Abstract

Fiber-optic, polarized elastic-scattering spectroscopy techniques are implemented and demonstrated as a method for determining both scatterer size and concentration in highly scattering media. Measurements of polystyrene spheres are presented to validate the technique. Measurements of biological cells provide an estimate of the average effective scatterer radius of 0.5–1.0 µm. This average effective scatterer size is significantly smaller than the nucleus. In addition, to facilitate use of polarization techniques on biological cells, polarized angular dependent scattering from cell suspensions was measured. The light scattering from cells has properties similar to those of small spheres.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. L. Jacques, J. R. Roman, K. Lee, “Imaging superficial tissues with polarized light,” Lasers Surg. Med. 26, 119–129 (2000).
    [CrossRef] [PubMed]
  2. V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5, 1019–1026 (1999).
    [CrossRef]
  3. K. Sokolov, R. Drezek, K. Gossage, R. Richards-Kortum, “Reflectance spectroscopy with polarized light: is it sensitive to cellular and nuclear morphology,” Opt. Express 5, 302–317 (1999), http://www.opticsexpress.org .
    [CrossRef] [PubMed]
  4. R. S. Cotran, V. Kumar, S. L. Robbins, Pathological Basis of Disease (Saunders, Philadelphia, Pa., 1994), Chap. 7.
  5. R. Drezek, A. Dunn, R. Richards-Kortum, “A pulsed finite-difference time-domain (FDTD) method for calculating light scattering from biological cells over broad wavelength ranges,” Opt. Express 6, 147–157 (2000), http://www.opticsexpress.org .
    [CrossRef] [PubMed]
  6. J. Mourant, J. Freyer, A. Hielscher, A. Eick, D. Shen, T. Johnson, “Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics,” Appl. Opt. 37, 3586–3593 (1998).
    [CrossRef]
  7. T. M. Johnson, J. R. Mourant, “Polarized wavelength-dependent measurements of turbid media,” Opt. Express 4, 200–216 (1999), http://www.opticsexpress.org .
    [CrossRef] [PubMed]
  8. J. R. Mourant, M. Canpolat, C. Brocker, O. Esponda-Ramos, T. Johnson, A. Matanock, K. Stetter, J. P. Freyer, “Light scattering from cells: the contribution of the nucleus and the effects of proliferative status,” J. Biomed. Opt. 5, 131–137 (2000).
    [CrossRef] [PubMed]
  9. G. Marquez, L. V. Wang, S.-P. Lin, J. A. Schwartz, S. L. Thomsen, “Anisotropy in the absorption and scattering spectra of chicken breast tissue,” Appl. Opt. 37, 798–804 (1998).
    [CrossRef]
  10. C. F. Bohren, D. R. Hoffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  11. J. R. Mourant, J. P. Freyer, A. H. Hielscher, A. A. Eick, D. Shen, T. M. Johnson, “Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics,” Appl. Opt. 37, 3586–3593 (1998).
    [CrossRef]
  12. S. Bartel, A. H. Hielscher, “Monte Carlo simulation of the diffuse backscattering Mueller matrix for highly scattering media,” Appl. Opt. 39, 1580–1588 (2000).
    [CrossRef]
  13. J. R. Mourant, J. Boyer, A. H. Hielscher, I. J. Bigio, “Influence of the scattering phase function on light transport measurements in turbid media performed with small source–detector separations,” Opt. Lett. 21, 546–548 (1996).
    [CrossRef] [PubMed]
  14. S. L. Jacques, L. Wang, “Monte Carlo modeling of light transport in tissues,” in Optical-Thermal Response of Laser Irradiated Tissue, A. J. Welch, M. J. C. van Gemert, eds. (Plenum, New York, 1995), pp. 73–100.
    [CrossRef]
  15. M. J. Rackovich, G. W. Kattawar, M. Mehrubeoglu, B. D. Cameron, L. V. Wang, S. Rasategar, G. L. Cote, “Light backscattering polarization patterns from turbid media: theory and experiments,” Appl. Opt. 38, 3399–3408 (1999).
    [CrossRef]
  16. B. D. Cameron, M. J. Rakovic, M. Mehrubeoglu, G. W. Kattawar, S. Rastegar, L. V. Wang, G. L. Cote, “Measurement and calculation of the two-dimensional backscattering Mueller matrix of a turbid medium,” Opt. Lett. 23, 485–487 (1998).
    [CrossRef]
  17. B. D. Cameron, M. J. Rakovic, M. Mehrubeoglu, G. W. Kattawar, S. Rastegar, L. V. Wang, G. L. Cote, “Measurement and calculation of the two-dimensional backscattering Mueller matrix of a turbid medium: errata,” Opt. Lett. 23, 1630 (1998).
    [CrossRef]
  18. S. Asano, M. Sato, “Light scattering by randomly oriented spheroidal particles,” Appl. Opt. 19, 962–974 (1980).
    [CrossRef] [PubMed]
  19. A. Dogariu, M. Dogariu, K. Richardson, S. D. Jacobs, G. D. Boreman, “Polarization asymmetry in waves backscattering from highly absorbant random media,” Appl. Opt. 36, 8159–8167 (1997).
    [CrossRef]
  20. M. Dogariu, T. Asakura, “Polarization-dependent backscattering patterns from weakly scattering media,” J. Opt. (Paris) 24, 271–278 (1993).
    [CrossRef]
  21. J. M. Schmitt, G. Kumar, “Optical scattering properties of soft tissue: a discrete particle model,” Appl. Opt. 37, 2788–2797 (1998).
    [CrossRef]
  22. M. J. Holbroke, B. J. Tromberg, X. Li, N. Shah, D. Kidney, J. Butler, B. Chance, A. G. Yodh, “Three-dimensional diffuse optical mammography with ultrasound localization in a human subject,” J. Biomed. Opt. 5, 237–247 (2000).
    [CrossRef]
  23. A. Brunsting, P. Mullaney, “Differential light scattering from spherical mammalian cells,” Biopys. J. 14, 439–453 (1974).
    [CrossRef]
  24. H. Liu, B. Beauvoit, M. Kimura, B. Chance, “Dependence of tissue optical properties of solute-induced changes in refractive index and osmolarity,” J. Biomed. Opt. 1, 200–211 (1996).
    [CrossRef] [PubMed]
  25. M. Canpolat, J. R. Mourant, “High-angle scattering events strongly affect light collection in clinically relevant measurement geometries for light transport through tissue,” Phys. Med. Biol. 45, 1127–1140 (2000).
    [CrossRef] [PubMed]

