Abstract

Infrared emission spectra recorded by airborne or satellite spectrometers can be searched for spectral features to determine the composition of rocks on planetary surfaces. Surface materials are identified by detections of characteristic spectral bands. We show how to define whether to accept an observed spectral feature as a detection when the target material is unknown. We also use remotely sensed spectra measured by the Thermal Emission Spectrometer (TES) and the Spatially Enhanced Broadband Array Spectrograph System to illustrate the importance of instrument parameters and surface properties on band detection limits and how the variation in signal-to-noise ratio with wavelength affects the bands that are most detectable for a given instrument. The spectrometer’s sampling interval, spectral resolution, signal-to-noise ratio as a function of wavelength, and the sample’s surface properties influence whether the instrument can detect a spectral feature exhibited by a material. As an example, in the 6–13-µm wavelength region, massive carbonates exhibit two bands: a very strong, broad feature at ∼6.5 µm and a less intense, sharper band at ∼11.25 µm. Although the 6.5-µm band is stronger and broader in laboratory-measured spectra, the 11.25-µm band will cause a more detectable feature in TES spectra.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. See, for example, D. E. Sabol, J. B. Adams, M. O. Smith, “Quantitative subpixel detection of targets in multispectral images,” J. Geophys. Res. 97, 2659–2672 (1992).
    [CrossRef]
  2. See, for example, P. E. Johnson, M. O. Smith, J. B. Adams, “Simple algorithms for remote determination of mineral abundances and particle sizes from reflectance spectra,” J. Geophys. Res. 97, 2649–2657 (1992).
    [CrossRef]
  3. See, for example, J. B. Adams, M. O. Smith, A. R. Gillespie, “Imaging spectroscopy: interpretation based on spectral mixture analysis,” in Remote Geochemical Analysis: Elemental and Mineralogical Composition, C. Pieters, P. Englert eds. (Cambridge U. Press, New York, 1993), Chap. 7.
  4. W. K. Pratt, Digital Imaging Processing (Wiley, New York, 1978), Chap. 19.
  5. W. H. Farrand, J. C. Harsanyi, “Discrimination of poorly exposed lithologies in imaging spectrometer data,” J. Geophys. Res. 100, 1565–1578 (1995).
    [CrossRef]
  6. J. F. Mustard, J. M. Sunshine, “Spectral analysis for Earth science: investigations using remote sensing data,” in Remote Sensing for the Earth Sciences: Manual of Remote Sensing, 3rd ed., A. N. Rencz, ed. (Wiley, New York, 1999), Vol. 3, Chap. 5.
  7. G. R. Hunt, L. M. Logan, “Variation of single particle mid-infrared emission spectrum with particle size,” Appl. Opt. 11, 142–147 (1972).
    [CrossRef] [PubMed]
  8. J. L. Thomson, J. W. Salisbury, “The mid-infrared reflectance of mineral mixtures (7–14 µm),” Remote Sens. Environ. 45, 1–13 (1993).
    [CrossRef]
  9. B. Hapke, Theory of Reflectance and Emittance Spectroscopy (Cambridge U. Press, New York, 1993).
    [CrossRef]
  10. J. W. Salisbury, A. Wald, “The role of volume scattering in reducing spectral contrast of reststrahlen bands in spectra of powdered minerals,” Icarus 96, 121–128 (1992).
    [CrossRef]
  11. R. K. Vincent, F. Thomson, “Spectral composition imaging of silicate rocks,” J. Geophys. Res. 77, 2465–2472 (1972).
    [CrossRef]
  12. A. R. Gillespie, A. B. Kahle, R. E. Walker, “Color enhancement of highly correlated images. I. Decorrelation stretch,” Remote Sens. Environ. 20, 209–235 (1986).
