Abstract

A simple and easy to use method that allows high-finesse optical cavities to be used as absorption cells for spectroscopic purposes is presented. This method introduces a single-mode continuous-wave laser into the cavity by use of an off-axis cavity alignment geometry to eliminate systematically the resonances commonly associated with optical cavities, while preserving the absorption signal amplifying properties of such cavities. This considerably reduces the complexity of the apparatus compared with other high-resolution cavity-based absorption methods. Application of this technique in conjunction with either cavity ringdown spectroscopy or integrated cavity output spectroscopy produced absorption sensitivities of 1.5 × 10-9 cm-1 Hz-1/2 and 1.8 × 10-10 cm-1 Hz-1/2, respectively.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. A. Jackson, “The spherical Fabry-Perot interferometer as an instrument of high resolving power for use with external or with internal atomic beams,” Proc. R. Soc. London Ser. A 263, 289–308 (1961).
    [CrossRef]
  2. G. Hernandez, “Fabry-Perot with an absorbing etalon cavity,” Appl. Opt. 24, 3062–3067 (1985).
    [CrossRef] [PubMed]
  3. J. Ye, L.-S. Ma, J. L. Hall, “Ultrasensitive detections in atomic and molecular physics: demonstration in molecular overtone spectroscopy,” J. Opt. Soc. Am. B 15, 6–15 (1998).
    [CrossRef]
  4. T. G. Spence, C. C. Harb, B. A. Paldus, R. N. Zare, B. Wilke, R. L. Byer, “A laser-locked cavity ring-down spectrometer employing an analog detection scheme,” Rev. Sci. Instrum. 71 (2), 347–353 (2000).
    [CrossRef]
  5. J. J. Scherer, J. B. Paul, A. O’Keefe, R. J. Saykally, “Cavity ringdown laser absorption spectroscopy—history, development, and application to pulsed molecular beams,” Chem. Rev. 97 (1), 25–51 (1997).
    [CrossRef] [PubMed]
  6. G. Berden, R. Peeters, G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem. 19 (4), 565–607 (2000).
    [CrossRef]
  7. A. O’Keefe, D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
    [CrossRef]
  8. A. O’Keefe, J. J. Scherer, J. B. Paul, “CW integrated cavity output spectroscopy,” Chem. Phys. Lett. 307 (5–6), 343–349 (1999).
    [CrossRef]
  9. R. Engeln, G. Berden, R. Peeters, G. Meijer, “Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy,” Rev. Sci. Instrum. 69, 3763–3769 (1998).
    [CrossRef]
  10. D. R. Herriott, H. Kogelnik, R. Kompfner, “Off-axis paths in spherical mirror interferometers,” Appl. Opt. 3, 523–526 (1964).
    [CrossRef]
  11. B. A. Paldus, C. C. Harb, T. G. Spence, B. Wilke, J. Xie, J. S. Harris, R. N. Zare, “Cavity-locked ring-down spectroscopy,” J. Appl. Phys. 83, 3991–3997 (1998).
    [CrossRef]
  12. D. R. Herriott, H. J. Schulte, “Folded optical delay lines,” Appl. Opt. 4, 883–889 (1965).
    [CrossRef]
  13. J. B. McManus, P. L. Kebabian, M. S. Zahniser, “Astigmatic mirror multipass absorption cells for long-path-length spectroscopy,” Appl. Opt. 34, 3336–3348 (1995).
    [CrossRef] [PubMed]
  14. K. K. Lehmann, D. Romanini, “The superposition principle and cavity ring-down spectroscopy,” J. Chem. Phys. 105, 10263–10277 (1996).
    [CrossRef]
  15. J. G. Xin, A. Duncan, D. R. Hall, “Analysis of hyperboloidal ray envelopes in Herriot cells and their use in laser resonators,” Appl. Opt. 28, 4576–4584 (1989).
    [CrossRef] [PubMed]
  16. R. D. van Zee, J. T. Hodges, J. P. Looney, “Pulsed, single-mode cavity ringdown spectroscopy,” Appl. Opt. 38, 3951–3960 (1999).
    [CrossRef]
  17. D. Romanini, A. A. Kachanov, F. Stoeckel, “Diode laser cavity ring down spectroscopy,” Chem. Phys. Lett. 270 (5–6), 538–545 (1997).
    [CrossRef]

2000

T. G. Spence, C. C. Harb, B. A. Paldus, R. N. Zare, B. Wilke, R. L. Byer, “A laser-locked cavity ring-down spectrometer employing an analog detection scheme,” Rev. Sci. Instrum. 71 (2), 347–353 (2000).
[CrossRef]

G. Berden, R. Peeters, G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem. 19 (4), 565–607 (2000).
[CrossRef]

1999

A. O’Keefe, J. J. Scherer, J. B. Paul, “CW integrated cavity output spectroscopy,” Chem. Phys. Lett. 307 (5–6), 343–349 (1999).
[CrossRef]

