Abstract

A method for aligning a photolithographic mask at the top of a transparent wafer that has a pattern on its bottom side is presented. The method is based on optical self-imaging of special alignment marks and provides submicrometer accuracy. The method is simple and robust and can conveniently be implemented on laboratory mask aligners for contact or proximity printing.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. M. Moreau, Semiconductor Lithography, Principles, Practices, and Material (Plenum, New York, 1988).
  2. J. Jahns, A. Huang, “Planar integration of free-space optical components,” Appl. Opt. 28, 1602–1605 (1989).
    [CrossRef] [PubMed]
  3. D. Fey, W. Erhard, M. Gruber, J. Jahns, H. Bartelt, G. Grimm, L. Hoppe, S. Sinzinger, “Optical interconnects for neural and reconfigurable VLSI architectures,” Proc. IEEE 88, 838–848 (2000).
    [CrossRef]
  4. C. B. Kuznia, D. J. Albares, M. Wong, M. Pendleton, J. Green, J. Cable, R. Athale, R. E. Reedy, “Flip chip bonded optoelectronic devices on ultra-thin silicon-on-sapphire for parallel optical links,” in Optics in Computing 2001, 2001 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2001), pp. 134–136.
  5. J. Jahns, W. Däschner, “Precise alignment through thick wafers using an optical copying technique,” Opt. Lett. 17, 390–392 (1992).
    [CrossRef] [PubMed]
  6. G. C. Boisset, B. Robertson, W. Hsiao, M. Taghizadeh, J. Simmons, K. Song, M. Matin, D. Thompson, D. Plant, “On-die diffractive structures for packaging of microlens arrays with 2D optoelectronic device arrays,” IEEE Photon. Technol. Lett. 8, 918–920 (1996).
    [CrossRef]
  7. M. W. Farn, J. S. Kane, W. Delaney, “Dual-sided lithography: a method for evaluating alignment accuracy,” Appl. Opt. 31, 7295–7300 (1992).
    [CrossRef] [PubMed]
  8. J. Sasian, D. Baillie, “Simple technique for out-of-focus feature alignment,” Opt. Eng. 34, 564–566 (1995).
    [CrossRef]
  9. See the URL http://www.suss.com .
  10. M. Gruber, D. Hagedorn, W. Eckert, “Ausrichtung fotolithografischer Masken relativ zu Wafern,” German patent pending (15April2000).

2000

D. Fey, W. Erhard, M. Gruber, J. Jahns, H. Bartelt, G. Grimm, L. Hoppe, S. Sinzinger, “Optical interconnects for neural and reconfigurable VLSI architectures,” Proc. IEEE 88, 838–848 (2000).
[CrossRef]

1996

G. C. Boisset, B. Robertson, W. Hsiao, M. Taghizadeh, J. Simmons, K. Song, M. Matin, D. Thompson, D. Plant, “On-die diffractive structures for packaging of microlens arrays with 2D optoelectronic device arrays,” IEEE Photon. Technol. Lett. 8, 918–920 (1996).
[CrossRef]

1995

J. Sasian, D. Baillie, “Simple technique for out-of-focus feature alignment,” Opt. Eng. 34, 564–566 (1995).
[CrossRef]

1992

1989

Albares, D. J.

C. B. Kuznia, D. J. Albares, M. Wong, M. Pendleton, J. Green, J. Cable, R. Athale, R. E. Reedy, “Flip chip bonded optoelectronic devices on ultra-thin silicon-on-sapphire for parallel optical links,” in Optics in Computing 2001, 2001 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2001), pp. 134–136.

Athale, R.

C. B. Kuznia, D. J. Albares, M. Wong, M. Pendleton, J. Green, J. Cable, R. Athale, R. E. Reedy, “Flip chip bonded optoelectronic devices on ultra-thin silicon-on-sapphire for parallel optical links,” in Optics in Computing 2001, 2001 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2001), pp. 134–136.

Baillie, D.

J. Sasian, D. Baillie, “Simple technique for out-of-focus feature alignment,” Opt. Eng. 34, 564–566 (1995).
[CrossRef]

Bartelt, H.

D. Fey, W. Erhard, M. Gruber, J. Jahns, H. Bartelt, G. Grimm, L. Hoppe, S. Sinzinger, “Optical interconnects for neural and reconfigurable VLSI architectures,” Proc. IEEE 88, 838–848 (2000).
[CrossRef]

Boisset, G. C.

G. C. Boisset, B. Robertson, W. Hsiao, M. Taghizadeh, J. Simmons, K. Song, M. Matin, D. Thompson, D. Plant, “On-die diffractive structures for packaging of microlens arrays with 2D optoelectronic device arrays,” IEEE Photon. Technol. Lett. 8, 918–920 (1996).
[CrossRef]

Cable, J.

