Abstract

We define a measure for persistence in holographic recording. Using this measure and the known measures for dynamic range and sensitivity, we compare the performance of singly-doped and doubly-doped LiNbO3 crystals. We show that the range of performance that can be obtained using doubly-doped crystals is much larger than that obtained using singly-doped ones.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. H. Mok, “Angle-multiplexed storage of 5000 holograms in lithium niobate,” Opt. Lett. 18, 915–917 (1993).
    [CrossRef] [PubMed]
  2. I. McMichael, W. Christian, D. Pletcher, T. Y. Chang, J. H. Hong, “Compact holographic storage demonstrator with rapid access,” Appl. Opt. 35, 2375–2379 (1996).
    [CrossRef] [PubMed]
  3. J. Ashley, M.-P. Bernal, M. Blaum, G. W. Burr, H. Coufal, R. K. Grygier, H. Günter, J. A. Hoffnagle, C. M. Jefferson, R. M. MacFarlane, B. Marcus, R. M. Shelby, G. T. Sincerbox, G. Wittmann, “Holographic storage promises high data density,” Laser Focus World 32, 81–93 (November1996).
  4. K. Buse, A. Adibi, D. Psaltis, “Non-volatile holographic storage in doubly doped lithium niobate crystals,” Nature 393, 665–668 (1998).
    [CrossRef]
  5. A. Adibi, K. Buse, D. Psaltis, “Two-center holographic recording,” J. Opt. Soc. Am. B 18, 584–601 (2001).
    [CrossRef]
  6. A. Adibi, K. Buse, D. Psaltis, “Multiplexing holograms in LiNbO3:Fe:Mn crystals,” Opt. Lett. 24, 652–654 (1999).
    [CrossRef]
  7. A. Adibi, K. Buse, D. Psaltis, “Sensitivity improvement in two-center holographic recording,” Opt. Lett. 25, 539–541 (2000).
    [CrossRef]
  8. Y. W. Liu, L. R. Liu, C. H. Zhou, “Prescription for optimizing holograms in LiNbO3:Fe:Mn,” Opt. Lett. 25, 551–553 (2000).
    [CrossRef]
  9. X. F. Yue, A. Adibi, T. Hudson, K. Buse, D. Psaltis, “Role of cerium in lithium niobate for holographic recording,” J. Appl. Phys. 87, 4051–4055 (2000).
    [CrossRef]
  10. Y. W. Liu, L. R. Liu, C. H. Zhou, L. Y. Xu, “Nonvolatile photorefractive holograms in LiNbO3:Cu:Ce crystals,” Opt. Lett. 25, 908–910 (2000).
    [CrossRef]
  11. Y. W. Liu, L. R. Liu, L. Y. Xu, C. H. Zhou, “Experimental study of non-volatile holographic storage in doubly- and triply-doped lithium niobate crystals,” Opt. Commun. 181, 47–52 (2000).
    [CrossRef]
  12. F. H. Mok, G. W. Burr, D. Psaltis, “System metric for holographic memory systems,” Opt. Lett. 21, 896–898 (1996).
    [CrossRef] [PubMed]
  13. P. Günter, J.-P. Huignard, eds., Photorefractive Materials and Their Applications I, Vol. 61, Topics in Applied Physics (Springer-Verlag, Berlin, 1988), pp. 47–52.
  14. D. Psaltis, D. Brady, K. Wagner, “Adaptive optical networks using photorefractive crystals,” Appl. Opt. 27, 1752–1759 (1988).
    [CrossRef]
  15. E. Chuang, W. Liu, J. J. P. Drolet, D. Psaltis, “Holographic random access memory (HRAM),” Proc. IEEE 87, 1931–1940 (1999).
    [CrossRef]
  16. K. Peithmann, A. Wiebrock, K. Buse, “Photorefractive properties of highly doped lithium niobate crystals in the visible and near-infrared,” Appl. Phys. B 68, 777–784 (1999).
    [CrossRef]
  17. A. Adibi, K. Buse, D. Psaltis, “Effect of annealing in two-center holographic recording,” Appl. Phys. Lett. 74, 3767–3769 (1999).
    [CrossRef]
  18. E. Krätzig, H. Kurz, “Photo-induced currents and voltages in LiNbO3,” Ferroelectrics 13, 295–296 (1976).
    [CrossRef]
  19. E. Krätzig, H. Kurz, “Photorefractive and photovoltaic effects in doped LiNbO3,” Opt. Acta 24, 475–482 (1977).
    [CrossRef]

