. Macfarlane, Y. Furukawa, K. Kitamura, R. Neurgaonkar, “Two-color holography in reduced near-stoichiometric lithium niobate,” Appl. Opt. 37, 7611–7623 (1998).
    [CrossRef]
  9. M. Lee, S. Takekawa, Y. Furukawa, Y. Uchida, K. Kitamura, H. Hatano, S. Tanaka, “Photochromic effect in near-stoichiometric LiNbO3 and two-color holographic recording,” J. Appl. Phys. 88, 4476–4485 (2000).
    [CrossRef]
  10. G. Zhang, Y. Tomita, W. Xu, Ch. Yang, “Nonvolatile two-color holography in indium-doped lithium niobate,” Appl. Phys. Lett. 77, 3508–3510 (2000).
    [CrossRef]
  11. F. H. Mok, G. W. Burr, D. Psaltis, “System metric for holographic memory systems,” Opt. Lett. 21, 896–898 (1996).
    [CrossRef] [PubMed]
  12. J. Koppitz, O. F. Schirmer, M. Wöhlecke, A. I. Kuznetsov, B. C. Grabmaier, “Threshold effects in LiNbO3:Mg caused by change of electron-lattice coupling,” Ferroelectrics 92, 233–241 (1989).
    [CrossRef]
  13. T. Volk, N. Rubinina, M. Wöhlecke, “Optical-damage-resistant impurities in lithium niobate,” J. Opt. Soc. Am. B 11, 1681–1687 (1994).
    [CrossRef]
  14. T. Volk, M. Wöhlecke, N. Rubinina, N. V. Razumovski, F. Jermann, C. Fischer, R. Böwer, “LiNbO3 with the damage-resistant impurity indium,” Appl. Phys. A 60, 217–225 (1995).
    [CrossRef]
  15. D. Berben, K. Buse, S. Wevering, P. Herth, M. Imlau, Th. Woike, “Lifetime of small polarons in iron-doped lithium niobate crystals,” J. Appl. Phys. 87, 1034–1041 (2000).
    [CrossRef]

2000

M. Lee, S. Takekawa, Y. Furukawa, K. Kitamura, H. Hatano, S. Tanaka, “Non-volatile two-color holographic recording in Tb-doped LiNbO3,” Appl. Phys. Lett. 76, 1653–1655 (2000).
[CrossRef]

M. Lee, S. Takekawa, Y. Furukawa, Y. Uchida, K. Kitamura, H. Hatano, S. Tanaka, “Photochromic effect in near-stoichiometric LiNbO3 and two-color holographic recording,” J. Appl. Phys. 88, 4476–4485 (2000).
[CrossRef]

G. Zhang, Y. Tomita, W. Xu, Ch. Yang, “Nonvolatile two-color holography in indium-doped lithium niobate,” Appl. Phys. Lett. 77, 3508–3510 (2000).
[CrossRef]

D. Berben, K. Buse, S. Wevering, P. Herth, M. Imlau, Th. Woike, “Lifetime of small polarons in iron-doped lithium niobate crystals,” J. Appl. Phys. 87, 1034–1041 (2000).
[CrossRef]

1998

K. Buse, A. Adibi, D. Psaltis, “Non-volatile holographic storage in doubly doped lithium niobate crystals,” Nature 393, 665–668 (1998).
[CrossRef]

H. Guenther, R. Macfarlane, Y. Furukawa, K. Kitamura, R. Neurgaonkar, “Two-color holography in reduced near-stoichiometric lithium niobate,” Appl. Opt. 37, 7611–7623 (1998).
[CrossRef]

L. Hesselink, S. S. Orlov, A. Liu, A. Akella, D. Lande, R. R. Neurgaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089–1094 (1998).
[CrossRef] [PubMed]

1997

Y. S. Bai, R. Kachru, “Nonvolatile holographic storage with two-step recording in lithium niobate using cw lasers,” Phys. Rev. Lett. 78, 2944–2947 (1997).
[CrossRef]

1996

1995

T. Volk, M. Wöhlecke, N. Rubinina, N. V. Razumovski, F. Jermann, C. Fischer, R. Böwer, “LiNbO3 with the damage-resistant impurity indium,” Appl. Phys. A 60, 217–225 (1995).
[CrossRef]

1994

T. Volk, N. Rubinina, M. Wöhlecke, “Optical-damage-resistant impurities in lithium niobate,” J. Opt. Soc. Am. B 11, 1681–1687 (1994).
[CrossRef]