R. D. van Zee, J. T. Hodges, J. P. Looney, “Pulsed, single-mode cavity ringdown spectroscopy,” Appl. Opt. 38, 3951–3960 (1999).
[CrossRef]

1998

J. Ye, L.-S. Ma, J. L. Hall, “Ultrasensitive detections in atomic and molecular physics: demonstration in molecular overtone spectroscopy,” J. Opt. Soc. Am. B 15, 6–15 (1998).
[CrossRef]

R. Engeln, G. Berden, R. Peeters, G. Meijer, “Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy,” Rev. Sci. Instrum. 69, 3763–3769 (1998).
[CrossRef]

B. A. Paldus, C. C. Harb, T. G. Spence, B. Wilke, J. Xie, J. S. Harris, R. N. Zare, “Cavity-locked ring-down spectroscopy,” J. Appl. Phys. 83, 3991–3997 (1998).
[CrossRef]

1997

J. J. Scherer, J. B. Paul, A. O’Keefe, R. J. Saykally, “Cavity ringdown laser absorption spectroscopy—history, development, and application to pulsed molecular beams,” Chem. Rev. 97 (1), 25–51 (1997).
[CrossRef] [PubMed]

D. Romanini, A. A. Kachanov, F. Stoeckel, “Diode laser cavity ring down spectroscopy,” Chem. Phys. Lett. 270 (5–6), 538–545 (1997).
[CrossRef]

1996

K. K. Lehmann, D. Romanini, “The superposition principle and cavity ring-down spectroscopy,” J. Chem. Phys. 105, 10263–10277 (1996).
[CrossRef]

1995

1989

1988

A. O’Keefe, D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
[CrossRef]

1985

1965

1964

1961

D. A. Jackson, “The spherical Fabry-Perot interferometer as an instrument of high resolving power for use with external or with internal atomic beams,” Proc. R. Soc. London Ser. A 263, 289–308 (1961).
[CrossRef]

Berden, G.

G. Berden, R. Peeters, G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem. 19 (4), 565–607 (2000).
[CrossRef]

R. Engeln, G. Berden, R. Peeters, G. Meijer, “Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy,” Rev. Sci. Instrum. 69, 3763–3769 (1998).
[CrossRef]

Byer, R. L.

T. G. Spence, C. C. Harb, B. A. Paldus, R. N. Zare, B. Wilke, R. L. Byer, “A laser-locked cavity ring-down spectrometer employing an analog detection scheme,” Rev. Sci. Instrum. 71 (2), 347–353 (2000).
[CrossRef]

Deacon, D. A. G.

A. O’Keefe, D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
[CrossRef]

Duncan, A.

Engeln, R.

R. Engeln, G. Berden, R. Peeters, G. Meijer, “Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy,” Rev. Sci. Instrum. 69, 3763–3769 (1998).
[CrossRef]

Hall, D. R.

Hall, J. L.

Harb, C. C.

T. G. Spence, C. C. Harb, B. A. Paldus, R. N. Zare, B. Wilke, R. L. Byer, “A laser-locked cavity ring-down spectrometer employing an analog detection scheme,” Rev. Sci. Instrum. 71 (2), 347–353 (2000).
[CrossRef]

B. A. Paldus, C. C. Harb, T. G. Spence, B. Wilke, J. Xie, J. S. Harris, R. N. Zare, “Cavity-locked ring-down spectroscopy,” J. Appl. Phys. 83, 3991–3997 (1998).
[CrossRef]

Harris, J. S.

B. A. Paldus, C. C. Harb, T. G. Spence, B. Wilke, J. Xie, J. S. Harris, R. N. Zare, “Cavity-locked ring-down spectroscopy,” J. Appl. Phys. 83, 3991–3997 (1998).
[CrossRef]

Hernandez, G.

Herriott, D. R.

Hodges, J. T.

Jackson, D. A.

D. A. Jackson, “The spherical Fabry-Perot interferometer as an instrument of high resolving power for use with external or with internal atomic beams,” Proc. R. Soc. London Ser. A 263, 289–308 (1961).
[CrossRef]

Kachanov, A. A.

D. Romanini, A. A. Kachanov, F. Stoeckel, “Diode laser cavity ring down spectroscopy,” Chem. Phys. Lett. 270 (5–6), 538–545 (1997).
[CrossRef]

Kebabian, P. L.

Kogelnik, H.

Kompfner, R.

Lehmann, K. K.

K. K. Lehmann, D. Romanini, “The superposition principle and cavity ring-down spectroscopy,” J. Chem. Phys. 105, 10263–10277 (1996).
[CrossRef]

Looney, J. P.

Ma, L.-S.

McManus, J. B.

Meijer, G.