2001 (1)

2000 (5)

A. Adibi, K. Buse, D. Psaltis, “Sensitivity improvement in two-center holographic recording,” Opt. Lett. 25, 539–541 (2000).
[CrossRef]

Y. W. Liu, L. R. Liu, C. H. Zhou, “Prescription for optimizing holograms in LiNbO3:Fe:Mn,” Opt. Lett. 25, 551–553 (2000).
[CrossRef]

X. F. Yue, A. Adibi, T. Hudson, K. Buse, D. Psaltis, “Role of cerium in lithium niobate for holographic recording,” J. Appl. Phys. 87, 4051–4055 (2000).
[CrossRef]

Y. W. Liu, L. R. Liu, C. H. Zhou, L. Y. Xu, “Nonvolatile photorefractive holograms in LiNbO3:Cu:Ce crystals,” Opt. Lett. 25, 908–910 (2000).
[CrossRef]

Y. W. Liu, L. R. Liu, L. Y. Xu, C. H. Zhou, “Experimental study of non-volatile holographic storage in doubly- and triply-doped lithium niobate crystals,” Opt. Commun. 181, 47–52 (2000).
[CrossRef]

1999 (4)

A. Adibi, K. Buse, D. Psaltis, “Multiplexing holograms in LiNbO3:Fe:Mn crystals,” Opt. Lett. 24, 652–654 (1999).
[CrossRef]

E. Chuang, W. Liu, J. J. P. Drolet, D. Psaltis, “Holographic random access memory (HRAM),” Proc. IEEE 87, 1931–1940 (1999).
[CrossRef]

K. Peithmann, A. Wiebrock, K. Buse, “Photorefractive properties of highly doped lithium niobate crystals in the visible and near-infrared,” Appl. Phys. B 68, 777–784 (1999).
[CrossRef]

A. Adibi, K. Buse, D. Psaltis, “Effect of annealing in two-center holographic recording,” Appl. Phys. Lett. 74, 3767–3769 (1999).
[CrossRef]

1998 (1)

K. Buse, A. Adibi, D. Psaltis, “Non-volatile holographic storage in doubly doped lithium niobate crystals,” Nature 393, 665–668 (1998).
[CrossRef]

1996 (3)

I. McMichael, W. Christian, D. Pletcher, T. Y. Chang, J. H. Hong, “Compact holographic storage demonstrator with rapid access,” Appl. Opt. 35, 2375–2379 (1996).
[CrossRef] [PubMed]

J. Ashley, M.-P. Bernal, M. Blaum, G. W. Burr, H. Coufal, R. K. Grygier, H. Günter, J. A. Hoffnagle, C. M. Jefferson, R. M. MacFarlane, B. Marcus, R. M. Shelby, G. T. Sincerbox, G. Wittmann, “Holographic storage promises high data density,” Laser Focus World 32, 81–93 (November1996).

F. H. Mok, G. W. Burr, D. Psaltis, “System metric for holographic memory systems,” Opt. Lett. 21, 896–898 (1996).
[CrossRef] [PubMed]

1993 (1)

1988 (1)

1977 (1)

E. Krätzig, H. Kurz, “Photorefractive and photovoltaic effects in doped LiNbO3,” Opt. Acta 24, 475–482 (1977).
[CrossRef]

1976 (1)

E. Krätzig, H. Kurz, “Photo-induced currents and voltages in LiNbO3,” Ferroelectrics 13, 295–296 (1976).
[CrossRef]

Adibi, A.

A. Adibi, K. Buse, D. Psaltis, “Two-center holographic recording,” J. Opt. Soc. Am. B 18, 584–601 (2001).
[CrossRef]

X. F. Yue, A. Adibi, T. Hudson, K. Buse, D. Psaltis, “Role of cerium in lithium niobate for holographic recording,” J. Appl. Phys. 87, 4051–4055 (2000).
[CrossRef]

A. Adibi, K. Buse, D. Psaltis, “Sensitivity improvement in two-center holographic recording,” Opt. Lett. 25, 539–541 (2000).
[CrossRef]

A. Adibi, K. Buse, D. Psaltis, “Effect of annealing in two-center holographic recording,” Appl. Phys. Lett. 74, 3767–3769 (1999).
[CrossRef]

A. Adibi, K. Buse, D. Psaltis, “Multiplexing holograms in LiNbO3:Fe:Mn crystals,” Opt. Lett. 24, 652–654 (1999).
[CrossRef]

K. Buse, A. Adibi, D. Psaltis, “Non-volatile holographic storage in doubly doped lithium niobate crystals,” Nature 393, 665–668 (1998).
[CrossRef]

Ashley, J.