2000 (6)

S. L. Jacques, J. R. Roman, K. Lee, “Imaging superficial tissues with polarized light,” Lasers Surg. Med. 26, 119–129 (2000).
[CrossRef] [PubMed]

J. R. Mourant, M. Canpolat, C. Brocker, O. Esponda-Ramos, T. Johnson, A. Matanock, K. Stetter, J. P. Freyer, “Light scattering from cells: the contribution of the nucleus and the effects of proliferative status,” J. Biomed. Opt. 5, 131–137 (2000).
[CrossRef] [PubMed]

M. J. Holbroke, B. J. Tromberg, X. Li, N. Shah, D. Kidney, J. Butler, B. Chance, A. G. Yodh, “Three-dimensional diffuse optical mammography with ultrasound localization in a human subject,” J. Biomed. Opt. 5, 237–247 (2000).
[CrossRef]

M. Canpolat, J. R. Mourant, “High-angle scattering events strongly affect light collection in clinically relevant measurement geometries for light transport through tissue,” Phys. Med. Biol. 45, 1127–1140 (2000).
[CrossRef] [PubMed]

S. Bartel, A. H. Hielscher, “Monte Carlo simulation of the diffuse backscattering Mueller matrix for highly scattering media,” Appl. Opt. 39, 1580–1588 (2000).
[CrossRef]