K. Buse, F. Jermann, E. Krätzig, “Infrared holographic recording in LiNbO3:Cu,” Appl. Phys. A 58, 191–195 (1994).
[CrossRef]

1989

J. Koppitz, O. F. Schirmer, M. Wöhlecke, A. I. Kuznetsov, B. C. Grabmaier, “Threshold effects in LiNbO3:Mg caused by change of electron-lattice coupling,” Ferroelectrics 92, 233–241 (1989).
[CrossRef]

1976

D. von der Linde, A. M. Glass, K. F. Rodgers, “Optical storage using refractive index changes induced by two-step excitation,” J. Appl. Phys. 47, 217–220 (1976).
[CrossRef]

1974

D. von der Linde, A. M. Glass, K. F. Rodgers, “Multiphoton photorefractive processes for optical storage in LiNbO3,” Appl. Phys. Lett. 25, 155–157 (1974).
[CrossRef]

Adibi, A.

K. Buse, A. Adibi, D. Psaltis, “Non-volatile holographic storage in doubly doped lithium niobate crystals,” Nature 393, 665–668 (1998).
[CrossRef]

Akella, A.

L. Hesselink, S. S. Orlov, A. Liu, A. Akella, D. Lande, R. R. Neurgaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089–1094 (1998).
[CrossRef] [PubMed]

Bai, Y. S.

Y. S. Bai, R. Kachru, “Nonvolatile holographic storage with two-step recording in lithium niobate using cw lasers,” Phys. Rev. Lett. 78, 2944–2947 (1997).
[CrossRef]

Berben, D.

D. Berben, K. Buse, S. Wevering, P. Herth, M. Imlau, Th. Woike, “Lifetime of small polarons in iron-doped lithium niobate crystals,” J. Appl. Phys. 87, 1034–1041 (2000).
[CrossRef]

Böwer, R.

T. Volk, M. Wöhlecke, N. Rubinina, N. V. Razumovski, F. Jermann, C. Fischer, R. Böwer, “LiNbO3 with the damage-resistant impurity indium,” Appl. Phys. A 60, 217–225 (1995).
[CrossRef]

Burr, G. W.

Buse, K.

D. Berben, K. Buse, S. Wevering, P. Herth, M. Imlau, Th. Woike, “Lifetime of small polarons in iron-doped lithium niobate crystals,” J. Appl. Phys. 87, 1034–1041 (2000).
[CrossRef]

K. Buse, A. Adibi, D. Psaltis, “Non-volatile holographic storage in doubly doped lithium niobate crystals,” Nature 393, 665–668 (1998).
[CrossRef]

K. Buse, F. Jermann, E. Krätzig, “Infrared holographic recording in LiNbO3:Cu,” Appl. Phys. A 58, 191–195 (1994).
[CrossRef]

Fischer, C.

T. Volk, M. Wöhlecke, N. Rubinina, N. V. Razumovski, F. Jermann, C. Fischer, R. Böwer, “LiNbO3 with the damage-resistant impurity indium,” Appl. Phys. A 60, 217–225 (1995).
[CrossRef]

Furukawa, Y.

M. Lee, S. Takekawa, Y. Furukawa, Y. Uchida, K. Kitamura, H. Hatano, S. Tanaka, “Photochromic effect in near-stoichiometric LiNbO3 and two-color holographic recording,” J. Appl. Phys. 88, 4476–4485 (2000).
[CrossRef]

M. Lee, S. Takekawa, Y. Furukawa, K. Kitamura, H. Hatano, S. Tanaka, “Non-volatile two-color holographic recording in Tb-doped LiNbO3,” Appl. Phys. Lett. 76, 1653–1655 (2000).
[CrossRef]

H. Guenther, R. Macfarlane, Y. Furukawa, K. Kitamura, R. Neurgaonkar, “Two-color holography in reduced near-stoichiometric lithium niobate,” Appl. Opt. 37, 7611–7623 (1998).
[CrossRef]

Glass, A. M.

D. von der Linde, A. M. Glass, K. F. Rodgers, “Optical storage using refractive index changes induced by two-step excitation,” J. Appl. Phys. 47, 217–220 (1976).
[CrossRef]

D. von der Linde, A. M. Glass, K. F. Rodgers, “Multiphoton photorefractive processes for optical storage in LiNbO3,” Appl. Phys. Lett. 25, 155–157 (1974).
[CrossRef]

Grabmaier, B. C.