J. Ashley, M.-P. Bernal, M. Blaum, G. W. Burr, H. Coufal, R. K. Grygier, H. Günter, J. A. Hoffnagle, C. M. Jefferson, R. M. MacFarlane, B. Marcus, R. M. Shelby, G. T. Sincerbox, G. Wittmann, “Holographic storage promises high data density,” Laser Focus World 32, 81–93 (November1996).

Bernal, M.-P.

J. Ashley, M.-P. Bernal, M. Blaum, G. W. Burr, H. Coufal, R. K. Grygier, H. Günter, J. A. Hoffnagle, C. M. Jefferson, R. M. MacFarlane, B. Marcus, R. M. Shelby, G. T. Sincerbox, G. Wittmann, “Holographic storage promises high data density,” Laser Focus World 32, 81–93 (November1996).

Blaum, M.

J. Ashley, M.-P. Bernal, M. Blaum, G. W. Burr, H. Coufal, R. K. Grygier, H. Günter, J. A. Hoffnagle, C. M. Jefferson, R. M. MacFarlane, B. Marcus, R. M. Shelby, G. T. Sincerbox, G. Wittmann, “Holographic storage promises high data density,” Laser Focus World 32, 81–93 (November1996).

Brady, D.

Burr, G. W.

F. H. Mok, G. W. Burr, D. Psaltis, “System metric for holographic memory systems,” Opt. Lett. 21, 896–898 (1996).
[CrossRef] [PubMed]

J. Ashley, M.-P. Bernal, M. Blaum, G. W. Burr, H. Coufal, R. K. Grygier, H. Günter, J. A. Hoffnagle, C. M. Jefferson, R. M. MacFarlane, B. Marcus, R. M. Shelby, G. T. Sincerbox, G. Wittmann, “Holographic storage promises high data density,” Laser Focus World 32, 81–93 (November1996).

Buse, K.

A. Adibi, K. Buse, D. Psaltis, “Two-center holographic recording,” J. Opt. Soc. Am. B 18, 584–601 (2001).
[CrossRef]

X. F. Yue, A. Adibi, T. Hudson, K. Buse, D. Psaltis, “Role of cerium in lithium niobate for holographic recording,” J. Appl. Phys. 87, 4051–4055 (2000).
[CrossRef]

A. Adibi, K. Buse, D. Psaltis, “Sensitivity improvement in two-center holographic recording,” Opt. Lett. 25, 539–541 (2000).
[CrossRef]

A. Adibi, K. Buse, D. Psaltis, “Effect of annealing in two-center holographic recording,” Appl. Phys. Lett. 74, 3767–3769 (1999).
[CrossRef]

A. Adibi, K. Buse, D. Psaltis, “Multiplexing holograms in LiNbO3:Fe:Mn crystals,” Opt. Lett. 24, 652–654 (1999).
[CrossRef]

K. Peithmann, A. Wiebrock, K. Buse, “Photorefractive properties of highly doped lithium niobate crystals in the visible and near-infrared,” Appl. Phys. B 68, 777–784 (1999).
[CrossRef]

K. Buse, A. Adibi, D. Psaltis, “Non-volatile holographic storage in doubly doped lithium niobate crystals,” Nature 393, 665–668 (1998).
[CrossRef]

Chang, T. Y.

Christian, W.

Chuang, E.

E. Chuang, W. Liu, J. J. P. Drolet, D. Psaltis, “Holographic random access memory (HRAM),” Proc. IEEE 87, 1931–1940 (1999).
[CrossRef]

Coufal, H.

J. Ashley, M.-P. Bernal, M. Blaum, G. W. Burr, H. Coufal, R. K. Grygier, H. Günter, J. A. Hoffnagle, C. M. Jefferson, R. M. MacFarlane, B. Marcus, R. M. Shelby, G. T. Sincerbox, G. Wittmann, “Holographic storage promises high data density,” Laser Focus World 32, 81–93 (November1996).

Drolet, J. J. P.

E. Chuang, W. Liu, J. J. P. Drolet, D. Psaltis, “Holographic random access memory (HRAM),” Proc. IEEE 87, 1931–1940 (1999).
[CrossRef]

Grygier, R. K.