R. Drezek, A. Dunn, R. Richards-Kortum, “A pulsed finite-difference time-domain (FDTD) method for calculating light scattering from biological cells over broad wavelength ranges,” Opt. Express 6, 147–157 (2000), http://www.opticsexpress.org .
[CrossRef] [PubMed]

1999 (4)

1998 (6)

1997 (1)

1996 (2)

J. R. Mourant, J. Boyer, A. H. Hielscher, I. J. Bigio, “Influence of the scattering phase function on light transport measurements in turbid media performed with small source–detector separations,” Opt. Lett. 21, 546–548 (1996).
[CrossRef] [PubMed]

H. Liu, B. Beauvoit, M. Kimura, B. Chance, “Dependence of tissue optical properties of solute-induced changes in refractive index and osmolarity,” J. Biomed. Opt. 1, 200–211 (1996).
[CrossRef] [PubMed]

1993 (1)

M. Dogariu, T. Asakura, “Polarization-dependent backscattering patterns from weakly scattering media,” J. Opt. (Paris) 24, 271–278 (1993).
[CrossRef]

1980 (1)

1974 (1)

A. Brunsting, P. Mullaney, “Differential light scattering from spherical mammalian cells,” Biopys. J. 14, 439–453 (1974).
[CrossRef]

Asakura, T.

M. Dogariu, T. Asakura, “Polarization-dependent backscattering patterns from weakly scattering media,” J. Opt. (Paris) 24, 271–278 (1993).
[CrossRef]

Asano, S.

Backman, V.

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5, 1019–1026 (1999).
[CrossRef]

Badizadegan, K.

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5, 1019–1026 (1999).
[CrossRef]

Bartel, S.

Beauvoit, B.

H. Liu, B. Beauvoit, M. Kimura, B. Chance, “Dependence of tissue optical properties of solute-induced changes in refractive index and osmolarity,” J. Biomed. Opt. 1, 200–211 (1996).
[CrossRef] [PubMed]

Bigio, I. J.

Bohren, C. F.

C. F. Bohren, D. R. Hoffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

Boreman, G. D.

Boyer, J.

Brocker, C.

J. R. Mourant, M. Canpolat, C. Brocker, O. Esponda-Ramos, T. Johnson, A. Matanock, K. Stetter, J. P. Freyer, “Light scattering from cells: the contribution of the nucleus and the effects of proliferative status,” J. Biomed. Opt. 5, 131–137 (2000).
[CrossRef] [PubMed]

Brunsting, A.

A. Brunsting, P. Mullaney, “Differential light scattering from spherical mammalian cells,” Biopys. J. 14, 439–453 (1974).
[CrossRef]

Butler, J.

M. J. Holbroke, B. J. Tromberg, X. Li, N. Shah, D. Kidney, J. Butler, B. Chance, A. G. Yodh, “Three-dimensional diffuse optical mammography with ultrasound localization in a human subject,” J. Biomed. Opt. 5, 237–247 (2000).
[CrossRef]

Cameron, B. D.

Canpolat, M.

J. R. Mourant, M. Canpolat, C. Brocker, O. Esponda-Ramos, T. Johnson, A. Matanock, K. Stetter, J. P. Freyer, “Light scattering from cells: the contribution of the nucleus and the effects of proliferative status,” J. Biomed. Opt. 5, 131–137 (2000).
[CrossRef] [PubMed]

M. Canpolat, J. R. Mourant, “High-angle scattering events strongly affect light collection in clinically relevant measurement geometries for light transport through tissue,” Phys. Med. Biol. 45, 1127–1140 (2000).
[CrossRef] [PubMed]

Chance, B.

M. J. Holbroke, B. J. Tromberg, X. Li, N. Shah, D. Kidney, J. Butler, B. Chance, A. G. Yodh, “Three-dimensional diffuse optical mammography with ultrasound localization in a human subject,” J. Biomed. Opt. 5, 237–247 (2000).
[CrossRef]

H. Liu, B. Beauvoit, M. Kimura, B. Chance, “Dependence of tissue optical properties of solute-induced changes in refractive index and osmolarity,” J. Biomed. Opt. 1, 200–211 (1996).
[CrossRef] [PubMed]

Cote, G. L.