G. Berden, R. Peeters, G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem. 19 (4), 565–607 (2000).
[CrossRef]

R. Engeln, G. Berden, R. Peeters, G. Meijer, “Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy,” Rev. Sci. Instrum. 69, 3763–3769 (1998).
[CrossRef]

O’Keefe, A.

A. O’Keefe, J. J. Scherer, J. B. Paul, “CW integrated cavity output spectroscopy,” Chem. Phys. Lett. 307 (5–6), 343–349 (1999).
[CrossRef]

J. J. Scherer, J. B. Paul, A. O’Keefe, R. J. Saykally, “Cavity ringdown laser absorption spectroscopy—history, development, and application to pulsed molecular beams,” Chem. Rev. 97 (1), 25–51 (1997).
[CrossRef] [PubMed]

A. O’Keefe, D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
[CrossRef]

Paldus, B. A.

T. G. Spence, C. C. Harb, B. A. Paldus, R. N. Zare, B. Wilke, R. L. Byer, “A laser-locked cavity ring-down spectrometer employing an analog detection scheme,” Rev. Sci. Instrum. 71 (2), 347–353 (2000).
[CrossRef]

B. A. Paldus, C. C. Harb, T. G. Spence, B. Wilke, J. Xie, J. S. Harris, R. N. Zare, “Cavity-locked ring-down spectroscopy,” J. Appl. Phys. 83, 3991–3997 (1998).
[CrossRef]

Paul, J. B.

A. O’Keefe, J. J. Scherer, J. B. Paul, “CW integrated cavity output spectroscopy,” Chem. Phys. Lett. 307 (5–6), 343–349 (1999).
[CrossRef]

J. J. Scherer, J. B. Paul, A. O’Keefe, R. J. Saykally, “Cavity ringdown laser absorption spectroscopy—history, development, and application to pulsed molecular beams,” Chem. Rev. 97 (1), 25–51 (1997).
[CrossRef] [PubMed]

Peeters, R.

G. Berden, R. Peeters, G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem. 19 (4), 565–607 (2000).
[CrossRef]

R. Engeln, G. Berden, R. Peeters, G. Meijer, “Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy,” Rev. Sci. Instrum. 69, 3763–3769 (1998).
[CrossRef]

Romanini, D.

D. Romanini, A. A. Kachanov, F. Stoeckel, “Diode laser cavity ring down spectroscopy,” Chem. Phys. Lett. 270 (5–6), 538–545 (1997).
[CrossRef]

K. K. Lehmann, D. Romanini, “The superposition principle and cavity ring-down spectroscopy,” J. Chem. Phys. 105, 10263–10277 (1996).
[CrossRef]

Saykally, R. J.

J. J. Scherer, J. B. Paul, A. O’Keefe, R. J. Saykally, “Cavity ringdown laser absorption spectroscopy—history, development, and application to pulsed molecular beams,” Chem. Rev. 97 (1), 25–51 (1997).
[CrossRef] [PubMed]

Scherer, J. J.

A. O’Keefe, J. J. Scherer, J. B. Paul, “CW integrated cavity output spectroscopy,” Chem. Phys. Lett. 307 (5–6), 343–349 (1999).
[CrossRef]

J. J. Scherer, J. B. Paul, A. O’Keefe, R. J. Saykally, “Cavity ringdown laser absorption spectroscopy—history, development, and application to pulsed molecular beams,” Chem. Rev. 97 (1), 25–51 (1997).
[CrossRef] [PubMed]

Schulte, H. J.

Spence, T. G.

T. G. Spence, C. C. Harb, B. A. Paldus, R. N. Zare, B. Wilke, R. L. Byer, “A laser-locked cavity ring-down spectrometer employing an analog detection scheme,” Rev. Sci. Instrum. 71 (2), 347–353 (2000).
[CrossRef]

B. A. Paldus, C. C. Harb, T. G. Spence, B. Wilke, J. Xie, J. S. Harris, R. N. Zare, “Cavity-locked ring-down spectroscopy,” J. Appl. Phys. 83, 3991–3997 (1998).
[CrossRef]

Stoeckel, F.

D. Romanini, A. A. Kachanov, F. Stoeckel, “Diode laser cavity ring down spectroscopy,” Chem. Phys. Lett. 270 (5–6), 538–545 (1997).
[CrossRef]

van Zee, R. D.

Wilke, B.

T. G. Spence, C. C. Harb, B. A. Paldus, R. N. Zare, B. Wilke, R. L. Byer, “A laser-locked cavity ring-down spectrometer employing an analog detection scheme,” Rev. Sci. Instrum. 71 (2), 347–353 (2000).
[CrossRef]

B. A. Paldus, C. C. Harb, T. G. Spence, B. Wilke, J. Xie, J. S. Harris, R. N. Zare, “Cavity-locked ring-down spectroscopy,” J. Appl. Phys. 83, 3991–3997 (1998).
[CrossRef]

Xie, J.