J. Ashley, M.-P. Bernal, M. Blaum, G. W. Burr, H. Coufal, R. K. Grygier, H. Günter, J. A. Hoffnagle, C. M. Jefferson, R. M. MacFarlane, B. Marcus, R. M. Shelby, G. T. Sincerbox, G. Wittmann, “Holographic storage promises high data density,” Laser Focus World 32, 81–93 (November1996).

Günter, H.

J. Ashley, M.-P. Bernal, M. Blaum, G. W. Burr, H. Coufal, R. K. Grygier, H. Günter, J. A. Hoffnagle, C. M. Jefferson, R. M. MacFarlane, B. Marcus, R. M. Shelby, G. T. Sincerbox, G. Wittmann, “Holographic storage promises high data density,” Laser Focus World 32, 81–93 (November1996).

Hoffnagle, J. A.

J. Ashley, M.-P. Bernal, M. Blaum, G. W. Burr, H. Coufal, R. K. Grygier, H. Günter, J. A. Hoffnagle, C. M. Jefferson, R. M. MacFarlane, B. Marcus, R. M. Shelby, G. T. Sincerbox, G. Wittmann, “Holographic storage promises high data density,” Laser Focus World 32, 81–93 (November1996).

Hong, J. H.

Hudson, T.

X. F. Yue, A. Adibi, T. Hudson, K. Buse, D. Psaltis, “Role of cerium in lithium niobate for holographic recording,” J. Appl. Phys. 87, 4051–4055 (2000).
[CrossRef]

Jefferson, C. M.

J. Ashley, M.-P. Bernal, M. Blaum, G. W. Burr, H. Coufal, R. K. Grygier, H. Günter, J. A. Hoffnagle, C. M. Jefferson, R. M. MacFarlane, B. Marcus, R. M. Shelby, G. T. Sincerbox, G. Wittmann, “Holographic storage promises high data density,” Laser Focus World 32, 81–93 (November1996).

Krätzig, E.

E. Krätzig, H. Kurz, “Photorefractive and photovoltaic effects in doped LiNbO3,” Opt. Acta 24, 475–482 (1977).
[CrossRef]

E. Krätzig, H. Kurz, “Photo-induced currents and voltages in LiNbO3,” Ferroelectrics 13, 295–296 (1976).
[CrossRef]

Kurz, H.

E. Krätzig, H. Kurz, “Photorefractive and photovoltaic effects in doped LiNbO3,” Opt. Acta 24, 475–482 (1977).
[CrossRef]

E. Krätzig, H. Kurz, “Photo-induced currents and voltages in LiNbO3,” Ferroelectrics 13, 295–296 (1976).
[CrossRef]

Liu, L. R.

Liu, W.

E. Chuang, W. Liu, J. J. P. Drolet, D. Psaltis, “Holographic random access memory (HRAM),” Proc. IEEE 87, 1931–1940 (1999).
[CrossRef]

Liu, Y. W.

MacFarlane, R. M.

J. Ashley, M.-P. Bernal, M. Blaum, G. W. Burr, H. Coufal, R. K. Grygier, H. Günter, J. A. Hoffnagle, C. M. Jefferson, R. M. MacFarlane, B. Marcus, R. M. Shelby, G. T. Sincerbox, G. Wittmann, “Holographic storage promises high data density,” Laser Focus World 32, 81–93 (November1996).

Marcus, B.

J. Ashley, M.-P. Bernal, M. Blaum, G. W. Burr, H. Coufal, R. K. Grygier, H. Günter, J. A. Hoffnagle, C. M. Jefferson, R. M. MacFarlane, B. Marcus, R. M. Shelby, G. T. Sincerbox, G. Wittmann, “Holographic storage promises high data density,” Laser Focus World 32, 81–93 (November1996).

McMichael, I.

Mok, F. H.

Peithmann, K.

K. Peithmann, A. Wiebrock, K. Buse, “Photorefractive properties of highly doped lithium niobate crystals in the visible and near-infrared,” Appl. Phys. B 68, 777–784 (1999).
[CrossRef]

Pletcher, D.

Psaltis, D.