Cotran, R. S.

R. S. Cotran, V. Kumar, S. L. Robbins, Pathological Basis of Disease (Saunders, Philadelphia, Pa., 1994), Chap. 7.

Dasari, R. R.

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5, 1019–1026 (1999).
[CrossRef]

Dogariu, A.

Dogariu, M.

A. Dogariu, M. Dogariu, K. Richardson, S. D. Jacobs, G. D. Boreman, “Polarization asymmetry in waves backscattering from highly absorbant random media,” Appl. Opt. 36, 8159–8167 (1997).
[CrossRef]

M. Dogariu, T. Asakura, “Polarization-dependent backscattering patterns from weakly scattering media,” J. Opt. (Paris) 24, 271–278 (1993).
[CrossRef]

Drezek, R.

Dunn, A.

Eick, A.

Eick, A. A.

Esponda-Ramos, O.

J. R. Mourant, M. Canpolat, C. Brocker, O. Esponda-Ramos, T. Johnson, A. Matanock, K. Stetter, J. P. Freyer, “Light scattering from cells: the contribution of the nucleus and the effects of proliferative status,” J. Biomed. Opt. 5, 131–137 (2000).
[CrossRef] [PubMed]

Feld, M. S.

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5, 1019–1026 (1999).
[CrossRef]

Freyer, J.

Freyer, J. P.

J. R. Mourant, M. Canpolat, C. Brocker, O. Esponda-Ramos, T. Johnson, A. Matanock, K. Stetter, J. P. Freyer, “Light scattering from cells: the contribution of the nucleus and the effects of proliferative status,” J. Biomed. Opt. 5, 131–137 (2000).
[CrossRef] [PubMed]

J. R. Mourant, J. P. Freyer, A. H. Hielscher, A. A. Eick, D. Shen, T. M. Johnson, “Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics,” Appl. Opt. 37, 3586–3593 (1998).
[CrossRef]

Gossage, K.

Gurjar, R.

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5, 1019–1026 (1999).
[CrossRef]

Hielscher, A.

Hielscher, A. H.

Hoffman, D. R.

C. F. Bohren, D. R. Hoffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

Holbroke, M. J.

M. J. Holbroke, B. J. Tromberg, X. Li, N. Shah, D. Kidney, J. Butler, B. Chance, A. G. Yodh, “Three-dimensional diffuse optical mammography with ultrasound localization in a human subject,” J. Biomed. Opt. 5, 237–247 (2000).
[CrossRef]

Itzkan, I.

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5, 1019–1026 (1999).
[CrossRef]

Jacobs, S. D.

Jacques, S. L.

S. L. Jacques, J. R. Roman, K. Lee, “Imaging superficial tissues with polarized light,” Lasers Surg. Med. 26, 119–129 (2000).
[CrossRef] [PubMed]

S. L. Jacques, L. Wang, “Monte Carlo modeling of light transport in tissues,” in Optical-Thermal Response of Laser Irradiated Tissue, A. J. Welch, M. J. C. van Gemert, eds. (Plenum, New York, 1995), pp. 73–100.
[CrossRef]

Johnson, T.

J. R. Mourant, M. Canpolat, C. Brocker, O. Esponda-Ramos, T. Johnson, A. Matanock, K. Stetter, J. P. Freyer, “Light scattering from cells: the contribution of the nucleus and the effects of proliferative status,” J. Biomed. Opt. 5, 131–137 (2000).
[CrossRef] [PubMed]

J. Mourant, J. Freyer, A. Hielscher, A. Eick, D. Shen, T. Johnson, “Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics,” Appl. Opt. 37, 3586–3593 (1998).
[CrossRef]

Johnson, T. M.

Kattawar, G. W.

Kidney, D.

M. J. Holbroke, B. J. Tromberg, X. Li, N. Shah, D. Kidney, J. Butler, B. Chance, A. G. Yodh, “Three-dimensional diffuse optical mammography with ultrasound localization in a human subject,” J. Biomed. Opt. 5, 237–247 (2000).
[CrossRef]

Kimura, M.

