Abstract

Coherent artifacts in optical coherence tomography (OCT) images can severely degrade image quality by introducing false targets if no targets are present at the artifact locations. Coherent artifacts can also add constructively or destructively to the targets that are present at the artifact locations. This constructive or destructive interference will result in cancellation of the true targets or in display of incorrect echo amplitudes of the targets. We introduce the use of a nonlinear deconvolution algorithm, CLEAN, to cancel coherent artifacts in OCT images of extracted human teeth. The results show that CLEAN can reduce the coherent artifacts to the noise background, sharpen the air–enamel and enamel–dentin interfaces, and improve the image contrast.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. A. Swanson, D. Huang, M. R. Hee, J. G. Fujimoto, C. P. Lin, A. Puliafito, “High-speed optical coherence domain reflectometry,” Opt. Lett. 17, 151–153 (1992).
    [CrossRef] [PubMed]
  2. G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, J. G. Fujimoto, “In vivo endoscopic biopsy with optical coherent tomography,” Science 276, 2073–2039 (1997).
    [CrossRef]
  3. M. Kulkarni, T. Leeuwen, S. Yazdanfar, J. Izatt, “Velocity-estimation accuracy and frame-rate limitations in color Doppler optical coherent tomography,” Opt. Lett. 23, 1057–1059 (1998).
    [CrossRef]
  4. G. Yao, L. Wang, “Two-dimensional depth-resolved Mueller matrix characterization of biological tissue by optical coherence tomography,” Opt. Lett. 24, 537–539 (1999).
    [CrossRef]
  5. B. W. Colston, M. J. Everett, L. B. Da Silva, L. Otis, “Imaging of hard- and soft-tissue structure in the oral cavity by optical coherence tomography,” Appl. Opt. 37, 3582–3585 (1998).
    [CrossRef]
  6. X. J. Wang, T. E. Milner, J. F. de Boer, Y. Zhang, D. H. Pashley, J. S. Nelson, “Characterization of dentin and enamel by use of optical coherence tomography,” Appl. Opt. 38, 2092–2096 (1999).
    [CrossRef]
  7. Z. P. Chen, T. E. Milner, S. Srinivas, X. J. Wang, A. Malekafzali, M. J. C. van Gemert, J. S. Nelson, “Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography,” Opt. Lett. 22, 1119–1121 (1997).
    [CrossRef] [PubMed]
  8. S. A. Boppart, M. E. Brezinski, B. E. Bouma, G. J. Tearney, J. G. Fujimoto, “Investigation of developing embryonic morphology using optical coherent tomography,” Dev. Biol. 177, 54–63 (1996).
    [CrossRef] [PubMed]
  9. D. Piao, Q. Zhu, N. Dutta, L. Otis, “Effect of source coherence on interferometric imaging,” in Biomedical Topical Meetings, Post Conference Digest, Vol. 38 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 145–147.
  10. R. C. Youngquist, S. Carr, D. E. N. Davies, “Optical coherence-domain reflectometry: a new optical evaluation technique,” Opt. Lett. 12, 158–160 (1987).
    [CrossRef] [PubMed]
  11. J. Hogbom, “Aperture synthesis with a non-regular distribution of interferometer baselines,” Astrophys. J. Suppl. 15, 417–426 (1974).
  12. J. Tsao, B. D. Steinberg, “Reduction of sidelobe and speckle artifacts in microwave imaging: the CLEAN technique,” IEEE Trans. Antennas Propag. AP-36, 543–556 (1988).
    [CrossRef]
  13. Q. Zhu, B. D. Steinberg, “Correction of multipath interference by spatial location diversity and coherent CLEAN,” in Proceedings of IEEE Ultrasonics Symposium (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1995), pp. 1367–1370.
  14. J. M. Schmit, “Restoration of optical coherence images of living tissue using the CLEAN algorithm,” J. Biomed. Opt. 3, 66–75 (1998).
    [CrossRef]