A. Adibi, K. Buse, D. Psaltis, “Two-center holographic recording,” J. Opt. Soc. Am. B 18, 584–601 (2001).
[CrossRef]

A. Adibi, K. Buse, D. Psaltis, “Sensitivity improvement in two-center holographic recording,” Opt. Lett. 25, 539–541 (2000).
[CrossRef]

X. F. Yue, A. Adibi, T. Hudson, K. Buse, D. Psaltis, “Role of cerium in lithium niobate for holographic recording,” J. Appl. Phys. 87, 4051–4055 (2000).
[CrossRef]

A. Adibi, K. Buse, D. Psaltis, “Effect of annealing in two-center holographic recording,” Appl. Phys. Lett. 74, 3767–3769 (1999).
[CrossRef]

E. Chuang, W. Liu, J. J. P. Drolet, D. Psaltis, “Holographic random access memory (HRAM),” Proc. IEEE 87, 1931–1940 (1999).
[CrossRef]

A. Adibi, K. Buse, D. Psaltis, “Multiplexing holograms in LiNbO3:Fe:Mn crystals,” Opt. Lett. 24, 652–654 (1999).
[CrossRef]

K. Buse, A. Adibi, D. Psaltis, “Non-volatile holographic storage in doubly doped lithium niobate crystals,” Nature 393, 665–668 (1998).
[CrossRef]

F. H. Mok, G. W. Burr, D. Psaltis, “System metric for holographic memory systems,” Opt. Lett. 21, 896–898 (1996).
[CrossRef] [PubMed]

D. Psaltis, D. Brady, K. Wagner, “Adaptive optical networks using photorefractive crystals,” Appl. Opt. 27, 1752–1759 (1988).
[CrossRef]

Shelby, R. M.

J. Ashley, M.-P. Bernal, M. Blaum, G. W. Burr, H. Coufal, R. K. Grygier, H. Günter, J. A. Hoffnagle, C. M. Jefferson, R. M. MacFarlane, B. Marcus, R. M. Shelby, G. T. Sincerbox, G. Wittmann, “Holographic storage promises high data density,” Laser Focus World 32, 81–93 (November1996).

Sincerbox, G. T.

J. Ashley, M.-P. Bernal, M. Blaum, G. W. Burr, H. Coufal, R. K. Grygier, H. Günter, J. A. Hoffnagle, C. M. Jefferson, R. M. MacFarlane, B. Marcus, R. M. Shelby, G. T. Sincerbox, G. Wittmann, “Holographic storage promises high data density,” Laser Focus World 32, 81–93 (November1996).

Wagner, K.

Wiebrock, A.

K. Peithmann, A. Wiebrock, K. Buse, “Photorefractive properties of highly doped lithium niobate crystals in the visible and near-infrared,” Appl. Phys. B 68, 777–784 (1999).
[CrossRef]

Wittmann, G.

J. Ashley, M.-P. Bernal, M. Blaum, G. W. Burr, H. Coufal, R. K. Grygier, H. Günter, J. A. Hoffnagle, C. M. Jefferson, R. M. MacFarlane, B. Marcus, R. M. Shelby, G. T. Sincerbox, G. Wittmann, “Holographic storage promises high data density,” Laser Focus World 32, 81–93 (November1996).

Xu, L. Y.

Y. W. Liu, L. R. Liu, L. Y. Xu, C. H. Zhou, “Experimental study of non-volatile holographic storage in doubly- and triply-doped lithium niobate crystals,” Opt. Commun. 181, 47–52 (2000).
[CrossRef]

Y. W. Liu, L. R. Liu, C. H. Zhou, L. Y. Xu, “Nonvolatile photorefractive holograms in LiNbO3:Cu:Ce crystals,” Opt. Lett. 25, 908–910 (2000).
[CrossRef]

Yue, X. F.

X. F. Yue, A. Adibi, T. Hudson, K. Buse, D. Psaltis, “Role of cerium in lithium niobate for holographic recording,” J. Appl. Phys. 87, 4051–4055 (2000).
[CrossRef]

Zhou, C. H.

