Abstract

Temperature changes of micro-optical elements can be expected in applications such as telecommunication and laser machining. We present a comparative study of diffractive gratings fabricated in benzocyclobutene (BCB) and in a conventional photoresist under the influence of elevated temperature. We measured variations in both optical diffraction efficiency and topography by heating the samples to 300 °C in air in a specially built oven. Our main findings show that gratings fabricated in BCB exhibit small changes, both optically and topographically, during the first 45 min, whereas the conventional photoresist gratings change drastically within just a few minutes.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Turunen, F. Wyrowski, eds., Diffractive Optics for Industrial and Commercial Applications (Akademie Verlag, Berlin, 1997).
  2. H.-P. Herzig, ed., Micro-Optics: Elements, Systems and Applications (Taylor & Francis, London, 1997).
  3. L. A. Hornak, ed., Polymers for Lightwave and Integrated Optics: Technology and Applications (Marcel Dekker, New York, 1992).
  4. Dow Chemical CorporationCycloteneTM 4000 Series Advanced Electronic Resins (Photo BCB)—Processing Procedures for Cyclotene 4000 Series Photo BCB Resins (Dow Chemical Company, Midland, Mich., 1999).
  5. L. Peters, “Pursuing the perfect low-k dielectric,” Semicond. Int. 21, 64–74 (1998).
  6. R. Foster, “Photoimageable BCB technology lowers costs for MCMs,” Solid State Technol. 38, 125–130 (1995).
  7. C. F. Kane, R. R. Krchnavek, “Benzocyclobutene optical waveguides,” IEEE Photon. Technol. Lett. 7, 535–537 (1995).
    [CrossRef]
  8. G. Palmskog, G. Arvidsson, P. Eriksen, G. Gustafsson, O.-J. Hagel, J. Hammar, P. Henriksson, C. Ribbing, “Low-cost single-mode optical passive coupler devices with an MT-interface based on polymeric waveguides in BCB,” in Digest of the Eighth European Conference on Integrated Optics (ECIO) (Optical Society of America, Washington, D.C., 1997), pp. 291–294.
  9. L. Eldada, J. T. Yardley, “Integration of polymeric micro-optical elements with planar waveguiding circuits,” in Micro-Optics Integration and Assemblies, M. R. Feldman, Y. Lee, eds., Proc. SPIE3289, 122–133 (1998).
    [CrossRef]
  10. A. K. Holmér, S. Hård, “Laser-machining experiment with an excimer laser and a kinoform,” Appl. Opt. 34, 7718–7723 (1995).
    [CrossRef]
  11. F. Nikolajeff, S. Hård, B. Curtis, “Diffractive microlenses replicated in fused silica for excimer laser-beam homogenizing,” Appl. Opt. 36, 8481–8489 (1997).
    [CrossRef]
  12. K. M. Baker, “Highly corrected close-packed microlens arrays and moth-eye structuring on curved surfaces,” Appl. Opt. 38, 352–356 (1999).
    [CrossRef]
  13. A. Tuantranont, V. M. Bright, W. Zhang, J. Zhang, Y. C. Lee, “Self-aligned assembly of microlens arrays with micromirrors,” in Miniaturized Systems with Micro-Optics and MEMS, M. E. Motamedi, R. Goering, eds., Proc. SPIE3878, 90–100 (1999).
    [CrossRef]
  14. T. C. Hodge, S. A. B. Allen, P. A. Kohl, “In situ measurement of the thermal expansion behavior of benzocyclobutene films,” J. Polym. Sci. Part B Polym. Phys. 37, 311–321 (1999).
    [CrossRef]
  15. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, New York, 1996).
  16. Z. D. Popovic, R. A. Sprague, G. A. N. Connell, “Technique for monolithic fabrication of microlens arrays,” Appl. Opt. 27, 1281–1284 (1988).
    [CrossRef] [PubMed]
  17. M. Berggren, A. Dodabalapur, R. E. Slusher, A. Timko, O. Nalamasu, “Organic solid-state lasers with imprinted gratings on plastic substrates,” Appl. Phys. Lett. 72, 410–411 (1998).
    [CrossRef]

1999 (2)

K. M. Baker, “Highly corrected close-packed microlens arrays and moth-eye structuring on curved surfaces,” Appl. Opt. 38, 352–356 (1999).
[CrossRef]

T. C. Hodge, S. A. B. Allen, P. A. Kohl, “In situ measurement of the thermal expansion behavior of benzocyclobutene films,” J. Polym. Sci. Part B Polym. Phys. 37, 311–321 (1999).
[CrossRef]

1998 (2)