H. Liu, B. Beauvoit, M. Kimura, B. Chance, “Dependence of tissue optical properties of solute-induced changes in refractive index and osmolarity,” J. Biomed. Opt. 1, 200–211 (1996).
[CrossRef] [PubMed]

Kumar, G.

Kumar, V.

R. S. Cotran, V. Kumar, S. L. Robbins, Pathological Basis of Disease (Saunders, Philadelphia, Pa., 1994), Chap. 7.

Lee, K.

S. L. Jacques, J. R. Roman, K. Lee, “Imaging superficial tissues with polarized light,” Lasers Surg. Med. 26, 119–129 (2000).
[CrossRef] [PubMed]

Li, X.

M. J. Holbroke, B. J. Tromberg, X. Li, N. Shah, D. Kidney, J. Butler, B. Chance, A. G. Yodh, “Three-dimensional diffuse optical mammography with ultrasound localization in a human subject,” J. Biomed. Opt. 5, 237–247 (2000).
[CrossRef]

Lin, S.-P.

Liu, H.

H. Liu, B. Beauvoit, M. Kimura, B. Chance, “Dependence of tissue optical properties of solute-induced changes in refractive index and osmolarity,” J. Biomed. Opt. 1, 200–211 (1996).
[CrossRef] [PubMed]

Marquez, G.

Matanock, A.

J. R. Mourant, M. Canpolat, C. Brocker, O. Esponda-Ramos, T. Johnson, A. Matanock, K. Stetter, J. P. Freyer, “Light scattering from cells: the contribution of the nucleus and the effects of proliferative status,” J. Biomed. Opt. 5, 131–137 (2000).
[CrossRef] [PubMed]

Mehrubeoglu, M.

Mourant, J.

Mourant, J. R.

J. R. Mourant, M. Canpolat, C. Brocker, O. Esponda-Ramos, T. Johnson, A. Matanock, K. Stetter, J. P. Freyer, “Light scattering from cells: the contribution of the nucleus and the effects of proliferative status,” J. Biomed. Opt. 5, 131–137 (2000).
[CrossRef] [PubMed]

M. Canpolat, J. R. Mourant, “High-angle scattering events strongly affect light collection in clinically relevant measurement geometries for light transport through tissue,” Phys. Med. Biol. 45, 1127–1140 (2000).
[CrossRef] [PubMed]

T. M. Johnson, J. R. Mourant, “Polarized wavelength-dependent measurements of turbid media,” Opt. Express 4, 200–216 (1999), http://www.opticsexpress.org .
[CrossRef] [PubMed]

J. R. Mourant, J. P. Freyer, A. H. Hielscher, A. A. Eick, D. Shen, T. M. Johnson, “Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics,” Appl. Opt. 37, 3586–3593 (1998).
[CrossRef]

J. R. Mourant, J. Boyer, A. H. Hielscher, I. J. Bigio, “Influence of the scattering phase function on light transport measurements in turbid media performed with small source–detector separations,” Opt. Lett. 21, 546–548 (1996).
[CrossRef] [PubMed]

Mullaney, P.

A. Brunsting, P. Mullaney, “Differential light scattering from spherical mammalian cells,” Biopys. J. 14, 439–453 (1974).
[CrossRef]

Perelman, L. T.

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5, 1019–1026 (1999).
[CrossRef]

Rackovich, M. J.

Rakovic, M. J.

Rasategar, S.

Rastegar, S.

Richards-Kortum, R.

Richardson, K.

Robbins, S. L.

R. S. Cotran, V. Kumar, S. L. Robbins, Pathological Basis of Disease (Saunders, Philadelphia, Pa., 1994), Chap. 7.

Roman, J. R.

S. L. Jacques, J. R. Roman, K. Lee, “Imaging superficial tissues with polarized light,” Lasers Surg. Med. 26, 119–129 (2000).
[CrossRef] [PubMed]

Sato, M.