1999

1998

1997

Z. P. Chen, T. E. Milner, S. Srinivas, X. J. Wang, A. Malekafzali, M. J. C. van Gemert, J. S. Nelson, “Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography,” Opt. Lett. 22, 1119–1121 (1997).
[CrossRef] [PubMed]

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, J. G. Fujimoto, “In vivo endoscopic biopsy with optical coherent tomography,” Science 276, 2073–2039 (1997).
[CrossRef]

1996

S. A. Boppart, M. E. Brezinski, B. E. Bouma, G. J. Tearney, J. G. Fujimoto, “Investigation of developing embryonic morphology using optical coherent tomography,” Dev. Biol. 177, 54–63 (1996).
[CrossRef] [PubMed]

1992

1988

J. Tsao, B. D. Steinberg, “Reduction of sidelobe and speckle artifacts in microwave imaging: the CLEAN technique,” IEEE Trans. Antennas Propag. AP-36, 543–556 (1988).
[CrossRef]

1987

1974

J. Hogbom, “Aperture synthesis with a non-regular distribution of interferometer baselines,” Astrophys. J. Suppl. 15, 417–426 (1974).

Boppart, S. A.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, J. G. Fujimoto, “In vivo endoscopic biopsy with optical coherent tomography,” Science 276, 2073–2039 (1997).
[CrossRef]

S. A. Boppart, M. E. Brezinski, B. E. Bouma, G. J. Tearney, J. G. Fujimoto, “Investigation of developing embryonic morphology using optical coherent tomography,” Dev. Biol. 177, 54–63 (1996).
[CrossRef] [PubMed]

Bouma, B. E.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, J. G. Fujimoto, “In vivo endoscopic biopsy with optical coherent tomography,” Science 276, 2073–2039 (1997).
[CrossRef]

S. A. Boppart, M. E. Brezinski, B. E. Bouma, G. J. Tearney, J. G. Fujimoto, “Investigation of developing embryonic morphology using optical coherent tomography,” Dev. Biol. 177, 54–63 (1996).
[CrossRef] [PubMed]

Brezinski, M. E.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, J. G. Fujimoto, “In vivo endoscopic biopsy with optical coherent tomography,” Science 276, 2073–2039 (1997).
[CrossRef]

S. A. Boppart, M. E. Brezinski, B. E. Bouma, G. J. Tearney, J. G. Fujimoto, “Investigation of developing embryonic morphology using optical coherent tomography,” Dev. Biol. 177, 54–63 (1996).
[CrossRef] [PubMed]

Carr, S.

Chen, Z. P.

Colston, B. W.

Da Silva, L. B.

Davies, D. E. N.

de Boer, J. F.

Dutta, N.

D. Piao, Q. Zhu, N. Dutta, L. Otis, “Effect of source coherence on interferometric imaging,” in Biomedical Topical Meetings, Post Conference Digest, Vol. 38 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 145–147.

Everett, M. J.

Fujimoto, J. G.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, J. G. Fujimoto, “In vivo endoscopic biopsy with optical coherent tomography,” Science 276, 2073–2039 (1997).
[CrossRef]

S. A. Boppart, M. E. Brezinski, B. E. Bouma, G. J. Tearney, J. G. Fujimoto, “Investigation of developing embryonic morphology using optical coherent tomography,” Dev. Biol. 177, 54–63 (1996).
[CrossRef] [PubMed]

E. A. Swanson, D. Huang, M. R. Hee, J. G. Fujimoto, C. P. Lin, A. Puliafito, “High-speed optical coherence domain reflectometry,” Opt. Lett. 17, 151–153 (1992).
[CrossRef] [PubMed]

Hee, M. R.

Hogbom, J.

J. Hogbom, “Aperture synthesis with a non-regular distribution of interferometer baselines,” Astrophys. J. Suppl. 15, 417–426 (1974).

Huang, D.

Izatt, J.

Kulkarni, M.

Leeuwen, T.

Lin, C. P.

Malekafzali, A.

Milner, T. E.

Nelson, J. S.

Otis, L.