B. A. Paldus, C. C. Harb, T. G. Spence, B. Wilke, J. Xie, J. S. Harris, R. N. Zare, “Cavity-locked ring-down spectroscopy,” J. Appl. Phys. 83, 3991–3997 (1998).
[CrossRef]

Xin, J. G.

Ye, J.

Zahniser, M. S.

Zare, R. N.

T. G. Spence, C. C. Harb, B. A. Paldus, R. N. Zare, B. Wilke, R. L. Byer, “A laser-locked cavity ring-down spectrometer employing an analog detection scheme,” Rev. Sci. Instrum. 71 (2), 347–353 (2000).
[CrossRef]

B. A. Paldus, C. C. Harb, T. G. Spence, B. Wilke, J. Xie, J. S. Harris, R. N. Zare, “Cavity-locked ring-down spectroscopy,” J. Appl. Phys. 83, 3991–3997 (1998).
[CrossRef]

Appl. Opt.

Chem. Phys. Lett.

D. Romanini, A. A. Kachanov, F. Stoeckel, “Diode laser cavity ring down spectroscopy,” Chem. Phys. Lett. 270 (5–6), 538–545 (1997).
[CrossRef]

A. O’Keefe, J. J. Scherer, J. B. Paul, “CW integrated cavity output spectroscopy,” Chem. Phys. Lett. 307 (5–6), 343–349 (1999).
[CrossRef]

Chem. Rev.

J. J. Scherer, J. B. Paul, A. O’Keefe, R. J. Saykally, “Cavity ringdown laser absorption spectroscopy—history, development, and application to pulsed molecular beams,” Chem. Rev. 97 (1), 25–51 (1997).
[CrossRef] [PubMed]

Int. Rev. Phys. Chem.

G. Berden, R. Peeters, G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem. 19 (4), 565–607 (2000).
[CrossRef]

J. Appl. Phys.

B. A. Paldus, C. C. Harb, T. G. Spence, B. Wilke, J. Xie, J. S. Harris, R. N. Zare, “Cavity-locked ring-down spectroscopy,” J. Appl. Phys. 83, 3991–3997 (1998).
[CrossRef]

J. Chem. Phys.

K. K. Lehmann, D. Romanini, “The superposition principle and cavity ring-down spectroscopy,” J. Chem. Phys. 105, 10263–10277 (1996).
[CrossRef]

J. Opt. Soc. Am. B

Proc. R. Soc. London Ser. A

D. A. Jackson, “The spherical Fabry-Perot interferometer as an instrument of high resolving power for use with external or with internal atomic beams,” Proc. R. Soc. London Ser. A 263, 289–308 (1961).
[CrossRef]

Rev. Sci. Instrum.

T. G. Spence, C. C. Harb, B. A. Paldus, R. N. Zare, B. Wilke, R. L. Byer, “A laser-locked cavity ring-down spectrometer employing an analog detection scheme,” Rev. Sci. Instrum. 71 (2), 347–353 (2000).
[CrossRef]

A. O’Keefe, D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
[CrossRef]

R. Engeln, G. Berden, R. Peeters, G. Meijer, “Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy,” Rev. Sci. Instrum. 69, 3763–3769 (1998).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Predicted cavity-mode structure for an ∼50-cm cavity aligned on axis (dotted curve) and off axis in a 10-pass configuration (solid curve). The gray bar indicates the frequency-averaged transmission level.

Fig. 2
Fig. 2

Effective cavity gain as a function of the gain parameter G and intracavity absorption.

Fig. 3
Fig. 3

Schematic diagram of the present experimental apparatus. The optical cavity is aligned off axis to spoil the resonances commonly associated with Fabry–Perot etalons. The entire cavity output is focused onto the photomultiplier tube (PMT) to record the ringdown signal.

Fig. 4
Fig. 4

Images obtained by a video camera looking through the rear mirror of the cavity showing the off-axis cavity alignment patterns. Top, spherical mirrors; bottom, astigmatic mirrors.

Fig. 5
Fig. 5

Buildup ringdown cycle measured with the chopper activated.

Fig. 6
Fig. 6

Measured ringdown decay signal by use of the present off-axis cavity ringdown method. Inset: the natural logarithm of the signal is linear, indicating a single exponential decay.

Fig. 7
Fig. 7

Top, the P(8) line of the molecular oxygen γ band as measured with CRDS. Also shown is the HITRAN prediction based on an atmospheric O2 abundance of 21%. Bottom, the same line measured immediately afterward with ICOS.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

0<1-d/R11-d/R2<1,
cos θ=1-d/R,
dIdt=c2LILCpT-2I1-R,
I=ILCpT21-R1-exp-t/τ.
R=R exp-αω.
ΔII=GA1+GA,

Metrics