Schmitt, J. M.

Schwartz, J. A.

Shah, N.

M. J. Holbroke, B. J. Tromberg, X. Li, N. Shah, D. Kidney, J. Butler, B. Chance, A. G. Yodh, “Three-dimensional diffuse optical mammography with ultrasound localization in a human subject,” J. Biomed. Opt. 5, 237–247 (2000).
[CrossRef]

Shen, D.

Sokolov, K.

Stetter, K.

J. R. Mourant, M. Canpolat, C. Brocker, O. Esponda-Ramos, T. Johnson, A. Matanock, K. Stetter, J. P. Freyer, “Light scattering from cells: the contribution of the nucleus and the effects of proliferative status,” J. Biomed. Opt. 5, 131–137 (2000).
[CrossRef] [PubMed]

Thomsen, S. L.

Tromberg, B. J.

M. J. Holbroke, B. J. Tromberg, X. Li, N. Shah, D. Kidney, J. Butler, B. Chance, A. G. Yodh, “Three-dimensional diffuse optical mammography with ultrasound localization in a human subject,” J. Biomed. Opt. 5, 237–247 (2000).
[CrossRef]

Wang, L.

S. L. Jacques, L. Wang, “Monte Carlo modeling of light transport in tissues,” in Optical-Thermal Response of Laser Irradiated Tissue, A. J. Welch, M. J. C. van Gemert, eds. (Plenum, New York, 1995), pp. 73–100.
[CrossRef]

Wang, L. V.

Yodh, A. G.

M. J. Holbroke, B. J. Tromberg, X. Li, N. Shah, D. Kidney, J. Butler, B. Chance, A. G. Yodh, “Three-dimensional diffuse optical mammography with ultrasound localization in a human subject,” J. Biomed. Opt. 5, 237–247 (2000).
[CrossRef]

Appl. Opt. (8)

M. J. Rackovich, G. W. Kattawar, M. Mehrubeoglu, B. D. Cameron, L. V. Wang, S. Rasategar, G. L. Cote, “Light backscattering polarization patterns from turbid media: theory and experiments,” Appl. Opt. 38, 3399–3408 (1999).
[CrossRef]

A. Dogariu, M. Dogariu, K. Richardson, S. D. Jacobs, G. D. Boreman, “Polarization asymmetry in waves backscattering from highly absorbant random media,” Appl. Opt. 36, 8159–8167 (1997).
[CrossRef]

G. Marquez, L. V. Wang, S.-P. Lin, J. A. Schwartz, S. L. Thomsen, “Anisotropy in the absorption and scattering spectra of chicken breast tissue,” Appl. Opt. 37, 798–804 (1998).
[CrossRef]

J. Mourant, J. Freyer, A. Hielscher, A. Eick, D. Shen, T. Johnson, “Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics,” Appl. Opt. 37, 3586–3593 (1998).
[CrossRef]

J. R. Mourant, J. P. Freyer, A. H. Hielscher, A. A. Eick, D. Shen, T. M. Johnson, “Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics,” Appl. Opt. 37, 3586–3593 (1998).
[CrossRef]

S. Asano, M. Sato, “Light scattering by randomly oriented spheroidal particles,” Appl. Opt. 19, 962–974 (1980).
[CrossRef] [PubMed]

J. M. Schmitt, G. Kumar, “Optical scattering properties of soft tissue: a discrete particle model,” Appl. Opt. 37, 2788–2797 (1998).
[CrossRef]

S. Bartel, A. H. Hielscher, “Monte Carlo simulation of the diffuse backscattering Mueller matrix for highly scattering media,” Appl. Opt. 39, 1580–1588 (2000).
[CrossRef]

Biopys. J. (1)

A. Brunsting, P. Mullaney, “Differential light scattering from spherical mammalian cells,” Biopys. J. 14, 439–453 (1974).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5, 1019–1026 (1999).
[CrossRef]