J. Koppitz, O. F. Schirmer, M. Wöhlecke, A. I. Kuznetsov, B. C. Grabmaier, “Threshold effects in LiNbO3:Mg caused by change of electron-lattice coupling,” Ferroelectrics 92, 233–241 (1989).
[CrossRef]

Guenther, H.

Hatano, H.

M. Lee, S. Takekawa, Y. Furukawa, K. Kitamura, H. Hatano, S. Tanaka, “Non-volatile two-color holographic recording in Tb-doped LiNbO3,” Appl. Phys. Lett. 76, 1653–1655 (2000).
[CrossRef]

M. Lee, S. Takekawa, Y. Furukawa, Y. Uchida, K. Kitamura, H. Hatano, S. Tanaka, “Photochromic effect in near-stoichiometric LiNbO3 and two-color holographic recording,” J. Appl. Phys. 88, 4476–4485 (2000).
[CrossRef]

Herth, P.

D. Berben, K. Buse, S. Wevering, P. Herth, M. Imlau, Th. Woike, “Lifetime of small polarons in iron-doped lithium niobate crystals,” J. Appl. Phys. 87, 1034–1041 (2000).
[CrossRef]

Hesselink, L.

L. Hesselink, S. S. Orlov, A. Liu, A. Akella, D. Lande, R. R. Neurgaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089–1094 (1998).
[CrossRef] [PubMed]

Imlau, M.

D. Berben, K. Buse, S. Wevering, P. Herth, M. Imlau, Th. Woike, “Lifetime of small polarons in iron-doped lithium niobate crystals,” J. Appl. Phys. 87, 1034–1041 (2000).
[CrossRef]

Jermann, F.

T. Volk, M. Wöhlecke, N. Rubinina, N. V. Razumovski, F. Jermann, C. Fischer, R. Böwer, “LiNbO3 with the damage-resistant impurity indium,” Appl. Phys. A 60, 217–225 (1995).
[CrossRef]

K. Buse, F. Jermann, E. Krätzig, “Infrared holographic recording in LiNbO3:Cu,” Appl. Phys. A 58, 191–195 (1994).
[CrossRef]

Kachru, R.

Y. S. Bai, R. Kachru, “Nonvolatile holographic storage with two-step recording in lithium niobate using cw lasers,” Phys. Rev. Lett. 78, 2944–2947 (1997).
[CrossRef]

Kitamura, K.

M. Lee, S. Takekawa, Y. Furukawa, K. Kitamura, H. Hatano, S. Tanaka, “Non-volatile two-color holographic recording in Tb-doped LiNbO3,” Appl. Phys. Lett. 76, 1653–1655 (2000).
[CrossRef]

M. Lee, S. Takekawa, Y. Furukawa, Y. Uchida, K. Kitamura, H. Hatano, S. Tanaka, “Photochromic effect in near-stoichiometric LiNbO3 and two-color holographic recording,” J. Appl. Phys. 88, 4476–4485 (2000).
[CrossRef]

H. Guenther, R. Macfarlane, Y. Furukawa, K. Kitamura, R. Neurgaonkar, “Two-color holography in reduced near-stoichiometric lithium niobate,” Appl. Opt. 37, 7611–7623 (1998).
[CrossRef]

Koppitz, J.

J. Koppitz, O. F. Schirmer, M. Wöhlecke, A. I. Kuznetsov, B. C. Grabmaier, “Threshold effects in LiNbO3:Mg caused by change of electron-lattice coupling,” Ferroelectrics 92, 233–241 (1989).
[CrossRef]

Krätzig, E.

K. Buse, F. Jermann, E. Krätzig, “Infrared holographic recording in LiNbO3:Cu,” Appl. Phys. A 58, 191–195 (1994).
[CrossRef]

Kuznetsov, A. I.

J. Koppitz, O. F. Schirmer, M. Wöhlecke, A. I. Kuznetsov, B. C. Grabmaier, “Threshold effects in LiNbO3:Mg caused by change of electron-lattice coupling,” Ferroelectrics 92, 233–241 (1989).
[CrossRef]

Lande, D.

L. Hesselink, S. S. Orlov, A. Liu, A. Akella, D. Lande, R. R. Neurgaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089–1094 (1998).
[CrossRef] [PubMed]

Lee, M.