B. W. Colston, M. J. Everett, L. B. Da Silva, L. Otis, “Imaging of hard- and soft-tissue structure in the oral cavity by optical coherence tomography,” Appl. Opt. 37, 3582–3585 (1998).
[CrossRef]

D. Piao, Q. Zhu, N. Dutta, L. Otis, “Effect of source coherence on interferometric imaging,” in Biomedical Topical Meetings, Post Conference Digest, Vol. 38 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 145–147.

Pashley, D. H.

Piao, D.

D. Piao, Q. Zhu, N. Dutta, L. Otis, “Effect of source coherence on interferometric imaging,” in Biomedical Topical Meetings, Post Conference Digest, Vol. 38 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 145–147.

Pitris, C.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, J. G. Fujimoto, “In vivo endoscopic biopsy with optical coherent tomography,” Science 276, 2073–2039 (1997).
[CrossRef]

Puliafito, A.

Schmit, J. M.

J. M. Schmit, “Restoration of optical coherence images of living tissue using the CLEAN algorithm,” J. Biomed. Opt. 3, 66–75 (1998).
[CrossRef]

Southern, J. F.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, J. G. Fujimoto, “In vivo endoscopic biopsy with optical coherent tomography,” Science 276, 2073–2039 (1997).
[CrossRef]

Srinivas, S.

Steinberg, B. D.

J. Tsao, B. D. Steinberg, “Reduction of sidelobe and speckle artifacts in microwave imaging: the CLEAN technique,” IEEE Trans. Antennas Propag. AP-36, 543–556 (1988).
[CrossRef]

Q. Zhu, B. D. Steinberg, “Correction of multipath interference by spatial location diversity and coherent CLEAN,” in Proceedings of IEEE Ultrasonics Symposium (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1995), pp. 1367–1370.

Swanson, E. A.

Tearney, G. J.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, J. G. Fujimoto, “In vivo endoscopic biopsy with optical coherent tomography,” Science 276, 2073–2039 (1997).
[CrossRef]

S. A. Boppart, M. E. Brezinski, B. E. Bouma, G. J. Tearney, J. G. Fujimoto, “Investigation of developing embryonic morphology using optical coherent tomography,” Dev. Biol. 177, 54–63 (1996).
[CrossRef] [PubMed]

Tsao, J.

J. Tsao, B. D. Steinberg, “Reduction of sidelobe and speckle artifacts in microwave imaging: the CLEAN technique,” IEEE Trans. Antennas Propag. AP-36, 543–556 (1988).
[CrossRef]

van Gemert, M. J. C.

Wang, L.

Wang, X. J.

Yao, G.

Yazdanfar, S.

Youngquist, R. C.

Zhang, Y.

Zhu, Q.

Q. Zhu, B. D. Steinberg, “Correction of multipath interference by spatial location diversity and coherent CLEAN,” in Proceedings of IEEE Ultrasonics Symposium (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1995), pp. 1367–1370.

D. Piao, Q. Zhu, N. Dutta, L. Otis, “Effect of source coherence on interferometric imaging,” in Biomedical Topical Meetings, Post Conference Digest, Vol. 38 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 145–147.

Appl. Opt.

Astrophys. J. Suppl.

J. Hogbom, “Aperture synthesis with a non-regular distribution of interferometer baselines,” Astrophys. J. Suppl. 15, 417–426 (1974).

Dev. Biol.

S. A. Boppart, M. E. Brezinski, B. E. Bouma, G. J. Tearney, J. G. Fujimoto, “Investigation of developing embryonic morphology using optical coherent tomography,” Dev. Biol. 177, 54–63 (1996).
[CrossRef] [PubMed]

IEEE Trans. Antennas Propag.

J. Tsao, B. D. Steinberg, “Reduction of sidelobe and speckle artifacts in microwave imaging: the CLEAN technique,” IEEE Trans. Antennas Propag. AP-36, 543–556 (1988).
[CrossRef]

J. Biomed. Opt.

J. M. Schmit, “Restoration of optical coherence images of living tissue using the CLEAN algorithm,” J. Biomed. Opt. 3, 66–75 (1998).
[CrossRef]

Opt. Lett.

