Abstract

A novel method for writing holographic diffraction gratings is proposed in which the two interfering beams are moved together across the recording medium in such a way that the interference pattern at the medium is unchanged. The phase compensation is discussed both for an idealized setup and for a realistic experimental arrangement.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Schmahl, D. Rudolph, “Holographic diffraction gratings,” in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1977), Vol. 14, pp. 195–244.
    [CrossRef]
  2. R. J. Collier, C. B. Burkhardt, L. H. Lin, Optical Holography (Academic, Orlando, Fla., 1971), pp. 66–68.
  3. E. K. Popov, L. V. Tsonev, M. L. Sabeva, “Technological problems in holographic recording of plane gratings,” Opt. Eng. 31, 2168–2173 (1992).
    [CrossRef]

1992 (1)

E. K. Popov, L. V. Tsonev, M. L. Sabeva, “Technological problems in holographic recording of plane gratings,” Opt. Eng. 31, 2168–2173 (1992).
[CrossRef]

Burkhardt, C. B.

R. J. Collier, C. B. Burkhardt, L. H. Lin, Optical Holography (Academic, Orlando, Fla., 1971), pp. 66–68.

Collier, R. J.

R. J. Collier, C. B. Burkhardt, L. H. Lin, Optical Holography (Academic, Orlando, Fla., 1971), pp. 66–68.

Lin, L. H.

R. J. Collier, C. B. Burkhardt, L. H. Lin, Optical Holography (Academic, Orlando, Fla., 1971), pp. 66–68.

Popov, E. K.

E. K. Popov, L. V. Tsonev, M. L. Sabeva, “Technological problems in holographic recording of plane gratings,” Opt. Eng. 31, 2168–2173 (1992).
[CrossRef]

Rudolph, D.

G. Schmahl, D. Rudolph, “Holographic diffraction gratings,” in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1977), Vol. 14, pp. 195–244.
[CrossRef]

Sabeva, M. L.

E. K. Popov, L. V. Tsonev, M. L. Sabeva, “Technological problems in holographic recording of plane gratings,” Opt. Eng. 31, 2168–2173 (1992).
[CrossRef]

Schmahl, G.

G. Schmahl, D. Rudolph, “Holographic diffraction gratings,” in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1977), Vol. 14, pp. 195–244.
[CrossRef]

Tsonev, L. V.

E. K. Popov, L. V. Tsonev, M. L. Sabeva, “Technological problems in holographic recording of plane gratings,” Opt. Eng. 31, 2168–2173 (1992).
[CrossRef]

Opt. Eng. (1)

E. K. Popov, L. V. Tsonev, M. L. Sabeva, “Technological problems in holographic recording of plane gratings,” Opt. Eng. 31, 2168–2173 (1992).
[CrossRef]

Other (2)

G. Schmahl, D. Rudolph, “Holographic diffraction gratings,” in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1977), Vol. 14, pp. 195–244.
[CrossRef]

R. J. Collier, C. B. Burkhardt, L. H. Lin, Optical Holography (Academic, Orlando, Fla., 1971), pp. 66–68.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Idealized experimental apparatus.

Fig. 2
Fig. 2

Geometry with beam splitter inclined at an arbitrary angle.

Fig. 3
Fig. 3

Geometry for the calculation of ΔL.

Fig. 4
Fig. 4

Flawed scanning regime.

Fig. 5
Fig. 5

Experimental setup with a beam splitter.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

AT1=A expikx sin θ+iϕ+A exp-ikx sin θ.
AT2=A expikx sin θ+iϕ-kδ tan θ+A exp-ikx sin θ+ikδ tan θ.
AT2=A expikx+δcos θsin θ+iϕ-kδ tan θ+A exp-ikx+δcos θsin θ+ikδ tan θ,AT2=A expikx sin θ+iϕ+A exp-ikx sin θ.
K2=K1+ΔK,
K1sin Φ=L1sinπ-Φ-2θ=M1sin 2θ,
K2sin Φ=L2sinπ-Φ-2θ=M2sin 2θ.
ΔM=M2-M1=L2sin 2θsinΦ+2θ-L1sin 2θsinΦ+2θ,ΔM=ΔL sin 2θsinΦ+2θ.
ΔK=ΔL sin ΦsinΦ+2θ.
ΔL.
ΔK+ΔM=ΔLsinΦ+2θsin Φ+sin 2θ
ΔK+ΔM=ΔL cosΦ/2-θcosΦ/2+θ.
ΔL=ΔL2-ΔL1=Δxtan θ-1tan ε.
ΔL=Δxtan θ-1tan Φ/2.
ΔL=-ΔxcosΦ/2+θcos θ sinΦ/2.
ΔK+ΔM=Δx-cosΦ/2+θcos θ sin Φ/2cosΦ/2-θcosΦ/2+θ,ΔK+ΔM=Δx-tan θ-1tan Φ/2.
AT1F=A expikx sin θ+iϕ+A exp-ikx sin θ.
AT2F=A expikx+Δxsin θ+iϕ+kΔx+A exp-ikx+Δxsin θ-ikΔx.

Metrics