    [CrossRef]
  13. A. R. Gillespie, “Spectral mixture analysis of multispectral thermal infrared images,” Remote Sens. Environ. 42, 137–145 (1992).
    [CrossRef]
  14. H. Shipman, J. B. Adams, “Detectability of minerals on desert alluvial fans using reflectance spectra,” J. Geophys. Res. 92, 10391–10402 (1987).
    [CrossRef]
  15. A. R. Gillespie, “Spectral mixture analysis of multispectral thermal infrared images,” Remote Sens. Environ. 42, 137–145 (1992).
    [CrossRef]
  16. T. D. Rubin, “Spectral mapping with imaging spectrometers,” Photogramm. Eng. Remote Sens. 59, 215–220 (1993).
  17. A review of references is given in M. L. Polak, J. L. Hall, K. C. Herr, “Passive Fourier-transform infrared spectroscopy of chemical plumes: an algorithm for quantitative interpretation and real-time background removal,” Appl. Opt. 34, 5406–5412 (1995).
    [CrossRef] [PubMed]
  18. A review of references is given in D. F. Flanigan, “A short history of remote sensing of chemical agents,” in Electro-Optical Technology for Remote Chemical Detection and Identification, M. Fallahi, E. Howden, eds., Proc. SPIE2763, 2–17 (1996).
    [CrossRef]
  19. An application to Mars is given in J. M. McAfee, “Interpretation of the infrared spectra of the Martian atmosphere obtained by the Mariner 6 and 7 Infrared Spectrometers,” Ph.D. dissertation (University of California, Berkeley, Berkeley, Calif., 1974).
  20. P. R. Christensen, D. L. Anderson, S. C. Chase, R. N. Clark, H. H. Kieffer, M. C. Malin, J. C. Pearl, J. Carpenter, N. Bandiera, F. G. Brown, S. Silverman, “Thermal emission spectrometer experiment: Mars Observer mission,” J. Geophys. Res. 97, 7719–7734 (1992).
    [CrossRef]
  21. Hanel et al. used 7.81 µm. See R. A. Hanel, B. J. Conrath, D. E. Jennings, R. E. Samuelson, Exploration of the Solar System by Infrared Remote Sensing (Cambridge U. Press, New York, 1992), p. 345.
  22. Kirkland and Herr used 7.75 µm. See L. E. Kirkland, K. C. Herr, “Spectral anomalies in the 11 and 12 µm region from the Mariner Mars 7 Infrared Spectrometer,” J. Geophys. Res. 105, 22507–22515 (2000).
    [CrossRef]
  23. Smith et al. used 7.6–7.8 µm. See M. D. Smith, J. L. Bandfield, P. R. Christensen, “Separation of atmospheric and surface spectral features in Mars Global Surveyor Thermal Emission Spectrometer (TES) studies,” J. Geophys. Res. 105, 9589–9607 (2000).
    [CrossRef]
  24. C. L. Wyatt, Radiometric System Design (Macmillan, New York, 1987), p. 145.
  25. J. R. Aronson, A. G. Emslie, R. V. Allen, H. G. McLinden, “Studies of the middle- and far-infrared spectra of mineral surfaces for application in remote compositional mapping of the moon and planets,” J. Geophys. Res. 72, 687–703 (1967).
    [CrossRef]
  26. C. S. Williams, O. A. Becklund, Optics: A Short Course for Engineers (Krieger, Malabar, Fla., 1984), pp. 58–63.
  27. J. Fraden, AIP Handbook of Modern Sensors (American Institute of Physics, New York, 1993), p. 136.
  28. P. R. Griffiths, J. A. de Haseth, Fourier Transform Infrared Spectrometry (Wiley, New York, 1986).
  29. P. R. Christensen, “Calibration report for the Thermal Emission Spectrometer (TES) for the Mars Global Surveyor mission,” (Jet Propulsion Laboratory, Pasadena, Calif., 1998).
  30. J. D. Bowman, E. A. Guiness, S. Slavney, R. E. Arvidson, “Mars Global Surveyor Thermal Emission Spectrometer time sequential data record standard product,” Planetary Data System archive of TES data (NASA Planetary Data System Geosciences Node, Washington University, St. Louis, Mo., 1999).