Science

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, J. G. Fujimoto, “In vivo endoscopic biopsy with optical coherent tomography,” Science 276, 2073–2039 (1997).
[CrossRef]

Other

Q. Zhu, B. D. Steinberg, “Correction of multipath interference by spatial location diversity and coherent CLEAN,” in Proceedings of IEEE Ultrasonics Symposium (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1995), pp. 1367–1370.

D. Piao, Q. Zhu, N. Dutta, L. Otis, “Effect of source coherence on interferometric imaging,” in Biomedical Topical Meetings, Post Conference Digest, Vol. 38 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 145–147.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Sketch of a sagittal section of a human tooth.

Fig. 2
Fig. 2

Diagram of conventional OCT scanning. The on-axis reflected light within a narrow angle is received by the detection optics, and the off-axis scattered light falls outside the receiving aperture. If more detector fibers were located at off-axis positions (broken fiber lines), the scattered light could have been received over a wider angle.

Fig. 3
Fig. 3

Schematic diagram of the OCT system: OC, optical circulator; G, galvanometer; L, lens; other abbreviations are defined in text. The galvanometer and the linear motor are controlled by a PC.

Fig. 4
Fig. 4

PSF of the system and the resultant image artifacts. (a) Normalized PSF of the system or A-scan line measured from a planar mirror. The horizantal axis is the propagation depth, and the distance between the main lobe and a sidelobe is 1.335 mm. (b) Image of a mirror. The propragation direction is left to right. The vertical axis is the spatial scan dimension. The central line is the mirror, and the two lines at the sides of the central line are sidelobe artifacts. (c) Image of an extracted tooth. The central curve is the air–enamel interface. The sidelobe artifacts are clearly shown by two complicated curves, pointed to by the two vertical arrows, on the sides of the central curve.

Fig. 5
Fig. 5

(a) Original tooth image. (b) CLEANed image. (c) Microscopic picture of the sectioned tooth image. The OCT image dimensions are 6 mm (vertical, X) by 3.84 mm (horizontal, Z); the pixel size is 15 m × 15 m. The sidelobe artifact curves are reduced to the background level. The air–enamel interface is enhanced after application of CLEAN, and the sidelobe energy of the enamel–dentin inference, pointed to by the small arrow at the bottom right in (a) and (b) is removed after CLEAN has been applied.

Fig. 6
Fig. 6

Normalized A-scan lines (dB) from (a) the dirty image and (b) the CLEANed image. The A-scan position is shown in Fig. 5(a). After CLEAN is applied the sidelobes associated with air–enamel and enamel–dentin interfaces are reduced to background noise.

Fig. 7
Fig. 7

(a) Image of a tooth with a metal filling at the surface. (b) CLEANed image. (c) Microscopic picture of the sectioned tooth. The spatial scan range is indicated by the two arrows in (c). The portion of the –air-enamel interface that is delineared well after use of CLEAN is pointed to by the arrow at the top of (b). The indented portion of the air–enamel interface corresponds to a cavity and is pointed to by the the longer arrow at the bottom of (b). The boundary and the internal aspects of the metallic restoration (within the frame) are more clearly seen after CLEAN is applied.

Fig. 8
Fig. 8

Recorded optical spectrum of the EDFA: Wavelength ranges are (a) 1500–1600 and (b) 1545–1565 nm. The period of the ripples on top of the main spectrum waveform is ∼1 nm. (c) Fourier transform of (a); it is the autocorrelation function of the EDFA source.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Oimagex, z=j=1N Cjδx-xj, z-zj,
Dimagex, z=Oimagex, z * hx, z+Nx, z,
Dimageu, vhu, v=Oimageu, v+Nu, vhu, v,
αhx-x1, z-z1Dimagex1, z1/hmax
Dimage-αhx-x1, z-z1Dimagex1, z1/hmax
αhz-z1Dimagex1, z1/hmax
Dimage-αhz-z1Dimagex1, z1/hmax

Metrics