C. B. Kuznia, D. J. Albares, M. Wong, M. Pendleton, J. Green, J. Cable, R. Athale, R. E. Reedy, “Flip chip bonded optoelectronic devices on ultra-thin silicon-on-sapphire for parallel optical links,” in Optics in Computing 2001, 2001 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2001), pp. 134–136.

Däschner, W.

Delaney, W.

Eckert, W.

M. Gruber, D. Hagedorn, W. Eckert, “Ausrichtung fotolithografischer Masken relativ zu Wafern,” German patent pending (15April2000).

Erhard, W.

D. Fey, W. Erhard, M. Gruber, J. Jahns, H. Bartelt, G. Grimm, L. Hoppe, S. Sinzinger, “Optical interconnects for neural and reconfigurable VLSI architectures,” Proc. IEEE 88, 838–848 (2000).
[CrossRef]

Farn, M. W.

Fey, D.

D. Fey, W. Erhard, M. Gruber, J. Jahns, H. Bartelt, G. Grimm, L. Hoppe, S. Sinzinger, “Optical interconnects for neural and reconfigurable VLSI architectures,” Proc. IEEE 88, 838–848 (2000).
[CrossRef]

Green, J.

C. B. Kuznia, D. J. Albares, M. Wong, M. Pendleton, J. Green, J. Cable, R. Athale, R. E. Reedy, “Flip chip bonded optoelectronic devices on ultra-thin silicon-on-sapphire for parallel optical links,” in Optics in Computing 2001, 2001 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2001), pp. 134–136.

Grimm, G.

D. Fey, W. Erhard, M. Gruber, J. Jahns, H. Bartelt, G. Grimm, L. Hoppe, S. Sinzinger, “Optical interconnects for neural and reconfigurable VLSI architectures,” Proc. IEEE 88, 838–848 (2000).
[CrossRef]

Gruber, M.

D. Fey, W. Erhard, M. Gruber, J. Jahns, H. Bartelt, G. Grimm, L. Hoppe, S. Sinzinger, “Optical interconnects for neural and reconfigurable VLSI architectures,” Proc. IEEE 88, 838–848 (2000).
[CrossRef]

M. Gruber, D. Hagedorn, W. Eckert, “Ausrichtung fotolithografischer Masken relativ zu Wafern,” German patent pending (15April2000).

Hagedorn, D.

M. Gruber, D. Hagedorn, W. Eckert, “Ausrichtung fotolithografischer Masken relativ zu Wafern,” German patent pending (15April2000).

Hoppe, L.

D. Fey, W. Erhard, M. Gruber, J. Jahns, H. Bartelt, G. Grimm, L. Hoppe, S. Sinzinger, “Optical interconnects for neural and reconfigurable VLSI architectures,” Proc. IEEE 88, 838–848 (2000).
[CrossRef]

Hsiao, W.

G. C. Boisset, B. Robertson, W. Hsiao, M. Taghizadeh, J. Simmons, K. Song, M. Matin, D. Thompson, D. Plant, “On-die diffractive structures for packaging of microlens arrays with 2D optoelectronic device arrays,” IEEE Photon. Technol. Lett. 8, 918–920 (1996).
[CrossRef]

Huang, A.

Jahns, J.

Kane, J. S.

Kuznia, C. B.

C. B. Kuznia, D. J. Albares, M. Wong, M. Pendleton, J. Green, J. Cable, R. Athale, R. E. Reedy, “Flip chip bonded optoelectronic devices on ultra-thin silicon-on-sapphire for parallel optical links,” in Optics in Computing 2001, 2001 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2001), pp. 134–136.

Matin, M.

G. C. Boisset, B. Robertson, W. Hsiao, M. Taghizadeh, J. Simmons, K. Song, M. Matin, D. Thompson, D. Plant, “On-die diffractive structures for packaging of microlens arrays with 2D optoelectronic device arrays,” IEEE Photon. Technol. Lett. 8, 918–920 (1996).
[CrossRef]

Moreau, W. M.

W. M. Moreau, Semiconductor Lithography, Principles, Practices, and Material (Plenum, New York, 1988).

Pendleton, M.

C. B. Kuznia, D. J. Albares, M. Wong, M. Pendleton, J. Green, J. Cable, R. Athale, R. E. Reedy, “Flip chip bonded optoelectronic devices on ultra-thin silicon-on-sapphire for parallel optical links,” in Optics in Computing 2001, 2001 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2001), pp. 134–136.

Plant, D.

G. C. Boisset, B. Robertson, W. Hsiao, M. Taghizadeh, J. Simmons, K. Song, M. Matin, D. Thompson, D. Plant, “On-die diffractive structures for packaging of microlens arrays with 2D optoelectronic device arrays,” IEEE Photon. Technol. Lett. 8, 918–920 (1996).
[CrossRef]

Reedy, R. E.

C. B. Kuznia, D. J. Albares, M. Wong, M. Pendleton, J. Green, J. Cable, R. Athale, R. E. Reedy, “Flip chip bonded optoelectronic devices on ultra-thin silicon-on-sapphire for parallel optical links,” in Optics in Computing 2001, 2001 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2001), pp. 134–136.

Robertson, B.

G. C. Boisset, B. Robertson, W. Hsiao, M. Taghizadeh, J. Simmons, K. Song, M. Matin, D. Thompson, D. Plant, “On-die diffractive structures for packaging of microlens arrays with 2D optoelectronic device arrays,” IEEE Photon. Technol. Lett. 8, 918–920 (1996).
[CrossRef]

Sasian, J.

J. Sasian, D. Baillie, “Simple technique for out-of-focus feature alignment,” Opt. Eng. 34, 564–566 (1995).
[CrossRef]

Simmons, J.

G. C. Boisset, B. Robertson, W. Hsiao, M. Taghizadeh, J. Simmons, K. Song, M. Matin, D. Thompson, D. Plant, “On-die diffractive structures for packaging of microlens arrays with 2D optoelectronic device arrays,” IEEE Photon. Technol. Lett. 8, 918–920 (1996).
[CrossRef]

Sinzinger, S.

D. Fey, W. Erhard, M. Gruber, J. Jahns, H. Bartelt, G. Grimm, L. Hoppe, S. Sinzinger, “Optical interconnects for neural and reconfigurable VLSI architectures,” Proc. IEEE 88, 838–848 (2000).
[CrossRef]

Song, K.

G. C. Boisset, B. Robertson, W. Hsiao, M. Taghizadeh, J. Simmons, K. Song, M. Matin, D. Thompson, D. Plant, “On-die diffractive structures for packaging of microlens arrays with 2D optoelectronic device arrays,” IEEE Photon. Technol. Lett. 8, 918–920 (1996).
[CrossRef]

Taghizadeh, M.

G. C. Boisset, B. Robertson, W. Hsiao, M. Taghizadeh, J. Simmons, K. Song, M. Matin, D. Thompson, D. Plant, “On-die diffractive structures for packaging of microlens arrays with 2D optoelectronic device arrays,” IEEE Photon. Technol. Lett. 8, 918–920 (1996).
[CrossRef]

Thompson, D.

G. C. Boisset, B. Robertson, W. Hsiao, M. Taghizadeh, J. Simmons, K. Song, M. Matin, D. Thompson, D. Plant, “On-die diffractive structures for packaging of microlens arrays with 2D optoelectronic device arrays,” IEEE Photon. Technol. Lett. 8, 918–920 (1996).
[CrossRef]

Wong, M.

C. B. Kuznia, D. J. Albares, M. Wong, M. Pendleton, J. Green, J. Cable, R. Athale, R. E. Reedy, “Flip chip bonded optoelectronic devices on ultra-thin silicon-on-sapphire for parallel optical links,” in Optics in Computing 2001, 2001 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2001), pp. 134–136.

Appl. Opt.

IEEE Photon. Technol. Lett.

G. C. Boisset, B. Robertson, W. Hsiao, M. Taghizadeh, J. Simmons, K. Song, M. Matin, D. Thompson, D. Plant, “On-die diffractive structures for packaging of microlens arrays with 2D optoelectronic device arrays,” IEEE Photon. Technol. Lett. 8, 918–920 (1996).
[CrossRef]

Opt. Eng.

J. Sasian, D. Baillie, “Simple technique for out-of-focus feature alignment,” Opt. Eng. 34, 564–566 (1995).
[CrossRef]

Opt. Lett.

Proc. IEEE

D. Fey, W. Erhard, M. Gruber, J. Jahns, H. Bartelt, G. Grimm, L. Hoppe, S. Sinzinger, “Optical interconnects for neural and reconfigurable VLSI architectures,” Proc. IEEE 88, 838–848 (2000).
[CrossRef]

Other

C. B. Kuznia, D. J. Albares, M. Wong, M. Pendleton, J. Green, J. Cable, R. Athale, R. E. Reedy, “Flip chip bonded optoelectronic devices on ultra-thin silicon-on-sapphire for parallel optical links,” in Optics in Computing 2001, 2001 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2001), pp. 134–136.

W. M. Moreau, Semiconductor Lithography, Principles, Practices, and Material (Plenum, New York, 1988).

See the URL http://www.suss.com .

M. Gruber, D. Hagedorn, W. Eckert, “Ausrichtung fotolithografischer Masken relativ zu Wafern,” German patent pending (15April2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Standard setup for laboratory mask aligners.

Fig. 2
Fig. 2

Bottom-side mask alignment based on self-imaging of alignment marks with FZPs on a wafer.

Fig. 3
Fig. 3

Effects that are due to nonparallel wafer surfaces.

Fig. 4
Fig. 4

Implementation of the new alignment method with a laboratory mask aligner: BS, beam splitter; CCD, charge-coupled device.

Fig. 5
Fig. 5

Experimental snapshots showing perfect (bottom) and imperfect (top) bottom-side alignment.

Metrics