J. Biomed. Opt. (3)

J. R. Mourant, M. Canpolat, C. Brocker, O. Esponda-Ramos, T. Johnson, A. Matanock, K. Stetter, J. P. Freyer, “Light scattering from cells: the contribution of the nucleus and the effects of proliferative status,” J. Biomed. Opt. 5, 131–137 (2000).
[CrossRef] [PubMed]

H. Liu, B. Beauvoit, M. Kimura, B. Chance, “Dependence of tissue optical properties of solute-induced changes in refractive index and osmolarity,” J. Biomed. Opt. 1, 200–211 (1996).
[CrossRef] [PubMed]

M. J. Holbroke, B. J. Tromberg, X. Li, N. Shah, D. Kidney, J. Butler, B. Chance, A. G. Yodh, “Three-dimensional diffuse optical mammography with ultrasound localization in a human subject,” J. Biomed. Opt. 5, 237–247 (2000).
[CrossRef]

J. Opt. (Paris) (1)

M. Dogariu, T. Asakura, “Polarization-dependent backscattering patterns from weakly scattering media,” J. Opt. (Paris) 24, 271–278 (1993).
[CrossRef]

Lasers Surg. Med. (1)

S. L. Jacques, J. R. Roman, K. Lee, “Imaging superficial tissues with polarized light,” Lasers Surg. Med. 26, 119–129 (2000).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (3)

Phys. Med. Biol. (1)

M. Canpolat, J. R. Mourant, “High-angle scattering events strongly affect light collection in clinically relevant measurement geometries for light transport through tissue,” Phys. Med. Biol. 45, 1127–1140 (2000).
[CrossRef] [PubMed]

Other (3)

C. F. Bohren, D. R. Hoffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

S. L. Jacques, L. Wang, “Monte Carlo modeling of light transport in tissues,” in Optical-Thermal Response of Laser Irradiated Tissue, A. J. Welch, M. J. C. van Gemert, eds. (Plenum, New York, 1995), pp. 73–100.
[CrossRef]

R. S. Cotran, V. Kumar, S. L. Robbins, Pathological Basis of Disease (Saunders, Philadelphia, Pa., 1994), Chap. 7.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

End on view of the polarization probe. The outer dimensions are larger than shown, although the size and separation of the fibers are to scale. The delivered light has a polarization parallel to a line connecting fibers 2 and 4.

Fig. 2
Fig. 2

Angularly resolved polarized light scattering of dilute suspensions of MR1 cells. Measurements were made every 5 deg (as shown by the symbols for the polarized measurements). The integration time at each point was ∼2 s. The solid curve with no symbols is an unpolarized measurement. For the open diamonds, polarizers that passed light oscillating perpendicular to the scattering plane were placed in the light delivery and detection paths. For the bow tie symbols, the polarizers were parallel to the scattering plane. The crosses and plus symbols are data obtained with crossed polarizers.

Fig. 3
Fig. 3

Shown on the y axis is the ratio of light intensities collected by fibers 1 and 3 of the polarization probe at 575 nm when measurements were made of polystyrene sphere suspensions. The x axis is the same for fibers 1 and 4. Five different suspensions of polystyrene spheres were measured each in three concentrations. For each type of suspension, the concentration of spheres was set so as to have reduced scattering coefficients of 10.7, 16.2, and 21.5 cm-1. The average of five measurements each with an integration time of ∼500 ms is represented by the symbols. The curves connect the symbols to guide the eye.

Fig. 4
Fig. 4

Shown on the y axis is the ratio of light intensities collected by fibers 1 and 3 of the polarization probe at 575 nm in Monte Carlo simulations of photon transport. The x axis is the same for fibers 1 and 4. The thin curves and open circles are the same experimental results as shown in Fig. 3. The thick curves and solid circles are the results of Monte Carlo simulations. Photon transport in three types of tissue phantom at three different concentrations were simulated. In all cases, the scatterer refractive index is 1.59 and the medium refractive index is 1.33 at 575 nm. The symbols are each the results of a single Monte Carlo simulation, and the error bars are calculated from the square root of the number of photons collected by a particular fiber. The curves are to guide the eye.