  31. J. A. Hackwell, D. W. Warren, R. P. Bongiovi, S. J. Hansel, T. L. Hayhurst, D. J. Mabry, M. G. Sivjee, J. W. Skinner, “LWIR/MWIR Imaging Hyperspectral Sensor for airborne and ground-based remote sensing,” in Imaging Spectrometry II, M. Descour, J. Mooney, eds., Proc. SPIE2819, 102–107 (1996).
    [CrossRef]
  32. “Thermal Emission Spectrometer (TES) software specification,” (Jet Propulsion Laboratory, Pasadena, Calif., 1991), Vol. 5.
  33. A. S. Wexler, “Integrated intensities of absorption bands in infrared spectroscopy,” Appl. Spectrosc. Rev. 1, 29–98 (1967).
    [CrossRef]
  34. L. E. Kirkland, K. C. Herr, E. R. Keim, J. W. Salisbury, J. A. Hackwell, “A field study of thermal infrared spectra of carbonates, with implications for studies of Mars,” in the 31st Lunar and Planetary Science Conference (Lunar and Planetary Institute, Houston, Tex., 2000), abstract 1876.
  35. L. E. Kirkland, K. C. Herr, P. M. Adams, J. W. Salisbury, A. Treiman, “A laboratory study of weathered carbonates, with implications for the infrared remote sensing of carbonates on Mars,” in the 31st Lunar and Planetary Science Conference (Lunar and Planetary Institute, Houston, Tex., 2000), abstract 1915.
  36. J. W. Salisbury, A. Wald, D. M. D’Aria, “Thermal-infrared remote sensing and Kirchhoff’s law. 1. Laboratory measurements,” J. Geophys. Res. 99, 11897–11911 (1994).
    [CrossRef]
  37. R. N. Clark, T. D. Roush, “Reflectance spectroscopy: quantitative analysis techniques for remote sensing applications,” J. Geophys. Res. 89, 6329–6340 (1984).
    [CrossRef]
  38. P. M. Adams, The Aerospace Corporation, 2350 E. El Segundo Blvd., El Segundo, Calif. (personal communication, 2000).
  39. F. A. Kruse, “Use of Airborne Imaging Spectrometer data to map minerals associated with hydrothermally altered rocks in the northern Grapevine Mountains, Nevada, and California,” Remote Sens. Environ. 24, 31–51 (1988).
    [CrossRef]
  40. J. D. Ingle, S. T. Crouch, Spectrochemical Analysis (Prentice-Hall, Englewood Cliffs, N.J., 1988), pp. 172–174.
  41. J. R. Schott, Remote Sensing: The Image Chain Approach (Oxford U. Press, New York, 1997), pp. 191–231.
  42. M. D. Smith, J. L. Bandfield, P. R. Christensen, “Separation of atmospheric and surface spectral features in Mars Global Surveyor Thermal Emission Spectrometer (TES) studies,” J. Geophys. Res. 105, 9589–9607 (2000).
    [CrossRef]
  43. R. A. Hanel, B. J. Conrath, D. E. Jennings, R. E. Samuelson, Exploration of the Solar System by Infrared Remote Sensing (Cambridge U. Press, New York, 1992), pp. 256–274.
  44. R. Beer, Remote Sensing by Fourier Transform Spectrometry, Vol. 120 in Chemical Analysis (Wiley, New York, 1992), pp. 55–100.
  45. Ref. 41, pp. 172–180.
  46. J. W. Salisbury, D. M. D’Aria, “Emissivity of terrestrial materials in the 8-14 µm window,” Remote Sens. Environ. 42, 83–106 (1992).
    [CrossRef]
  47. See, for example, P. R. Christensen, D. L. Anderson, S. C. Chase, R. T. Clancy, R. N. Clark, B. J. Conrath, H. H. Kieffer, R. O. Kuzmin, M. C. Malin, J. C. Pearl, T. L. Roush, M. D. Smith, “Results from the Mars Global Surveyor Thermal Emission Spectrometer,” Science 279, 1692–1698 (1998).
    [CrossRef] [PubMed]
  48. See, for example, P. R. Christensen, J. L. Bandfield, M. D. Smith, V. E. Hamilton, R. N. Clark, “Identification of a basaltic component on the Martian surface from Thermal Emission Spectrometer data,” J. Geophys. Res. 105, 9609–9621 (2000).
    [CrossRef]

