Abstract

Two- and three-dimensional spatial analysis of various composite materials was performed with a scanning confocal Raman microspectrometer. Samples include TiO2 microparticles, mixtures of polymers, and the surface of an older Eprom computer chip. In the last case both structural and compositional information was obtained by means of comparing the signal intensity of the Rayleigh line with that of the silicon Raman line at 520 cm-1. The spatial compositions of a pain-relief medicine and a pharmaceutical salt mixture could be visualized from characteristic Raman lines of the components.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Wilson, ed., Confocal Microscopy (Academic, London, 1990).
  2. G. J. Puppels, F. F. M. de Mul, C. Otto, J. Greve, M. Robert-Nicaud, D. J. Arndt-Jovin, T. M. Jovin, “Studying single living cells and chromosomes by confocal Raman microspectroscopy,” Nature (London) 347, 301–303 (1990).
    [CrossRef]
  3. B. Lecourt, F. Capelle, F. Adamietz, A. Malaplate, D. Blaudez, H. Kellay, J. M. Turlet, “Confocal micro-Raman spectroscopy of black soap films,” J. Chem. Phys. 108, 1284–1289 (1998).
    [CrossRef]
  4. P. S. Dobal, S. Bhaskar, S. B. Majumder, R. S. Katiyar, “Micro-Raman investigation of stress variations in lead titanate films on sapphire,” J. Appl. Phys. 86, 828–834 (1999).
    [CrossRef]
  5. S. Périchon, V. Lysenko, B. Remaki, D. Barbier, B. Champagnon, “Measurement of porous silicon thermal conductivity by micro-Raman scattering,” J. Appl. Phys. 86, 4700–4702 (1999).
    [CrossRef]
  6. E. Liu, X. Shi, B. K. Tay, L. K. Cheah, H. S. Tan, J. R. Shi, Z. Sun, “Micro-Raman spectroscopic analysis of tetrahedral amorphous carbon films deposited under varying conditions,” J. Appl. Phys. 86, 6078–6083 (1999).
    [CrossRef]
  7. C. R. Kagan, T. D. Harris, A. L. Harris, M. L. Schilling, “Submicron confocal Raman imaging of holograms in multicomponent photopolymers,” J. Chem. Phys. 108, 6892–6896 (1998).
    [CrossRef]
  8. C. D. Poweleit, A. Gunther, S. Goodnick, J. Menéndez, “Raman imaging of patterned silicon using a solid immersion lens,” Appl. Phys. Lett. 73, 2275–2277 (1998).
    [CrossRef]
  9. N. M. Sijtsema, S. D. Wouters, C. J. de Grauw, C. Otto, J. Greve, “Confocal direct imaging Raman microscope: design and applications in biology,” Appl. Spectrosc. 52, 348–355 (1998).
    [CrossRef]
  10. F. Lagugné Labarthet, T. Buffeteau, C. Sourisseau, “Molecular orientations in azopolymer holographic diffraction gratings as studied by Raman confocal microspectroscopy,” J. Phys. Chem. B 102, 5754–5765 (1998).
    [CrossRef]
  11. F. Meinardi, S. Quilici, A. Borghesi, G. Artioli, “Microstructure imaging of C54-TiSi2 polycrystalline thin films by micro-Raman spectroscopy,” Appl. Phys. Lett. 75, 3090–3092 (1999).
    [CrossRef]
  12. S. J. Zilker, “Materials design and physics of organic photorefractive systems,” ChemPhysChem 1, 72–87 (2000).
    [CrossRef] [PubMed]
  13. A. Zumbusch, G. R. Holtom, X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82, 4142–4145 (1999).
    [CrossRef]
  14. J. Cheng, A. Volkmer, L. D. Book, X. S. Xie, “An epi-detected coherent anti-Stokes Raman scattering (E-CARS) microscope with high spectral resolution and high sensitivity,” J. Phys. Chem. B. 105, 1277–1280 (2001).
    [CrossRef]
  15. W. R. White, P. Wiltzius, “Real space measurement of structure in phase separating binary fluid mixtures,” Phys. Rev. Lett. 75, 3012–3015 (1995).
    [CrossRef] [PubMed]
  16. H. Jinnai, T. Koga, Y. Nishikawa, T. Hashimoto, S. T. Hyde, “Curvature determination of spinodal interface in a condensed matter system,” Phys. Rev. Lett. 78, 2248–2251 (1997).
    [CrossRef]
  17. N. J. Everall, “Modeling and measuring the effect of refraction on the depth resolution of confocal Raman microscopy,” Appl. Spectrosc. 54, 773–782 (2000).
    [CrossRef]
  18. H. Barańska, A. Łabudzińska, J. Terpiński, Laser Raman Spectroscopy: Analytical Applications (Wiley, New York1987), Chap. 5.
  19. N. J. Everall, “Measurement of orientation and crystallinity in uniaxially drawn poly(ethylene terephthalate) using polarized confocal Raman microscopy,” Appl. Spectrosc. 52, 1498–1504 (1998).
    [CrossRef]