M. Berggren, A. Dodabalapur, R. E. Slusher, A. Timko, O. Nalamasu, “Organic solid-state lasers with imprinted gratings on plastic substrates,” Appl. Phys. Lett. 72, 410–411 (1998).
[CrossRef]

L. Peters, “Pursuing the perfect low-k dielectric,” Semicond. Int. 21, 64–74 (1998).

1997 (1)

1995 (3)

R. Foster, “Photoimageable BCB technology lowers costs for MCMs,” Solid State Technol. 38, 125–130 (1995).

C. F. Kane, R. R. Krchnavek, “Benzocyclobutene optical waveguides,” IEEE Photon. Technol. Lett. 7, 535–537 (1995).
[CrossRef]

A. K. Holmér, S. Hård, “Laser-machining experiment with an excimer laser and a kinoform,” Appl. Opt. 34, 7718–7723 (1995).
[CrossRef]

1988 (1)

Allen, S. A. B.

T. C. Hodge, S. A. B. Allen, P. A. Kohl, “In situ measurement of the thermal expansion behavior of benzocyclobutene films,” J. Polym. Sci. Part B Polym. Phys. 37, 311–321 (1999).
[CrossRef]

Arvidsson, G.

G. Palmskog, G. Arvidsson, P. Eriksen, G. Gustafsson, O.-J. Hagel, J. Hammar, P. Henriksson, C. Ribbing, “Low-cost single-mode optical passive coupler devices with an MT-interface based on polymeric waveguides in BCB,” in Digest of the Eighth European Conference on Integrated Optics (ECIO) (Optical Society of America, Washington, D.C., 1997), pp. 291–294.

Baker, K. M.

Berggren, M.

M. Berggren, A. Dodabalapur, R. E. Slusher, A. Timko, O. Nalamasu, “Organic solid-state lasers with imprinted gratings on plastic substrates,” Appl. Phys. Lett. 72, 410–411 (1998).
[CrossRef]

Bright, V. M.

A. Tuantranont, V. M. Bright, W. Zhang, J. Zhang, Y. C. Lee, “Self-aligned assembly of microlens arrays with micromirrors,” in Miniaturized Systems with Micro-Optics and MEMS, M. E. Motamedi, R. Goering, eds., Proc. SPIE3878, 90–100 (1999).
[CrossRef]

Connell, G. A. N.

Curtis, B.

Dodabalapur, A.

M. Berggren, A. Dodabalapur, R. E. Slusher, A. Timko, O. Nalamasu, “Organic solid-state lasers with imprinted gratings on plastic substrates,” Appl. Phys. Lett. 72, 410–411 (1998).
[CrossRef]

Eldada, L.

L. Eldada, J. T. Yardley, “Integration of polymeric micro-optical elements with planar waveguiding circuits,” in Micro-Optics Integration and Assemblies, M. R. Feldman, Y. Lee, eds., Proc. SPIE3289, 122–133 (1998).
[CrossRef]

Eriksen, P.

G. Palmskog, G. Arvidsson, P. Eriksen, G. Gustafsson, O.-J. Hagel, J. Hammar, P. Henriksson, C. Ribbing, “Low-cost single-mode optical passive coupler devices with an MT-interface based on polymeric waveguides in BCB,” in Digest of the Eighth European Conference on Integrated Optics (ECIO) (Optical Society of America, Washington, D.C., 1997), pp. 291–294.

Foster, R.

R. Foster, “Photoimageable BCB technology lowers costs for MCMs,” Solid State Technol. 38, 125–130 (1995).

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, New York, 1996).

Gustafsson, G.

G. Palmskog, G. Arvidsson, P. Eriksen, G. Gustafsson, O.-J. Hagel, J. Hammar, P. Henriksson, C. Ribbing, “Low-cost single-mode optical passive coupler devices with an MT-interface based on polymeric waveguides in BCB,” in Digest of the Eighth European Conference on Integrated Optics (ECIO) (Optical Society of America, Washington, D.C., 1997), pp. 291–294.

Hagel, O.-J.

G. Palmskog, G. Arvidsson, P. Eriksen, G. Gustafsson, O.-J. Hagel, J. Hammar, P. Henriksson, C. Ribbing, “Low-cost single-mode optical passive coupler devices with an MT-interface based on polymeric waveguides in BCB,” in Digest of the Eighth European Conference on Integrated Optics (ECIO) (Optical Society of America, Washington, D.C., 1997), pp. 291–294.

Hammar, J.

G. Palmskog, G. Arvidsson, P. Eriksen, G. Gustafsson, O.-J. Hagel, J. Hammar, P. Henriksson, C. Ribbing, “Low-cost single-mode optical passive coupler devices with an MT-interface based on polymeric waveguides in BCB,” in Digest of the Eighth European Conference on Integrated Optics (ECIO) (Optical Society of America, Washington, D.C., 1997), pp. 291–294.