2000 (4)

Kirkland and Herr used 7.75 µm. See L. E. Kirkland, K. C. Herr, “Spectral anomalies in the 11 and 12 µm region from the Mariner Mars 7 Infrared Spectrometer,” J. Geophys. Res. 105, 22507–22515 (2000).
[CrossRef]

Smith et al. used 7.6–7.8 µm. See M. D. Smith, J. L. Bandfield, P. R. Christensen, “Separation of atmospheric and surface spectral features in Mars Global Surveyor Thermal Emission Spectrometer (TES) studies,” J. Geophys. Res. 105, 9589–9607 (2000).
[CrossRef]

M. D. Smith, J. L. Bandfield, P. R. Christensen, “Separation of atmospheric and surface spectral features in Mars Global Surveyor Thermal Emission Spectrometer (TES) studies,” J. Geophys. Res. 105, 9589–9607 (2000).
[CrossRef]

See, for example, P. R. Christensen, J. L. Bandfield, M. D. Smith, V. E. Hamilton, R. N. Clark, “Identification of a basaltic component on the Martian surface from Thermal Emission Spectrometer data,” J. Geophys. Res. 105, 9609–9621 (2000).
[CrossRef]

1998 (1)

See, for example, P. R. Christensen, D. L. Anderson, S. C. Chase, R. T. Clancy, R. N. Clark, B. J. Conrath, H. H. Kieffer, R. O. Kuzmin, M. C. Malin, J. C. Pearl, T. L. Roush, M. D. Smith, “Results from the Mars Global Surveyor Thermal Emission Spectrometer,” Science 279, 1692–1698 (1998).
[CrossRef] [PubMed]

1995 (2)

1994 (1)

J. W. Salisbury, A. Wald, D. M. D’Aria, “Thermal-infrared remote sensing and Kirchhoff’s law. 1. Laboratory measurements,” J. Geophys. Res. 99, 11897–11911 (1994).
[CrossRef]

1993 (2)

J. L. Thomson, J. W. Salisbury, “The mid-infrared reflectance of mineral mixtures (7–14 µm),” Remote Sens. Environ. 45, 1–13 (1993).
[CrossRef]

T. D. Rubin, “Spectral mapping with imaging spectrometers,” Photogramm. Eng. Remote Sens. 59, 215–220 (1993).

1992 (7)

P. R. Christensen, D. L. Anderson, S. C. Chase, R. N. Clark, H. H. Kieffer, M. C. Malin, J. C. Pearl, J. Carpenter, N. Bandiera, F. G. Brown, S. Silverman, “Thermal emission spectrometer experiment: Mars Observer mission,” J. Geophys. Res. 97, 7719–7734 (1992).
[CrossRef]

A. R. Gillespie, “Spectral mixture analysis of multispectral thermal infrared images,” Remote Sens. Environ. 42, 137–145 (1992).
[CrossRef]

J. W. Salisbury, A. Wald, “The role of volume scattering in reducing spectral contrast of reststrahlen bands in spectra of powdered minerals,” Icarus 96, 121–128 (1992).
[CrossRef]

A. R. Gillespie, “Spectral mixture analysis of multispectral thermal infrared images,” Remote Sens. Environ. 42, 137–145 (1992).
[CrossRef]

J. W. Salisbury, D. M. D’Aria, “Emissivity of terrestrial materials in the 8-14 µm window,” Remote Sens. Environ. 42, 83–106 (1992).
[CrossRef]

See, for example, D. E. Sabol, J. B. Adams, M. O. Smith, “Quantitative subpixel detection of targets in multispectral images,” J. Geophys. Res. 97, 2659–2672 (1992).
[CrossRef]

See, for example, P. E. Johnson, M. O. Smith, J. B. Adams, “Simple algorithms for remote determination of mineral abundances and particle sizes from reflectance spectra,” J. Geophys. Res. 97, 2649–2657 (1992).
[CrossRef]

1988 (1)

F. A. Kruse, “Use of Airborne Imaging Spectrometer data to map minerals associated with hydrothermally altered rocks in the northern Grapevine Mountains, Nevada, and California,” Remote Sens. Environ. 24, 31–51 (1988).
[CrossRef]

1987 (1)

H. Shipman, J. B. Adams, “Detectability of minerals on desert alluvial fans using reflectance spectra,” J. Geophys. Res. 92, 10391–10402 (1987).
[CrossRef]

1986 (1)

A. R. Gillespie, A. B. Kahle, R. E. Walker, “Color enhancement of highly correlated images. I. Decorrelation stretch,” Remote Sens. Environ. 20, 209–235 (1986).
[CrossRef]

1984 (1)

R. N. Clark, T. D. Roush, “Reflectance spectroscopy: quantitative analysis techniques for remote sensing applications,” J. Geophys. Res. 89, 6329–6340 (1984).
[CrossRef]

1972 (2)

R. K. Vincent, F. Thomson, “Spectral composition imaging of silicate rocks,” J. Geophys. Res. 77, 2465–2472 (1972).
[CrossRef]

G. R. Hunt, L. M. Logan, “Variation of single particle mid-infrared emission spectrum with particle size,” Appl. Opt. 11, 142–147 (1972).
[CrossRef] [PubMed]

1967 (2)

J. R. Aronson, A. G. Emslie, R. V. Allen, H. G. McLinden, “Studies of the middle- and far-infrared spectra of mineral surfaces for application in remote compositional mapping of the moon and planets,” J. Geophys. Res. 72, 687–703 (1967).
[CrossRef]

A. S. Wexler, “Integrated intensities of absorption bands in infrared spectroscopy,” Appl. Spectrosc. Rev. 1, 29–98 (1967).
[CrossRef]

Adams, J. B.