M. Lee, S. Takekawa, Y. Furukawa, Y. Uchida, K. Kitamura, H. Hatano, S. Tanaka, “Photochromic effect in near-stoichiometric LiNbO3 and two-color holographic recording,” J. Appl. Phys. 88, 4476–4485 (2000).
[CrossRef]

M. Lee, S. Takekawa, Y. Furukawa, K. Kitamura, H. Hatano, S. Tanaka, “Non-volatile two-color holographic recording in Tb-doped LiNbO3,” Appl. Phys. Lett. 76, 1653–1655 (2000).
[CrossRef]

Liu, A.

L. Hesselink, S. S. Orlov, A. Liu, A. Akella, D. Lande, R. R. Neurgaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089–1094 (1998).
[CrossRef] [PubMed]

Macfarlane, R.

Mok, F. H.

Neurgaonkar, R.

Neurgaonkar, R. R.

L. Hesselink, S. S. Orlov, A. Liu, A. Akella, D. Lande, R. R. Neurgaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089–1094 (1998).
[CrossRef] [PubMed]

Orlov, S. S.

L. Hesselink, S. S. Orlov, A. Liu, A. Akella, D. Lande, R. R. Neurgaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089–1094 (1998).
[CrossRef] [PubMed]

Psaltis, D.

K. Buse, A. Adibi, D. Psaltis, “Non-volatile holographic storage in doubly doped lithium niobate crystals,” Nature 393, 665–668 (1998).
[CrossRef]

F. H. Mok, G. W. Burr, D. Psaltis, “System metric for holographic memory systems,” Opt. Lett. 21, 896–898 (1996).
[CrossRef] [PubMed]

Razumovski, N. V.

T. Volk, M. Wöhlecke, N. Rubinina, N. V. Razumovski, F. Jermann, C. Fischer, R. Böwer, “LiNbO3 with the damage-resistant impurity indium,” Appl. Phys. A 60, 217–225 (1995).
[CrossRef]

Rodgers, K. F.

D. von der Linde, A. M. Glass, K. F. Rodgers, “Optical storage using refractive index changes induced by two-step excitation,” J. Appl. Phys. 47, 217–220 (1976).
[CrossRef]

D. von der Linde, A. M. Glass, K. F. Rodgers, “Multiphoton photorefractive processes for optical storage in LiNbO3,” Appl. Phys. Lett. 25, 155–157 (1974).
[CrossRef]

Rubinina, N.

T. Volk, M. Wöhlecke, N. Rubinina, N. V. Razumovski, F. Jermann, C. Fischer, R. Böwer, “LiNbO3 with the damage-resistant impurity indium,” Appl. Phys. A 60, 217–225 (1995).
[CrossRef]

T. Volk, N. Rubinina, M. Wöhlecke, “Optical-damage-resistant impurities in lithium niobate,” J. Opt. Soc. Am. B 11, 1681–1687 (1994).
[CrossRef]

Schirmer, O. F.

J. Koppitz, O. F. Schirmer, M. Wöhlecke, A. I. Kuznetsov, B. C. Grabmaier, “Threshold effects in LiNbO3:Mg caused by change of electron-lattice coupling,” Ferroelectrics 92, 233–241 (1989).
[CrossRef]

Takekawa, S.

M. Lee, S. Takekawa, Y. Furukawa, K. Kitamura, H. Hatano, S. Tanaka, “Non-volatile two-color holographic recording in Tb-doped LiNbO3,” Appl. Phys. Lett. 76, 1653–1655 (2000).
[CrossRef]

M. Lee, S. Takekawa, Y. Furukawa, Y. Uchida, K. Kitamura, H. Hatano, S. Tanaka, “Photochromic effect in near-stoichiometric LiNbO3 and two-color holographic recording,” J. Appl. Phys. 88, 4476–4485 (2000).
[CrossRef]

Tanaka, S.

M. Lee, S. Takekawa, Y. Furukawa, Y. Uchida, K. Kitamura, H. Hatano, S. Tanaka, “Photochromic effect in near-stoichiometric LiNbO3 and two-color holographic recording,” J. Appl. Phys. 88, 4476–4485 (2000).
[CrossRef]

M. Lee, S. Takekawa, Y. Furukawa, K. Kitamura, H. Hatano, S. Tanaka, “Non-volatile two-color holographic recording in Tb-doped LiNbO3,” Appl. Phys. Lett. 76, 1653–1655 (2000).
[CrossRef]

Tomita, Y.