Hård, S.

Henriksson, P.

G. Palmskog, G. Arvidsson, P. Eriksen, G. Gustafsson, O.-J. Hagel, J. Hammar, P. Henriksson, C. Ribbing, “Low-cost single-mode optical passive coupler devices with an MT-interface based on polymeric waveguides in BCB,” in Digest of the Eighth European Conference on Integrated Optics (ECIO) (Optical Society of America, Washington, D.C., 1997), pp. 291–294.

Hodge, T. C.

T. C. Hodge, S. A. B. Allen, P. A. Kohl, “In situ measurement of the thermal expansion behavior of benzocyclobutene films,” J. Polym. Sci. Part B Polym. Phys. 37, 311–321 (1999).
[CrossRef]

Holmér, A. K.

Kane, C. F.

C. F. Kane, R. R. Krchnavek, “Benzocyclobutene optical waveguides,” IEEE Photon. Technol. Lett. 7, 535–537 (1995).
[CrossRef]

Kohl, P. A.

T. C. Hodge, S. A. B. Allen, P. A. Kohl, “In situ measurement of the thermal expansion behavior of benzocyclobutene films,” J. Polym. Sci. Part B Polym. Phys. 37, 311–321 (1999).
[CrossRef]

Krchnavek, R. R.

C. F. Kane, R. R. Krchnavek, “Benzocyclobutene optical waveguides,” IEEE Photon. Technol. Lett. 7, 535–537 (1995).
[CrossRef]

Lee, Y. C.

A. Tuantranont, V. M. Bright, W. Zhang, J. Zhang, Y. C. Lee, “Self-aligned assembly of microlens arrays with micromirrors,” in Miniaturized Systems with Micro-Optics and MEMS, M. E. Motamedi, R. Goering, eds., Proc. SPIE3878, 90–100 (1999).
[CrossRef]

Nalamasu, O.

M. Berggren, A. Dodabalapur, R. E. Slusher, A. Timko, O. Nalamasu, “Organic solid-state lasers with imprinted gratings on plastic substrates,” Appl. Phys. Lett. 72, 410–411 (1998).
[CrossRef]

Nikolajeff, F.

Palmskog, G.

G. Palmskog, G. Arvidsson, P. Eriksen, G. Gustafsson, O.-J. Hagel, J. Hammar, P. Henriksson, C. Ribbing, “Low-cost single-mode optical passive coupler devices with an MT-interface based on polymeric waveguides in BCB,” in Digest of the Eighth European Conference on Integrated Optics (ECIO) (Optical Society of America, Washington, D.C., 1997), pp. 291–294.

Peters, L.

L. Peters, “Pursuing the perfect low-k dielectric,” Semicond. Int. 21, 64–74 (1998).

Popovic, Z. D.

Ribbing, C.

G. Palmskog, G. Arvidsson, P. Eriksen, G. Gustafsson, O.-J. Hagel, J. Hammar, P. Henriksson, C. Ribbing, “Low-cost single-mode optical passive coupler devices with an MT-interface based on polymeric waveguides in BCB,” in Digest of the Eighth European Conference on Integrated Optics (ECIO) (Optical Society of America, Washington, D.C., 1997), pp. 291–294.

Slusher, R. E.

M. Berggren, A. Dodabalapur, R. E. Slusher, A. Timko, O. Nalamasu, “Organic solid-state lasers with imprinted gratings on plastic substrates,” Appl. Phys. Lett. 72, 410–411 (1998).
[CrossRef]

Sprague, R. A.

Timko, A.

M. Berggren, A. Dodabalapur, R. E. Slusher, A. Timko, O. Nalamasu, “Organic solid-state lasers with imprinted gratings on plastic substrates,” Appl. Phys. Lett. 72, 410–411 (1998).
[CrossRef]

Tuantranont, A.

A. Tuantranont, V. M. Bright, W. Zhang, J. Zhang, Y. C. Lee, “Self-aligned assembly of microlens arrays with micromirrors,” in Miniaturized Systems with Micro-Optics and MEMS, M. E. Motamedi, R. Goering, eds., Proc. SPIE3878, 90–100 (1999).
[CrossRef]

Yardley, J. T.

L. Eldada, J. T. Yardley, “Integration of polymeric micro-optical elements with planar waveguiding circuits,” in Micro-Optics Integration and Assemblies, M. R. Feldman, Y. Lee, eds., Proc. SPIE3289, 122–133 (1998).
[CrossRef]

Zhang, J.

A. Tuantranont, V. M. Bright, W. Zhang, J. Zhang, Y. C. Lee, “Self-aligned assembly of microlens arrays with micromirrors,” in Miniaturized Systems with Micro-Optics and MEMS, M. E. Motamedi, R. Goering, eds., Proc. SPIE3878, 90–100 (1999).
[CrossRef]

Zhang, W.