Appl. Opt. (2)

Appl. Phys. B (1)

K. Peithmann, A. Wiebrock, K. Buse, “Photorefractive properties of highly doped lithium niobate crystals in the visible and near-infrared,” Appl. Phys. B 68, 777–784 (1999).
[CrossRef]

Appl. Phys. Lett. (1)

A. Adibi, K. Buse, D. Psaltis, “Effect of annealing in two-center holographic recording,” Appl. Phys. Lett. 74, 3767–3769 (1999).
[CrossRef]

Ferroelectrics (1)

E. Krätzig, H. Kurz, “Photo-induced currents and voltages in LiNbO3,” Ferroelectrics 13, 295–296 (1976).
[CrossRef]

J. Appl. Phys. (1)

X. F. Yue, A. Adibi, T. Hudson, K. Buse, D. Psaltis, “Role of cerium in lithium niobate for holographic recording,” J. Appl. Phys. 87, 4051–4055 (2000).
[CrossRef]

J. Opt. Soc. Am. B (1)

Laser Focus World (1)

J. Ashley, M.-P. Bernal, M. Blaum, G. W. Burr, H. Coufal, R. K. Grygier, H. Günter, J. A. Hoffnagle, C. M. Jefferson, R. M. MacFarlane, B. Marcus, R. M. Shelby, G. T. Sincerbox, G. Wittmann, “Holographic storage promises high data density,” Laser Focus World 32, 81–93 (November1996).

Nature (1)

K. Buse, A. Adibi, D. Psaltis, “Non-volatile holographic storage in doubly doped lithium niobate crystals,” Nature 393, 665–668 (1998).
[CrossRef]

Opt. Acta (1)

E. Krätzig, H. Kurz, “Photorefractive and photovoltaic effects in doped LiNbO3,” Opt. Acta 24, 475–482 (1977).
[CrossRef]

Opt. Commun. (1)

Y. W. Liu, L. R. Liu, L. Y. Xu, C. H. Zhou, “Experimental study of non-volatile holographic storage in doubly- and triply-doped lithium niobate crystals,” Opt. Commun. 181, 47–52 (2000).
[CrossRef]

Opt. Lett. (6)

Proc. IEEE (1)

E. Chuang, W. Liu, J. J. P. Drolet, D. Psaltis, “Holographic random access memory (HRAM),” Proc. IEEE 87, 1931–1940 (1999).
[CrossRef]

Other (1)

P. Günter, J.-P. Huignard, eds., Photorefractive Materials and Their Applications I, Vol. 61, Topics in Applied Physics (Springer-Verlag, Berlin, 1988), pp. 47–52.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Energy band diagram for a typical LiNbO3 crystal doped with (a) Fe and (b) Fe and Mn. CB, conduction band; VB, valance band.

Fig. 2
Fig. 2

Absorption spectra of the two crystals (XTAL1: oxidized, XTAL2: highly reduced) used in the holographic recording experiments.

Fig. 3
Fig. 3

Recording and readout curves for a plane-wave hologram in a 0.85-mm-thick LiNbO3:Fe:Mn crystal. (a) Recording with two plane waves (wavelength of 488 nm, intensity of each beam 17 mW/cm2, ordinary polarization) in the highly reduced sample XTAL2. (b) Recording with two plane waves (transmission geometry, wavelength of 514 nm, intensity of each beam 17 mW/cm2, ordinary polarization) in the oxidized sample XTAL1. (c) Recording with two plane waves (transmission geometry, wavelength of 633 nm, intensity of each beam 300 mW/cm2, ordinary polarization) and one sensitizing beam in XTAL1. (d) Recording with two plane waves (transmission geometry, wavelength of 514 nm, intensity of each beam 17 mW/cm2, ordinary polarization) and one sensitizing beam in XTAL1. Total recording and sensitizing intensities (I R and I S , respectively) are shown in the figures. The intensity of the reading beam during readout in each case is half the corresponding recording intensity. The homogeneous sensitizing beams in both (c) and (d) were from a 100-W UV lamp (wavelength of 404 nm, intensity 4 mW/cm2). Erasure of a hologram in each case was performed by one of the recording beams rotated to result in Bragg-mismatch erasure.

Tables (1)

Tables Icon

Table 1 Comparison of the Performance Measures of Different Recording Schemes in a LiNbO3:Fe:Mn Crystala

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

M/#=A0τeτr,
S=|dηdt|t=0IRecL=A0/τrIRecL.
M/#=M/#L,
P=τeIRd,
th=NphhνIoutApixel=NphhνηIRdApixel,
dAdt=-Aτe.
dtMth=-τeMthdAA=-τeIRdApixelMNphhν AdA,
R/#τeIRdApixelMNphhνηiηmin-AdA=τeIRdApixel2MNphhνM/#M2-ηmin=PApixel2MNphhνM/#M2-ηmin.
P=M/#LS=M/#S.
M/#  κFeγFeqFesFeNFe-NFe-,
S  κFeNFe-,
P  γFeqFesFeNFe-NFe-NFe-.

Metrics