Fig. 5
Fig. 5

Results of Monte Carlo simulations run with a scatterer refractive index of 1.4 and a medium index of 1.33 at 575 nm. The concentrations of scatterers were such that reduced scattering coefficients were 5.4, 10.7, 16.0, and 21.4 cm-1 at 633 nm. The points are simulation results and the curves are to guide the eye.

Fig. 6
Fig. 6

Distributions of scatterer sizes used in Monte Carlo simulations.

Fig. 7
Fig. 7

Number of interactions undergone by photons collected by fiber 1 as a function of depth as determined by Monte Carlo simulations. The interactions were binned every 50 µm in depth. Microspheres mix 1 was used for the simulations and μ s ′ = 15 cm-1.

Fig. 8
Fig. 8

Medians of depth distributions (e.g., Fig. 7) as a function of absorbance as determined by Monte Carlo simulations. Mix 1 was used for the simulations and μ s ′ = 15 cm-1. The symbols are the results of the simulations and the curves guide the eye.

Fig. 9
Fig. 9

Left: The geometry for the Monte Carlo simulations. Only the delivery fiber and fiber 2 of the polarization probe are shown. Right: The definition of ϕ for the entrance of light.

Tables (2)

Tables Icon

Table 1 Characteristics of the Tissue Phantoms Used in this Studya

Tables Icon

Table 2 Effect of the Width of Log-Normal Scatterer Size Distributions on the Polarization Ratiosa

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

fx=1/xexp-lnx-lnxm2/2σw2.
sin θE=1.0/nmsin θD, θE=sin-1sin θE, cos θ1=cosθEξ1,  sin θ1=sqrt1-cos θ12, ϕ1=2πξ2, ux=sin θ1*cos ϕ1,  uy=sin θ1*sin ϕ1, uz=cos θ1.
S0=1,  S1=1,  S2=0,  S3=0, prelx=-1.0*cos θ1/sqrtcos θ1*cos θ1+sin θ1*sin θ1*cos ϕ1*cos ϕ1, prely=0.0, prelz=-1.0*prelx*sin θ1*cos ϕ1/cos θ1, u·prel=0,  |u|=|prel|=1.
s=-logξ3/μs.
PA=1.0-exp-sμa.
aˆ=prel, cˆ=uˆ, bˆ=cˆ×aˆ.
Pθ, ϕ=m11θ+m12θS1 cos2ϕ+S2 sin2ϕ.
S0s=S0, S1s=S1 cos2ϕ+S2 sin2ϕ, S2s=-S1 sin2ϕ+S2 cos2ϕ, S3s=S3.
ua=sinθ*cosϕ, ub=sinθ*sinϕ, uc=cosθ.
S0sn=m11θ*S0s+m12θ*S1s, S1sn=m12θ*S0s+m11θ*S1s, S2sn=m33θ*S2s+m34θ*S3s, S3sn=-m34θ*S2s+m33θ*S3s.
prela=cosϕ*cosθ, prelb=sinϕ*cosθ, prelc=-sinθ.
ux=ua*prelx+ub*bx+uc*ux, uy=ua*prely+ub*by+uc*uy, uz=ua*prelz+ub*bz+uc*uz, prelx=prela*prelx+prelb*bx+prelc*ux, prely=prela*prely+prelb*by+prelc*uy, prelz=prela*prelz+prelb*bz+prelc*uz.
θA=arcsinsinθD/nm.
Prelnx=uz/sqrtux*ux+uz*uz, Prelnz=-ux/sqrtux*ux+uz*uz.
cosϕ=prelnx*prelx+prelnz*prelz.
bx=uz*prely-uy*prelz, bz=uy*prelx-ux*prely, sinϕ=prelnx*bx+prelnz*bz.
S0=S0, S1=S1 cos2ϕ+S2 sin2ϕ, S2=-S1 sin2ϕ+S2 cos2ϕ, S3=S3.
I=|S0+S1|, I=|S0-S1|.

Metrics