A. Tuantranont, V. M. Bright, W. Zhang, J. Zhang, Y. C. Lee, “Self-aligned assembly of microlens arrays with micromirrors,” in Miniaturized Systems with Micro-Optics and MEMS, M. E. Motamedi, R. Goering, eds., Proc. SPIE3878, 90–100 (1999).
[CrossRef]

Appl. Opt. (4)

Appl. Phys. Lett. (1)

M. Berggren, A. Dodabalapur, R. E. Slusher, A. Timko, O. Nalamasu, “Organic solid-state lasers with imprinted gratings on plastic substrates,” Appl. Phys. Lett. 72, 410–411 (1998).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

C. F. Kane, R. R. Krchnavek, “Benzocyclobutene optical waveguides,” IEEE Photon. Technol. Lett. 7, 535–537 (1995).
[CrossRef]

J. Polym. Sci. Part B Polym. Phys. (1)

T. C. Hodge, S. A. B. Allen, P. A. Kohl, “In situ measurement of the thermal expansion behavior of benzocyclobutene films,” J. Polym. Sci. Part B Polym. Phys. 37, 311–321 (1999).
[CrossRef]

Semicond. Int. (1)

L. Peters, “Pursuing the perfect low-k dielectric,” Semicond. Int. 21, 64–74 (1998).

Solid State Technol. (1)

R. Foster, “Photoimageable BCB technology lowers costs for MCMs,” Solid State Technol. 38, 125–130 (1995).

Other (8)

G. Palmskog, G. Arvidsson, P. Eriksen, G. Gustafsson, O.-J. Hagel, J. Hammar, P. Henriksson, C. Ribbing, “Low-cost single-mode optical passive coupler devices with an MT-interface based on polymeric waveguides in BCB,” in Digest of the Eighth European Conference on Integrated Optics (ECIO) (Optical Society of America, Washington, D.C., 1997), pp. 291–294.

L. Eldada, J. T. Yardley, “Integration of polymeric micro-optical elements with planar waveguiding circuits,” in Micro-Optics Integration and Assemblies, M. R. Feldman, Y. Lee, eds., Proc. SPIE3289, 122–133 (1998).
[CrossRef]

J. Turunen, F. Wyrowski, eds., Diffractive Optics for Industrial and Commercial Applications (Akademie Verlag, Berlin, 1997).

H.-P. Herzig, ed., Micro-Optics: Elements, Systems and Applications (Taylor & Francis, London, 1997).

L. A. Hornak, ed., Polymers for Lightwave and Integrated Optics: Technology and Applications (Marcel Dekker, New York, 1992).

Dow Chemical CorporationCycloteneTM 4000 Series Advanced Electronic Resins (Photo BCB)—Processing Procedures for Cyclotene 4000 Series Photo BCB Resins (Dow Chemical Company, Midland, Mich., 1999).

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, New York, 1996).

A. Tuantranont, V. M. Bright, W. Zhang, J. Zhang, Y. C. Lee, “Self-aligned assembly of microlens arrays with micromirrors,” in Miniaturized Systems with Micro-Optics and MEMS, M. E. Motamedi, R. Goering, eds., Proc. SPIE3878, 90–100 (1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

AFM measurement of a test grating fabricated in BCB. The grating period is 30 µm, and the grating depth is 2.0 µm.

Fig. 2
Fig. 2

Experimental setup. The specially built oven has windows at the front and the back. The transmitted diffraction efficiencies from the sample placed in the oven are measured with a He–Ne laser and a powermeter.

Fig. 3
Fig. 3

AFM profilometer traces of a BCB grating (a) before heating and (b) after 300-min heating at 300 °C.

Fig. 4
Fig. 4

AFM profilometer traces of a photoresist grating (a) before heating and (b) after 300-min heating at 300 °C.

Fig. 5
Fig. 5

Measured diffraction efficiencies (zeroth and first orders) from a BCB grating (grating period, 30 µm) at 300 °C for prolonged heating times.

Fig. 6
Fig. 6

Measured diffraction efficiencies (zeroth and first orders) from photoresist grating (grating period, 30 µm) at 300 °C for prolonged heating times.

Fig. 7
Fig. 7

Simulated diffraction efficiencies for a BCB grating before heating. AFM data from Fig. 3(a) were used as input.

Fig. 8
Fig. 8

Simulated diffraction efficiencies for a photoresist grating. AFM data from Fig. 4(a) were used as input.

Tables (1)

Tables Icon

Table 1 Properties of Fused Silica, Photoresist, and BCB

Metrics