2001 (1)

J. Cheng, A. Volkmer, L. D. Book, X. S. Xie, “An epi-detected coherent anti-Stokes Raman scattering (E-CARS) microscope with high spectral resolution and high sensitivity,” J. Phys. Chem. B. 105, 1277–1280 (2001).
[CrossRef]

2000 (2)

1999 (5)

A. Zumbusch, G. R. Holtom, X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82, 4142–4145 (1999).
[CrossRef]

P. S. Dobal, S. Bhaskar, S. B. Majumder, R. S. Katiyar, “Micro-Raman investigation of stress variations in lead titanate films on sapphire,” J. Appl. Phys. 86, 828–834 (1999).
[CrossRef]

S. Périchon, V. Lysenko, B. Remaki, D. Barbier, B. Champagnon, “Measurement of porous silicon thermal conductivity by micro-Raman scattering,” J. Appl. Phys. 86, 4700–4702 (1999).
[CrossRef]

E. Liu, X. Shi, B. K. Tay, L. K. Cheah, H. S. Tan, J. R. Shi, Z. Sun, “Micro-Raman spectroscopic analysis of tetrahedral amorphous carbon films deposited under varying conditions,” J. Appl. Phys. 86, 6078–6083 (1999).
[CrossRef]

F. Meinardi, S. Quilici, A. Borghesi, G. Artioli, “Microstructure imaging of C54-TiSi2 polycrystalline thin films by micro-Raman spectroscopy,” Appl. Phys. Lett. 75, 3090–3092 (1999).
[CrossRef]

1998 (6)

N. J. Everall, “Measurement of orientation and crystallinity in uniaxially drawn poly(ethylene terephthalate) using polarized confocal Raman microscopy,” Appl. Spectrosc. 52, 1498–1504 (1998).
[CrossRef]

N. M. Sijtsema, S. D. Wouters, C. J. de Grauw, C. Otto, J. Greve, “Confocal direct imaging Raman microscope: design and applications in biology,” Appl. Spectrosc. 52, 348–355 (1998).
[CrossRef]

C. R. Kagan, T. D. Harris, A. L. Harris, M. L. Schilling, “Submicron confocal Raman imaging of holograms in multicomponent photopolymers,” J. Chem. Phys. 108, 6892–6896 (1998).
[CrossRef]

C. D. Poweleit, A. Gunther, S. Goodnick, J. Menéndez, “Raman imaging of patterned silicon using a solid immersion lens,” Appl. Phys. Lett. 73, 2275–2277 (1998).
[CrossRef]

F. Lagugné Labarthet, T. Buffeteau, C. Sourisseau, “Molecular orientations in azopolymer holographic diffraction gratings as studied by Raman confocal microspectroscopy,” J. Phys. Chem. B 102, 5754–5765 (1998).
[CrossRef]

B. Lecourt, F. Capelle, F. Adamietz, A. Malaplate, D. Blaudez, H. Kellay, J. M. Turlet, “Confocal micro-Raman spectroscopy of black soap films,” J. Chem. Phys. 108, 1284–1289 (1998).
[CrossRef]

1997 (1)

H. Jinnai, T. Koga, Y. Nishikawa, T. Hashimoto, S. T. Hyde, “Curvature determination of spinodal interface in a condensed matter system,” Phys. Rev. Lett. 78, 2248–2251 (1997).
[CrossRef]

1995 (1)

W. R. White, P. Wiltzius, “Real space measurement of structure in phase separating binary fluid mixtures,” Phys. Rev. Lett. 75, 3012–3015 (1995).
[CrossRef] [PubMed]

1990 (1)

G. J. Puppels, F. F. M. de Mul, C. Otto, J. Greve, M. Robert-Nicaud, D. J. Arndt-Jovin, T. M. Jovin, “Studying single living cells and chromosomes by confocal Raman microspectroscopy,” Nature (London) 347, 301–303 (1990).
[CrossRef]

Adamietz, F.