See, for example, P. E. Johnson, M. O. Smith, J. B. Adams, “Simple algorithms for remote determination of mineral abundances and particle sizes from reflectance spectra,” J. Geophys. Res. 97, 2649–2657 (1992).
[CrossRef]

See, for example, D. E. Sabol, J. B. Adams, M. O. Smith, “Quantitative subpixel detection of targets in multispectral images,” J. Geophys. Res. 97, 2659–2672 (1992).
[CrossRef]

H. Shipman, J. B. Adams, “Detectability of minerals on desert alluvial fans using reflectance spectra,” J. Geophys. Res. 92, 10391–10402 (1987).
[CrossRef]

See, for example, J. B. Adams, M. O. Smith, A. R. Gillespie, “Imaging spectroscopy: interpretation based on spectral mixture analysis,” in Remote Geochemical Analysis: Elemental and Mineralogical Composition, C. Pieters, P. Englert eds. (Cambridge U. Press, New York, 1993), Chap. 7.

Adams, P. M.

L. E. Kirkland, K. C. Herr, P. M. Adams, J. W. Salisbury, A. Treiman, “A laboratory study of weathered carbonates, with implications for the infrared remote sensing of carbonates on Mars,” in the 31st Lunar and Planetary Science Conference (Lunar and Planetary Institute, Houston, Tex., 2000), abstract 1915.

P. M. Adams, The Aerospace Corporation, 2350 E. El Segundo Blvd., El Segundo, Calif. (personal communication, 2000).

Allen, R. V.

J. R. Aronson, A. G. Emslie, R. V. Allen, H. G. McLinden, “Studies of the middle- and far-infrared spectra of mineral surfaces for application in remote compositional mapping of the moon and planets,” J. Geophys. Res. 72, 687–703 (1967).
[CrossRef]

Anderson, D. L.

See, for example, P. R. Christensen, D. L. Anderson, S. C. Chase, R. T. Clancy, R. N. Clark, B. J. Conrath, H. H. Kieffer, R. O. Kuzmin, M. C. Malin, J. C. Pearl, T. L. Roush, M. D. Smith, “Results from the Mars Global Surveyor Thermal Emission Spectrometer,” Science 279, 1692–1698 (1998).
[CrossRef] [PubMed]

P. R. Christensen, D. L. Anderson, S. C. Chase, R. N. Clark, H. H. Kieffer, M. C. Malin, J. C. Pearl, J. Carpenter, N. Bandiera, F. G. Brown, S. Silverman, “Thermal emission spectrometer experiment: Mars Observer mission,” J. Geophys. Res. 97, 7719–7734 (1992).
[CrossRef]

Aronson, J. R.

J. R. Aronson, A. G. Emslie, R. V. Allen, H. G. McLinden, “Studies of the middle- and far-infrared spectra of mineral surfaces for application in remote compositional mapping of the moon and planets,” J. Geophys. Res. 72, 687–703 (1967).
[CrossRef]

Arvidson, R. E.

J. D. Bowman, E. A. Guiness, S. Slavney, R. E. Arvidson, “Mars Global Surveyor Thermal Emission Spectrometer time sequential data record standard product,” Planetary Data System archive of TES data (NASA Planetary Data System Geosciences Node, Washington University, St. Louis, Mo., 1999).

Bandfield, J. L.

Smith et al. used 7.6–7.8 µm. See M. D. Smith, J. L. Bandfield, P. R. Christensen, “Separation of atmospheric and surface spectral features in Mars Global Surveyor Thermal Emission Spectrometer (TES) studies,” J. Geophys. Res. 105, 9589–9607 (2000).
[CrossRef]

See, for example, P. R. Christensen, J. L. Bandfield, M. D. Smith, V. E. Hamilton, R. N. Clark, “Identification of a basaltic component on the Martian surface from Thermal Emission Spectrometer data,” J. Geophys. Res. 105, 9609–9621 (2000).
[CrossRef]

M. D. Smith, J. L. Bandfield, P. R. Christensen, “Separation of atmospheric and surface spectral features in Mars Global Surveyor Thermal Emission Spectrometer (TES) studies,” J. Geophys. