Abstract

We present what to our knowledge is a new application of optical frequency upconversion of images in quadratic materials to dynamic UV microstereolithography. A 150 × 150 point visible image transmitted by a liquid-crystal display was upconverted in a lithium triborate crystal, and the UV image was successfully used to polymerize a commercial stereolithographic resin.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Maruo, K. Ikuta, “Three-dimensional microfabrication by use of a single-photon-absorbed polymerization,” Appl. Phys. Lett. 76, 2656–2658 (2000).
    [CrossRef]
  2. H. Sun, T. Kawakami, Y. Xu, J. Ye, S. Matuso, H. Misawa, M. Miwa, R. Kaneko, “Real three-dimensional microstructures fabricated by photopolymerization of resins through two-photon absorption,” Opt. Lett. 25, 1110–1112 (2000).
    [CrossRef]
  3. A. Bertsch, J. Jézéquel, J. André, “Study of the spatial resolution of a new 3D microfabrication process: the microstereolithography using a dynamic mask-generator technique,” J. Photochem. Photobiol. A 107, 275–281 (1997).
    [CrossRef]
  4. M. Farsari, S. Huang, P. Birch, F. Claret-Tournier, R. Young, D. Budgett, C. Bradfield, C. Chatwin, “Microfabrication by use of a spatial light modulator in the ultraviolet: experimental results,” Opt. Lett. 24, 549–550 (1999).
    [CrossRef]
  5. C. Chatwin, M. Farsari, S. Huang, M. Heywood, P. Birch, R. Young, J. Richardson, “UV microstereolithography system that uses spatial light modulator technology,” Appl. Opt. 37, 7514–7522 (1998).
    [CrossRef]
  6. S. Monneret, V. Loubère, S. Corbel, “Microstereolithography using a dynamic mask generator and a non-coherent visible light source,” in Design, Test, and Microfabrication of MEMS and MOEMS, B. Courtois, S. B. Crary, W. Ehrfeld, H. Fujita, J. Karam, K. W. Markus, eds., Proc. SPIE3680, 553–561 (1999).
    [CrossRef]
  7. J. Midwinter, J. Warner, “Upconversion of near infrared to visible radiation in lithium-meta-niobate,” J. Appl. Phys. 38, 519–523 (1967).
    [CrossRef]
  8. J. Midwinter, “Image conversion from 1.6 µ to the visible in lithium niobate,” Appl. Phys. Lett. 12, 68–70 (1968).
    [CrossRef]
  9. A. Firester, “Parametric image conversion: Part I,” J. Appl. Phys. 40, 4842–4849 (1969).
    [CrossRef]
  10. W. C. Chiou, F. Pace, “Parametric image upconversion of 10.6 µm illuminated objects,” Appl. Phys. Lett. 20, 44–47 (1972).
    [CrossRef]
  11. G. Faris, M. Banks, “Upconverting time gate for imaging through highly scattering media,” Opt. Lett. 19, 1813–1815 (1994).
    [CrossRef] [PubMed]
  12. F. Devaux, E. Lantz, “Transfer function of spatial frequencies in parametric image amplification: experimental analysis and application to picosecond spatial filtering,” Opt. Commun. 114, 295–300 (1995).
    [CrossRef]
  13. F. Devaux, E. Lantz, “Parametric amplification of a polychromatic image,” J. Opt. Soc. Am. B 12, 2245–2252 (1995).
    [CrossRef]
  14. F. Devaux, “Amplification paramétrique d’images,” Ph.D. dissertation (Unité de Formation et de Recherche des Sciences et Techniques de L’Université de Franche-Comté, Besançon, France, 1996).
  15. E. Lantz, F. Devaux, “Parametric amplification of images,” Quantum Semiclass. Opt. 9, 279–286 (1997).
    [CrossRef]
  16. E. Lantz, F. Devaux, “The phase-mismatch vector and resolution in image parametric amplification,” J. Opt. A: Pure Appl. Opt. 2, 362–364 (2000).
  17. B. Wu, N. Chen, C. Chen, D. Deng, Z. Xu, “Highly efficient ultraviolet generation at 355 nm in LiB3O5,” Opt. Lett. 14, 1080–1081 (1989).
    [CrossRef] [PubMed]

2000 (3)

S. Maruo, K. Ikuta, “Three-dimensional microfabrication by use of a single-photon-absorbed polymerization,” Appl. Phys. Lett. 76, 2656–2658 (2000).
[CrossRef]

H. Sun, T. Kawakami, Y. Xu, J. Ye, S. Matuso, H. Misawa, M. Miwa, R. Kaneko, “Real three-dimensional microstructures fabricated by photopolymerization of resins through two-photon absorption,” Opt. Lett. 25, 1110–1112 (2000).
[CrossRef]

E. Lantz, F. Devaux, “The phase-mismatch vector and resolution in image parametric amplification,” J. Opt. A: Pure Appl. Opt. 2, 362–364 (2000).

1999 (1)

1998 (1)

1997 (2)

A. Bertsch, J. Jézéquel, J. André, “Study of the spatial resolution of a new 3D microfabrication process: the microstereolithography using a dynamic mask-generator technique,” J. Photochem. Photobiol. A 107, 275–281 (1997).
[CrossRef]

E. Lantz, F. Devaux, “Parametric amplification of images,” Quantum Semiclass. Opt. 9, 279–286 (1997).
[CrossRef]

1995 (2)

F. Devaux, E. Lantz, “Transfer function of spatial frequencies in parametric image amplification: experimental analysis and application to picosecond spatial filtering,” Opt. Commun. 114, 295–300 (1995).
[CrossRef]

F. Devaux, E. Lantz, “Parametric amplification of a polychromatic image,” J. Opt. Soc. Am. B 12, 2245–2252 (1995).
[CrossRef]

1994 (1)

1989 (1)

1972 (1)

W. C. Chiou, F. Pace, “Parametric image upconversion of 10.6 µm illuminated objects,” Appl. Phys. Lett. 20, 44–47 (1972).
[CrossRef]

1969 (1)

A. Firester, “Parametric image conversion: Part I,” J. Appl. Phys. 40, 4842–4849 (1969).
[CrossRef]

1968 (1)

J. Midwinter, “Image conversion from 1.6 µ to the visible in lithium niobate,” Appl. Phys. Lett. 12, 68–70 (1968).
[CrossRef]

1967 (1)

J. Midwinter, J. Warner, “Upconversion of near infrared to visible radiation in lithium-meta-niobate,” J. Appl. Phys. 38, 519–523 (1967).
[CrossRef]

André, J.

A. Bertsch, J. Jézéquel, J. André, “Study of the spatial resolution of a new 3D microfabrication process: the microstereolithography using a dynamic mask-generator technique,” J. Photochem. Photobiol. A 107, 275–281 (1997).
[CrossRef]

Banks, M.

Bertsch, A.

A. Bertsch, J. Jézéquel, J. André, “Study of the spatial resolution of a new 3D microfabrication process: the microstereolithography using a dynamic mask-generator technique,” J. Photochem. Photobiol. A 107, 275–281 (1997).
[CrossRef]

Birch, P.

Bradfield, C.

Budgett, D.

Chatwin, C.

Chen, C.

Chen, N.

Chiou, W. C.

W. C. Chiou, F. Pace, “Parametric image upconversion of 10.6 µm illuminated objects,” Appl. Phys. Lett. 20, 44–47 (1972).
[CrossRef]

Claret-Tournier, F.

Corbel, S.

S. Monneret, V. Loubère, S. Corbel, “Microstereolithography using a dynamic mask generator and a non-coherent visible light source,” in Design, Test, and Microfabrication of MEMS and MOEMS, B. Courtois, S. B. Crary, W. Ehrfeld, H. Fujita, J. Karam, K. W. Markus, eds., Proc. SPIE3680, 553–561 (1999).
[CrossRef]

Deng, D.

Devaux, F.

E. Lantz, F. Devaux, “The phase-mismatch vector and resolution in image parametric amplification,” J. Opt. A: Pure Appl. Opt. 2, 362–364 (2000).

E. Lantz, F. Devaux, “Parametric amplification of images,” Quantum Semiclass. Opt. 9, 279–286 (1997).
[CrossRef]

F. Devaux, E. Lantz, “Transfer function of spatial frequencies in parametric image amplification: experimental analysis and application to picosecond spatial filtering,” Opt. Commun. 114, 295–300 (1995).
[CrossRef]

F. Devaux, E. Lantz, “Parametric amplification of a polychromatic image,” J. Opt. Soc. Am. B 12, 2245–2252 (1995).
[CrossRef]

F. Devaux, “Amplification paramétrique d’images,” Ph.D. dissertation (Unité de Formation et de Recherche des Sciences et Techniques de L’Université de Franche-Comté, Besançon, France, 1996).

Faris, G.

Farsari, M.

Firester, A.

A. Firester, “Parametric image conversion: Part I,” J. Appl. Phys. 40, 4842–4849 (1969).
[CrossRef]

Heywood, M.

Huang, S.

Ikuta, K.

S. Maruo, K. Ikuta, “Three-dimensional microfabrication by use of a single-photon-absorbed polymerization,” Appl. Phys. Lett. 76, 2656–2658 (2000).
[CrossRef]

Jézéquel, J.

A. Bertsch, J. Jézéquel, J. André, “Study of the spatial resolution of a new 3D microfabrication process: the microstereolithography using a dynamic mask-generator technique,” J. Photochem. Photobiol. A 107, 275–281 (1997).
[CrossRef]

Kaneko, R.

Kawakami, T.

Lantz, E.

E. Lantz, F. Devaux, “The phase-mismatch vector and resolution in image parametric amplification,” J. Opt. A: Pure Appl. Opt. 2, 362–364 (2000).

E. Lantz, F. Devaux, “Parametric amplification of images,” Quantum Semiclass. Opt. 9, 279–286 (1997).
[CrossRef]

F. Devaux, E. Lantz, “Parametric amplification of a polychromatic image,” J. Opt. Soc. Am. B 12, 2245–2252 (1995).
[CrossRef]

F. Devaux, E. Lantz, “Transfer function of spatial frequencies in parametric image amplification: experimental analysis and application to picosecond spatial filtering,” Opt. Commun. 114, 295–300 (1995).
[CrossRef]

Loubère, V.

S. Monneret, V. Loubère, S. Corbel, “Microstereolithography using a dynamic mask generator and a non-coherent visible light source,” in Design, Test, and Microfabrication of MEMS and MOEMS, B. Courtois, S. B. Crary, W. Ehrfeld, H. Fujita, J. Karam, K. W. Markus, eds., Proc. SPIE3680, 553–561 (1999).
[CrossRef]

Maruo, S.

S. Maruo, K. Ikuta, “Three-dimensional microfabrication by use of a single-photon-absorbed polymerization,” Appl. Phys. Lett. 76, 2656–2658 (2000).
[CrossRef]

Matuso, S.

Midwinter, J.

J. Midwinter, “Image conversion from 1.6 µ to the visible in lithium niobate,” Appl. Phys. Lett. 12, 68–70 (1968).
[CrossRef]

J. Midwinter, J. Warner, “Upconversion of near infrared to visible radiation in lithium-meta-niobate,” J. Appl. Phys. 38, 519–523 (1967).
[CrossRef]

Misawa, H.

Miwa, M.

Monneret, S.

S. Monneret, V. Loubère, S. Corbel, “Microstereolithography using a dynamic mask generator and a non-coherent visible light source,” in Design, Test, and Microfabrication of MEMS and MOEMS, B. Courtois, S. B. Crary, W. Ehrfeld, H. Fujita, J. Karam, K. W. Markus, eds., Proc. SPIE3680, 553–561 (1999).
[CrossRef]

Pace, F.

W. C. Chiou, F. Pace, “Parametric image upconversion of 10.6 µm illuminated objects,” Appl. Phys. Lett. 20, 44–47 (1972).
[CrossRef]

Richardson, J.

Sun, H.

Warner, J.

J. Midwinter, J. Warner, “Upconversion of near infrared to visible radiation in lithium-meta-niobate,” J. Appl. Phys. 38, 519–523 (1967).
[CrossRef]

Wu, B.

Xu, Y.

Xu, Z.

Ye, J.

Young, R.

Appl. Opt. (1)

Appl. Phys. Lett. (3)

J. Midwinter, “Image conversion from 1.6 µ to the visible in lithium niobate,” Appl. Phys. Lett. 12, 68–70 (1968).
[CrossRef]

S. Maruo, K. Ikuta, “Three-dimensional microfabrication by use of a single-photon-absorbed polymerization,” Appl. Phys. Lett. 76, 2656–2658 (2000).
[CrossRef]

W. C. Chiou, F. Pace, “Parametric image upconversion of 10.6 µm illuminated objects,” Appl. Phys. Lett. 20, 44–47 (1972).
[CrossRef]

J. Appl. Phys. (2)

J. Midwinter, J. Warner, “Upconversion of near infrared to visible radiation in lithium-meta-niobate,” J. Appl. Phys. 38, 519–523 (1967).
[CrossRef]

A. Firester, “Parametric image conversion: Part I,” J. Appl. Phys. 40, 4842–4849 (1969).
[CrossRef]

J. Opt. A: Pure Appl. Opt. (1)

E. Lantz, F. Devaux, “The phase-mismatch vector and resolution in image parametric amplification,” J. Opt. A: Pure Appl. Opt. 2, 362–364 (2000).

J. Opt. Soc. Am. B (1)

J. Photochem. Photobiol. A (1)

A. Bertsch, J. Jézéquel, J. André, “Study of the spatial resolution of a new 3D microfabrication process: the microstereolithography using a dynamic mask-generator technique,” J. Photochem. Photobiol. A 107, 275–281 (1997).
[CrossRef]

Opt. Commun. (1)

F. Devaux, E. Lantz, “Transfer function of spatial frequencies in parametric image amplification: experimental analysis and application to picosecond spatial filtering,” Opt. Commun. 114, 295–300 (1995).
[CrossRef]

Opt. Lett. (4)

Quantum Semiclass. Opt. (1)

E. Lantz, F. Devaux, “Parametric amplification of images,” Quantum Semiclass. Opt. 9, 279–286 (1997).
[CrossRef]

Other (2)

S. Monneret, V. Loubère, S. Corbel, “Microstereolithography using a dynamic mask generator and a non-coherent visible light source,” in Design, Test, and Microfabrication of MEMS and MOEMS, B. Courtois, S. B. Crary, W. Ehrfeld, H. Fujita, J. Karam, K. W. Markus, eds., Proc. SPIE3680, 553–561 (1999).
[CrossRef]

F. Devaux, “Amplification paramétrique d’images,” Ph.D. dissertation (Unité de Formation et de Recherche des Sciences et Techniques de L’Université de Franche-Comté, Besançon, France, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Phase-matching schemes. (a) Perfect phase-matching configuration. (b) For a given tilt of k 2, k 3 is generated in the direction minimizing Δk.

Fig. 2
Fig. 2

Possible schemes for image upconversion. (a) Near-IR plane wave summed with a visible image gives an UV image. (b) Visible plane wave summed with a near-IR image gives an UV image.

Fig. 3
Fig. 3

Polarization of the interacting waves for a type 2 interaction in the YZ plane of a LBO crystal.

Fig. 4
Fig. 4

Calculated spatial-frequency transfer functions corresponding to noncritical phase matching when (a) a visible or (b) a near-IR image is upconverted. In both cases the bandwidth is 25 mm-1 in the two dimensions.

Fig. 5
Fig. 5

Experimental setup: O, object; P, Glan–Taylor polarizer; D1, dichroic mirror (R max at 1064 nm, T max at 532 nm); D2, dichroic mirror (R max at 355 nm, T max at 532 nm and 1064 nm); F1 and F2, absorbing filters.

Fig. 6
Fig. 6

Experimental results: (a) Visible image of the resolution chart. (b) Upconverted image. The group 71.8 lines/mm, corresponding to a resolution of 28 mm-1 on the crystal, is resolved. (c) Upconverted image of an image transmitted by a LCD. Pixels of the input image can be observed.

Fig. 7
Fig. 7

Polymerized patterns (a) of the resolution chart and (b) of the image transmitted by the LCD. In these pictures only the edges of the objects are visible, because the objects were illuminated with light at grazing incidence.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Δk=k3-k1-k2=0
k3φ3-k2φ2=0.
Δk=πn2λ2 Δφ221-1n22n2φ22-n2λ3n3λ21-1n32n3φ32,
ηIRUVu, v=ϑIvis0bvis2sin2bvisL, ηvisUVu, v=ϑIIR0bIR2sin2bIRL,
ϑ=18ω2μ0deff2cnIRnvisnUV.
bvis=12Δk2+43 ϑIvis01/2, bIR=12Δk2+83 ϑIIR01/2.

Metrics