B. Lecourt, F. Capelle, F. Adamietz, A. Malaplate, D. Blaudez, H. Kellay, J. M. Turlet, “Confocal micro-Raman spectroscopy of black soap films,” J. Chem. Phys. 108, 1284–1289 (1998).
[CrossRef]

Arndt-Jovin, D. J.

G. J. Puppels, F. F. M. de Mul, C. Otto, J. Greve, M. Robert-Nicaud, D. J. Arndt-Jovin, T. M. Jovin, “Studying single living cells and chromosomes by confocal Raman microspectroscopy,” Nature (London) 347, 301–303 (1990).
[CrossRef]

Artioli, G.

F. Meinardi, S. Quilici, A. Borghesi, G. Artioli, “Microstructure imaging of C54-TiSi2 polycrystalline thin films by micro-Raman spectroscopy,” Appl. Phys. Lett. 75, 3090–3092 (1999).
[CrossRef]

Baranska, H.

H. Barańska, A. Łabudzińska, J. Terpiński, Laser Raman Spectroscopy: Analytical Applications (Wiley, New York1987), Chap. 5.

Barbier, D.

S. Périchon, V. Lysenko, B. Remaki, D. Barbier, B. Champagnon, “Measurement of porous silicon thermal conductivity by micro-Raman scattering,” J. Appl. Phys. 86, 4700–4702 (1999).
[CrossRef]

Bhaskar, S.

P. S. Dobal, S. Bhaskar, S. B. Majumder, R. S. Katiyar, “Micro-Raman investigation of stress variations in lead titanate films on sapphire,” J. Appl. Phys. 86, 828–834 (1999).
[CrossRef]

Blaudez, D.

B. Lecourt, F. Capelle, F. Adamietz, A. Malaplate, D. Blaudez, H. Kellay, J. M. Turlet, “Confocal micro-Raman spectroscopy of black soap films,” J. Chem. Phys. 108, 1284–1289 (1998).
[CrossRef]

Book, L. D.

J. Cheng, A. Volkmer, L. D. Book, X. S. Xie, “An epi-detected coherent anti-Stokes Raman scattering (E-CARS) microscope with high spectral resolution and high sensitivity,” J. Phys. Chem. B. 105, 1277–1280 (2001).
[CrossRef]

Borghesi, A.

F. Meinardi, S. Quilici, A. Borghesi, G. Artioli, “Microstructure imaging of C54-TiSi2 polycrystalline thin films by micro-Raman spectroscopy,” Appl. Phys. Lett. 75, 3090–3092 (1999).
[CrossRef]

Buffeteau, T.

F. Lagugné Labarthet, T. Buffeteau, C. Sourisseau, “Molecular orientations in azopolymer holographic diffraction gratings as studied by Raman confocal microspectroscopy,” J. Phys. Chem. B 102, 5754–5765 (1998).
[CrossRef]

Capelle, F.

B. Lecourt, F. Capelle, F. Adamietz, A. Malaplate, D. Blaudez, H. Kellay, J. M. Turlet, “Confocal micro-Raman spectroscopy of black soap films,” J. Chem. Phys. 108, 1284–1289 (1998).
[CrossRef]

Champagnon, B.

S. Périchon, V. Lysenko, B. Remaki, D. Barbier, B. Champagnon, “Measurement of porous silicon thermal conductivity by micro-Raman scattering,” J. Appl. Phys. 86, 4700–4702 (1999).
[CrossRef]

Cheah, L. K.