G. Zhang, Y. Tomita, W. Xu, Ch. Yang, “Nonvolatile two-color holography in indium-doped lithium niobate,” Appl. Phys. Lett. 77, 3508–3510 (2000).
[CrossRef]

Uchida, Y.

M. Lee, S. Takekawa, Y. Furukawa, Y. Uchida, K. Kitamura, H. Hatano, S. Tanaka, “Photochromic effect in near-stoichiometric LiNbO3 and two-color holographic recording,” J. Appl. Phys. 88, 4476–4485 (2000).
[CrossRef]

Volk, T.

T. Volk, M. Wöhlecke, N. Rubinina, N. V. Razumovski, F. Jermann, C. Fischer, R. Böwer, “LiNbO3 with the damage-resistant impurity indium,” Appl. Phys. A 60, 217–225 (1995).
[CrossRef]

T. Volk, N. Rubinina, M. Wöhlecke, “Optical-damage-resistant impurities in lithium niobate,” J. Opt. Soc. Am. B 11, 1681–1687 (1994).
[CrossRef]

von der Linde, D.

D. von der Linde, A. M. Glass, K. F. Rodgers, “Optical storage using refractive index changes induced by two-step excitation,” J. Appl. Phys. 47, 217–220 (1976).
[CrossRef]

D. von der Linde, A. M. Glass, K. F. Rodgers, “Multiphoton photorefractive processes for optical storage in LiNbO3,” Appl. Phys. Lett. 25, 155–157 (1974).
[CrossRef]

Wevering, S.

D. Berben, K. Buse, S. Wevering, P. Herth, M. Imlau, Th. Woike, “Lifetime of small polarons in iron-doped lithium niobate crystals,” J. Appl. Phys. 87, 1034–1041 (2000).
[CrossRef]

Wöhlecke, M.

T. Volk, M. Wöhlecke, N. Rubinina, N. V. Razumovski, F. Jermann, C. Fischer, R. Böwer, “LiNbO3 with the damage-resistant impurity indium,” Appl. Phys. A 60, 217–225 (1995).
[CrossRef]

T. Volk, N. Rubinina, M. Wöhlecke, “Optical-damage-resistant impurities in lithium niobate,” J. Opt. Soc. Am. B 11, 1681–1687 (1994).
[CrossRef]

J. Koppitz, O. F. Schirmer, M. Wöhlecke, A. I. Kuznetsov, B. C. Grabmaier, “Threshold effects in LiNbO3:Mg caused by change of electron-lattice coupling,” Ferroelectrics 92, 233–241 (1989).
[CrossRef]

Woike, Th.

D. Berben, K. Buse, S. Wevering, P. Herth, M. Imlau, Th. Woike, “Lifetime of small polarons in iron-doped lithium niobate crystals,” J. Appl. Phys. 87, 1034–1041 (2000).
[CrossRef]

Xu, W.

G. Zhang, Y. Tomita, W. Xu, Ch. Yang, “Nonvolatile two-color holography in indium-doped lithium niobate,” Appl. Phys. Lett. 77, 3508–3510 (2000).
[CrossRef]

Yang, Ch.

G. Zhang, Y. Tomita, W. Xu, Ch. Yang, “Nonvolatile two-color holography in indium-doped lithium niobate,” Appl. Phys. Lett. 77, 3508–3510 (2000).
[CrossRef]

Zhang, G.

G. Zhang, Y. Tomita, W. Xu, Ch. Yang, “Nonvolatile two-color holography in indium-doped lithium niobate,” Appl. Phys. Lett. 77, 3508–3510 (2000).
[CrossRef]

Appl. Opt.

Appl. Phys. A

K. Buse, F. Jermann, E. Krätzig, “Infrared holographic recording in LiNbO3:Cu,” Appl. Phys. A 58, 191–195 (1994).
[CrossRef]

T. Volk, M. Wöhlecke, N. Rubinina, N. V. Razumovski, F. Jermann, C. Fischer, R. Böwer, “LiNbO3 with the damage-resistant impurity indium,” Appl. Phys. A 60, 217–225 (1995).
[CrossRef]

Appl. Phys. Lett.