E. Liu, X. Shi, B. K. Tay, L. K. Cheah, H. S. Tan, J. R. Shi, Z. Sun, “Micro-Raman spectroscopic analysis of tetrahedral amorphous carbon films deposited under varying conditions,” J. Appl. Phys. 86, 6078–6083 (1999).
[CrossRef]

Cheng, J.

J. Cheng, A. Volkmer, L. D. Book, X. S. Xie, “An epi-detected coherent anti-Stokes Raman scattering (E-CARS) microscope with high spectral resolution and high sensitivity,” J. Phys. Chem. B. 105, 1277–1280 (2001).
[CrossRef]

de Grauw, C. J.

de Mul, F. F. M.

G. J. Puppels, F. F. M. de Mul, C. Otto, J. Greve, M. Robert-Nicaud, D. J. Arndt-Jovin, T. M. Jovin, “Studying single living cells and chromosomes by confocal Raman microspectroscopy,” Nature (London) 347, 301–303 (1990).
[CrossRef]

Dobal, P. S.

P. S. Dobal, S. Bhaskar, S. B. Majumder, R. S. Katiyar, “Micro-Raman investigation of stress variations in lead titanate films on sapphire,” J. Appl. Phys. 86, 828–834 (1999).
[CrossRef]

Everall, N. J.

Goodnick, S.

C. D. Poweleit, A. Gunther, S. Goodnick, J. Menéndez, “Raman imaging of patterned silicon using a solid immersion lens,” Appl. Phys. Lett. 73, 2275–2277 (1998).
[CrossRef]

Greve, J.

N. M. Sijtsema, S. D. Wouters, C. J. de Grauw, C. Otto, J. Greve, “Confocal direct imaging Raman microscope: design and applications in biology,” Appl. Spectrosc. 52, 348–355 (1998).
[CrossRef]

G. J. Puppels, F. F. M. de Mul, C. Otto, J. Greve, M. Robert-Nicaud, D. J. Arndt-Jovin, T. M. Jovin, “Studying single living cells and chromosomes by confocal Raman microspectroscopy,” Nature (London) 347, 301–303 (1990).
[CrossRef]

Gunther, A.

C. D. Poweleit, A. Gunther, S. Goodnick, J. Menéndez, “Raman imaging of patterned silicon using a solid immersion lens,” Appl. Phys. Lett. 73, 2275–2277 (1998).
[CrossRef]

Harris, A. L.

C. R. Kagan, T. D. Harris, A. L. Harris, M. L. Schilling, “Submicron confocal Raman imaging of holograms in multicomponent photopolymers,” J. Chem. Phys. 108, 6892–6896 (1998).
[CrossRef]

Harris, T. D.

C. R. Kagan, T. D. Harris, A. L. Harris, M. L. Schilling, “Submicron confocal Raman imaging of holograms in multicomponent photopolymers,” J. Chem. Phys. 108, 6892–6896 (1998).
[CrossRef]

Hashimoto, T.

H. Jinnai, T. Koga, Y. Nishikawa, T. Hashimoto, S. T. Hyde, “Curvature determination of spinodal interface in a condensed matter system,” Phys. Rev. Lett. 78, 2248–2251 (1997).
[CrossRef]

Holtom, G. R.

A. Zumbusch, G. R. Holtom, X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82, 4142–4145 (1999).
[CrossRef]

Hyde, S. T.

H. Jinnai, T. Koga, Y. Nishikawa, T. Hashimoto, S. T. Hyde, “Curvature determination of spinodal interface in a condensed matter system,” Phys. Rev. Lett. 78, 2248–2251 (1997).
[CrossRef]

Jinnai, H.

H. Jinnai, T. Koga, Y. Nishikawa, T. Hashimoto, S. T. Hyde, “Curvature determination of spinodal interface in a condensed matter system,” Phys. Rev. Lett. 78, 2248–2251 (1997).
[CrossRef]

Jovin, T. M.

G. J. Puppels, F. F. M. de Mul, C. Otto, J. Greve, M. Robert-Nicaud, D. J. Arndt-Jovin, T. M. Jovin, “Studying single living cells and chromosomes by confocal Raman microspectroscopy,” Nature (London) 347, 301–303 (1990).
[CrossRef]

Kagan, C. R.

C. R. Kagan, T. D. Harris, A. L. Harris, M. L. Schilling, “Submicron confocal Raman imaging of holograms in multicomponent photopolymers,” J. Chem. Phys. 108, 6892–6896 (1998).
[CrossRef]

Katiyar, R. S.

P. S. Dobal, S. Bhaskar, S. B. Majumder, R. S. Katiyar, “Micro-Raman investigation of stress variations in lead titanate films on sapphire,” J. Appl. Phys. 86, 828–834 (1999).
[CrossRef]

Kellay, H.

B. Lecourt, F. Capelle, F. Adamietz, A. Malaplate, D. Blaudez, H. Kellay, J. M. Turlet, “Confocal micro-Raman spectroscopy of black soap films,” J. Chem. Phys. 108, 1284–1289 (1998).
[CrossRef]

Koga, T.

H. Jinnai, T. Koga, Y. Nishikawa, T. Hashimoto, S. T. Hyde, “Curvature determination of spinodal interface in a condensed matter system,” Phys. Rev. Lett. 78, 2248–2251 (1997).
[CrossRef]

Labudzinska, A.

H. Barańska, A. Łabudzińska, J. Terpiński, Laser Raman Spectroscopy: Analytical Applications (Wiley, New York1987), Chap. 5.

Lagugné Labarthet, F.

F. Lagugné Labarthet, T. Buffeteau, C. Sourisseau, “Molecular orientations in azopolymer holographic diffraction gratings as studied by Raman confocal microspectroscopy,” J. Phys. Chem. B 102, 5754–5765 (1998).
[CrossRef]

Lecourt, B.

B. Lecourt, F. Capelle, F. Adamietz, A. Malaplate, D. Blaudez, H. Kellay, J. M. Turlet, “Confocal micro-Raman spectroscopy of black soap films,” J. Chem. Phys. 108, 1284–1289 (1998).
[CrossRef]

Liu, E.

E. Liu, X. Shi, B. K. Tay, L. K. Cheah, H. S. Tan, J. R. Shi, Z. Sun, “Micro-Raman spectroscopic analysis of tetrahedral amorphous carbon films deposited under varying conditions,” J. Appl. Phys. 86, 6078–6083 (1999).
[CrossRef]

Lysenko, V.

S. Périchon, V. Lysenko, B. Remaki, D. Barbier, B. Champagnon, “Measurement of porous silicon thermal conductivity by micro-Raman scattering,” J. Appl. Phys. 86, 4700–4702 (1999).
[CrossRef]

Majumder, S. B.

P. S. Dobal, S. Bhaskar, S. B. Majumder, R. S. Katiyar, “Micro-Raman investigation of stress variations in lead titanate films on sapphire,” J. Appl. Phys. 86, 828–834 (1999).
[CrossRef]

Malaplate, A.

B. Lecourt, F. Capelle, F. Adamietz, A. Malaplate, D. Blaudez, H. Kellay, J. M. Turlet, “Confocal micro-Raman spectroscopy of black soap films,” J. Chem. Phys. 108, 1284–1289 (1998).
[CrossRef]

Meinardi, F.

F. Meinardi, S. Quilici, A. Borghesi, G. Artioli, “Microstructure imaging of C54-TiSi2 polycrystalline thin films by micro-Raman spectroscopy,” Appl. Phys. Lett. 75, 3090–3092 (1999).
[CrossRef]

Menéndez, J.

C. D. Poweleit, A. Gunther, S. Goodnick, J. Menéndez, “Raman imaging of patterned silicon using a solid immersion lens,” Appl. Phys. Lett. 73, 2275–2277 (1998).
[CrossRef]

Nishikawa, Y.

H. Jinnai, T. Koga, Y. Nishikawa, T. Hashimoto, S. T. Hyde, “Curvature determination of spinodal interface in a condensed matter system,” Phys. Rev. Lett. 78, 2248–2251 (1997).
[CrossRef]

Otto, C.

N. M. Sijtsema, S. D. Wouters, C. J. de Grauw, C. Otto, J. Greve, “Confocal direct imaging Raman microscope: design and applications in biology,” Appl. Spectrosc. 52, 348–355 (1998).
[CrossRef]

G. J. Puppels, F. F. M. de Mul, C. Otto, J. Greve, M. Robert-Nicaud, D. J. Arndt-Jovin, T. M. Jovin, “Studying single living cells and chromosomes by confocal Raman microspectroscopy,” Nature (London) 347, 301–303 (1990).
[CrossRef]

Périchon, S.

S. Périchon, V. Lysenko, B. Remaki, D. Barbier, B. Champagnon, “Measurement of porous silicon thermal conductivity by micro-Raman scattering,” J. Appl. Phys. 86, 4700–4702 (1999).
[CrossRef]

Poweleit, C. D.

C. D. Poweleit, A. Gunther, S. Goodnick, J. Menéndez, “Raman imaging of patterned silicon using a solid immersion lens,” Appl. Phys. Lett. 73, 2275–2277 (1998).
[CrossRef]

Puppels, G. J.

G. J. Puppels, F. F. M. de Mul, C. Otto, J. Greve, M. Robert-Nicaud, D. J. Arndt-Jovin, T. M. Jovin, “Studying single living cells and chromosomes by confocal Raman microspectroscopy,” Nature (London) 347, 301–303 (1990).
[CrossRef]

Quilici, S.

F. Meinardi, S. Quilici, A. Borghesi, G. Artioli, “Microstructure imaging of C54-TiSi2 polycrystalline thin films by micro-Raman spectroscopy,” Appl. Phys. Lett. 75, 3090–3092 (1999).
[CrossRef]

Remaki, B.

S. Périchon, V. Lysenko, B. Remaki, D. Barbier, B. Champagnon, “Measurement of porous silicon thermal conductivity by micro-Raman scattering,” J. Appl. Phys. 86, 4700–4702 (1999).
[CrossRef]

Robert-Nicaud, M.

G. J. Puppels, F. F. M. de Mul, C. Otto, J. Greve, M. Robert-Nicaud, D. J. Arndt-Jovin, T. M. Jovin, “Studying single living cells and chromosomes by confocal Raman microspectroscopy,” Nature (London) 347, 301–303 (1990).
[CrossRef]

Schilling, M. L.

C. R. Kagan, T. D. Harris, A. L. Harris, M. L. Schilling, “Submicron confocal Raman imaging of holograms in multicomponent photopolymers,” J. Chem. Phys. 108, 6892–6896 (1998).
[CrossRef]

Shi, J. R.

E. Liu, X. Shi, B. K. Tay, L. K. Cheah, H. S. Tan, J. R. Shi, Z. Sun, “Micro-Raman spectroscopic analysis of tetrahedral amorphous carbon films deposited under varying conditions,” J. Appl. Phys. 86, 6078–6083 (1999).
[CrossRef]

Shi, X.

E. Liu, X. Shi, B. K. Tay, L. K. Cheah, H. S. Tan, J. R. Shi, Z. Sun, “Micro-Raman spectroscopic analysis of tetrahedral amorphous carbon films deposited under varying conditions,” J. Appl. Phys. 86, 6078–6083 (1999).
[CrossRef]

Sijtsema, N. M.

Sourisseau, C.

F. Lagugné Labarthet, T. Buffeteau, C. Sourisseau, “Molecular orientations in azopolymer holographic diffraction gratings as studied by Raman confocal microspectroscopy,” J. Phys. Chem. B 102, 5754–5765 (1998).
[CrossRef]

Sun, Z.

E. Liu, X. Shi, B. K. Tay, L. K. Cheah, H. S. Tan, J. R. Shi, Z. Sun, “Micro-Raman spectroscopic analysis of tetrahedral amorphous carbon films deposited under varying conditions,” J. Appl. Phys. 86, 6078–6083 (1999).
[CrossRef]

Tan, H. S.

E. Liu, X. Shi, B. K. Tay, L. K. Cheah, H. S. Tan, J. R. Shi, Z. Sun, “Micro-Raman spectroscopic analysis of tetrahedral amorphous carbon films deposited under varying conditions,” J. Appl. Phys. 86, 6078–6083 (1999).
[CrossRef]

Tay, B. K.

E. Liu, X. Shi, B. K. Tay, L. K. Cheah, H. S. Tan, J. R. Shi, Z. Sun, “Micro-Raman spectroscopic analysis of tetrahedral amorphous carbon films deposited under varying conditions,” J. Appl. Phys. 86, 6078–6083 (1999).
[CrossRef]

Terpinski, J.

H. Barańska, A. Łabudzińska, J. Terpiński, Laser Raman Spectroscopy: Analytical Applications (Wiley, New York1987), Chap. 5.

Turlet, J. M.

B. Lecourt, F. Capelle, F. Adamietz, A. Malaplate, D. Blaudez, H. Kellay, J. M. Turlet, “Confocal micro-Raman spectroscopy of black soap films,” J. Chem. Phys. 108, 1284–1289 (1998).
[CrossRef]

Volkmer, A.

J. Cheng, A. Volkmer, L. D. Book, X. S. Xie, “An epi-detected coherent anti-Stokes Raman scattering (E-CARS) microscope with high spectral resolution and high sensitivity,” J. Phys. Chem. B. 105, 1277–1280 (2001).
[CrossRef]

White, W. R.

W. R. White, P. Wiltzius, “Real space measurement of structure in phase separating binary fluid mixtures,” Phys. Rev. Lett. 75, 3012–3015 (1995).
[CrossRef] [PubMed]

Wiltzius, P.

W. R. White, P. Wiltzius, “Real space measurement of structure in phase separating binary fluid mixtures,” Phys. Rev. Lett. 75, 3012–3015 (1995).
[CrossRef] [PubMed]

Wouters, S. D.

Xie, X. S.

J. Cheng, A. Volkmer, L. D. Book, X. S. Xie, “An epi-detected coherent anti-Stokes Raman scattering (E-CARS) microscope with high spectral resolution and high sensitivity,” J. Phys. Chem. B. 105, 1277–1280 (2001).
[CrossRef]

A. Zumbusch, G. R. Holtom, X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82, 4142–4145 (1999).
[CrossRef]

Zilker, S. J.

S. J. Zilker, “Materials design and physics of organic photorefractive systems,” ChemPhysChem 1, 72–87 (2000).
[CrossRef] [PubMed]

Zumbusch, A.

A. Zumbusch, G. R. Holtom, X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82, 4142–4145 (1999).
[CrossRef]

Appl. Phys. Lett. (2)

C. D. Poweleit, A. Gunther, S. Goodnick, J. Menéndez, “Raman imaging of patterned silicon using a solid immersion lens,” Appl. Phys. Lett. 73, 2275–2277 (1998).
[CrossRef]

F. Meinardi, S. Quilici, A. Borghesi, G. Artioli, “Microstructure imaging of C54-TiSi2 polycrystalline thin films by micro-Raman spectroscopy,” Appl. Phys. Lett. 75, 3090–3092 (1999).
[CrossRef]

Appl. Spectrosc. (3)

ChemPhysChem (1)

S. J. Zilker, “Materials design and physics of organic photorefractive systems,” ChemPhysChem 1, 72–87 (2000).
[CrossRef] [PubMed]

J. Appl. Phys. (3)

P. S. Dobal, S. Bhaskar, S. B. Majumder, R. S. Katiyar, “Micro-Raman investigation of stress variations in lead titanate films on sapphire,” J. Appl. Phys. 86, 828–834 (1999).
[CrossRef]

S. Périchon, V. Lysenko, B. Remaki, D. Barbier, B. Champagnon, “Measurement of porous silicon thermal conductivity by micro-Raman scattering,” J. Appl. Phys. 86, 4700–4702 (1999).
[CrossRef]

E. Liu, X. Shi, B. K. Tay, L. K. Cheah, H. S. Tan, J. R. Shi, Z. Sun, “Micro-Raman spectroscopic analysis of tetrahedral amorphous carbon films deposited under varying conditions,” J. Appl. Phys. 86, 6078–6083 (1999).
[CrossRef]

J. Chem. Phys. (2)

C. R. Kagan, T. D. Harris, A. L. Harris, M. L. Schilling, “Submicron confocal Raman imaging of holograms in multicomponent photopolymers,” J. Chem. Phys. 108, 6892–6896 (1998).
[CrossRef]

B. Lecourt, F. Capelle, F. Adamietz, A. Malaplate, D. Blaudez, H. Kellay, J. M. Turlet, “Confocal micro-Raman spectroscopy of black soap films,” J. Chem. Phys. 108, 1284–1289 (1998).
[CrossRef]

J. Phys. Chem. B (1)

F. Lagugné Labarthet, T. Buffeteau, C. Sourisseau, “Molecular orientations in azopolymer holographic diffraction gratings as studied by Raman confocal microspectroscopy,” J. Phys. Chem. B 102, 5754–5765 (1998).
[CrossRef]

J. Phys. Chem. B. (1)

J. Cheng, A. Volkmer, L. D. Book, X. S. Xie, “An epi-detected coherent anti-Stokes Raman scattering (E-CARS) microscope with high spectral resolution and high sensitivity,” J. Phys. Chem. B. 105, 1277–1280 (2001).
[CrossRef]

Nature (London) (1)

G. J. Puppels, F. F. M. de Mul, C. Otto, J. Greve, M. Robert-Nicaud, D. J. Arndt-Jovin, T. M. Jovin, “Studying single living cells and chromosomes by confocal Raman microspectroscopy,” Nature (London) 347, 301–303 (1990).
[CrossRef]

Phys. Rev. Lett. (3)

W. R. White, P. Wiltzius, “Real space measurement of structure in phase separating binary fluid mixtures,” Phys. Rev. Lett. 75, 3012–3015 (1995).
[CrossRef] [PubMed]

H. Jinnai, T. Koga, Y. Nishikawa, T. Hashimoto, S. T. Hyde, “Curvature determination of spinodal interface in a condensed matter system,” Phys. Rev. Lett. 78, 2248–2251 (1997).
[CrossRef]

A. Zumbusch, G. R. Holtom, X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82, 4142–4145 (1999).
[CrossRef]

Other (2)

H. Barańska, A. Łabudzińska, J. Terpiński, Laser Raman Spectroscopy: Analytical Applications (Wiley, New York1987), Chap. 5.

T. Wilson, ed., Confocal Microscopy (Academic, London, 1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Three-dimensional Raman image of TiO2 microparticles on a glass surface. Characteristic TiO2 line at 600 cm-1.

Fig. 2
Fig. 2

Two-dimensional Raman images of a PEO/PS mixture. The intensity distributions of the characteristic Raman lines at 1275 cm-1 (PEO, top) and 1001 cm-1 (PS, bottom) are shown. Image size, 75 µm × 75 µm.

Fig. 3
Fig. 3

Two-dimensional Raman images of a PB/PS mixture (10:1). The intensity distributions of the characteristic Raman lines at 1001 cm-1 (PS; top) and 1650 cm-1 (PB; bottom) are shown. Image size, 100 µm × 100 µm.

Fig. 4
Fig. 4

Three-dimensional Raman image of PS inclusions in a PB matrix. Image size, 100 µm × 100 µm × 50 µm. Data were calculated from the intensities of the characteristic Raman lines at 1001 cm-1 (PS) and 1650 cm-1 (PB).

Fig. 5
Fig. 5

Two-dimensional surface structure of an older Eprom chip. Comparison between Rayleigh image (top) and Raman image of the silicon line at 520 cm-1 (bottom). Image size, 100 µm × 100 µm.

Fig. 6
Fig. 6

Three-dimensional Raman image of the surface of an older Eprom chip. Characteristic silicon line at 520 cm-1. Image size, 100 µm × 100 µm × 37 µm.

Fig. 7
Fig. 7

Two-dimensional Raman image of a Boxazin plus C tablet. The intensity distributions of the characteristic Raman lines at 1033 cm-1 (NaHCO3, upper left), 888 cm-1 (glycine, upper right), 750 cm-1 (ASA, lower left), and 1144 cm-1 (vitamin C, lower right) are shown. Image size, 100 µm × 100 µm.

Fig. 8
Fig. 8

Three-dimensional Raman image of artificial Carlsbad salt. The intensity distributions of the characteristic Raman lines at 985 cm-1 (SO4 2-, top) and 1033 cm-1 (HCO3 , bottom) are shown.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δx=Δy=0.56λ/NA
Δz=0.89λ/NA2
VPS=IPSIPS+IPB,

Metrics