G. Zhang, Y. Tomita, W. Xu, Ch. Yang, “Nonvolatile two-color holography in indium-doped lithium niobate,” Appl. Phys. Lett. 77, 3508–3510 (2000).
[CrossRef]

D. von der Linde, A. M. Glass, K. F. Rodgers, “Multiphoton photorefractive processes for optical storage in LiNbO3,” Appl. Phys. Lett. 25, 155–157 (1974).
[CrossRef]

M. Lee, S. Takekawa, Y. Furukawa, K. Kitamura, H. Hatano, S. Tanaka, “Non-volatile two-color holographic recording in Tb-doped LiNbO3,” Appl. Phys. Lett. 76, 1653–1655 (2000).
[CrossRef]

Ferroelectrics

J. Koppitz, O. F. Schirmer, M. Wöhlecke, A. I. Kuznetsov, B. C. Grabmaier, “Threshold effects in LiNbO3:Mg caused by change of electron-lattice coupling,” Ferroelectrics 92, 233–241 (1989).
[CrossRef]

J. Appl. Phys.

D. Berben, K. Buse, S. Wevering, P. Herth, M. Imlau, Th. Woike, “Lifetime of small polarons in iron-doped lithium niobate crystals,” J. Appl. Phys. 87, 1034–1041 (2000).
[CrossRef]

M. Lee, S. Takekawa, Y. Furukawa, Y. Uchida, K. Kitamura, H. Hatano, S. Tanaka, “Photochromic effect in near-stoichiometric LiNbO3 and two-color holographic recording,” J. Appl. Phys. 88, 4476–4485 (2000).
[CrossRef]

D. von der Linde, A. M. Glass, K. F. Rodgers, “Optical storage using refractive index changes induced by two-step excitation,” J. Appl. Phys. 47, 217–220 (1976).
[CrossRef]

J. Opt. Soc. Am. B

Nature

K. Buse, A. Adibi, D. Psaltis, “Non-volatile holographic storage in doubly doped lithium niobate crystals,” Nature 393, 665–668 (1998).
[CrossRef]

Opt. Lett.

Phys. Rev. Lett.

Y. S. Bai, R. Kachru, “Nonvolatile holographic storage with two-step recording in lithium niobate using cw lasers,” Phys. Rev. Lett. 78, 2944–2947 (1997).
[CrossRef]

Science

L. Hesselink, S. S. Orlov, A. Liu, A. Akella, D. Lande, R. R. Neurgaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089–1094 (1998).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Absorption coefficient α via wavelength for the as-grown and the reduced LiNbO3:In crystals. The solid and the dashed curves are for the as-grown and the reduced crystals, respectively.

Fig. 2
Fig. 2

Schematic diagram of the experimental setup.

Fig. 3
Fig. 3

Typical full cycle of the two-color holography process including recording, readout with one of the unattenuated writing beams, and erasing by the gating beam for the reduced LiNbO3:In crystal. Incident intensities I g and I w without Fresnel correction are 1.15 W/cm2 at 488 nm and 4.8 W/cm2 at 780 nm, respectively. Squares represent the experimental data. The curves are least-square fits to the experimental data by use of functions η s [1 - exp(-t b )]2 and η s exp(-2t e ) for the recording and the erasing phases, respectively, where τ b and τ e are the buildup and the erasing time constants of the grating, respectively.

Fig. 4
Fig. 4

Dependencies of S on I g for the as-grown and the reduced LiNbO3:In crystals with I w = 2.6 W/cm2 at 780 nm. The gating wavelength is of 488 nm. Filled and open circles are the results for the as-grown and the reduced crystals, respectively. Two lines are least-square fits to the experimental data by use of the formula S = aI g (a is a fitting parameter).

Fig. 5
Fig. 5

Dependencies of M/# on I w for the as-grown and the reduced LiNbO3:In crystals with I g to be 1.15 W/cm2 at 488 nm. Filled and open circles represent the results for the as-grown and the reduced crystals, respectively. The line is a least-square fit to the experimental data for the reduced crystal by use of the formula M/# = aI w (a is a fitting parameter).

Fig. 6
Fig. 6

Dark decay dynamics of the light-induced absorption coefficient change αli in the reduced LiNbO3:In crystal. The lifetime of the small polaron τ is 4.6 ms in the reduced LiNbO3:In. The light-induced absorption coefficient change is normalized by its amplitude at t = 0.

Tables (1)

Tables Icon

Table 1 Comparison of Nonvolatile Two-Color Holography Performance of LiNbO3 Crystals with Various Li/Nb Ratios and Dopants

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

S=τbτe1Iws0 (M/#d) σph,

Metrics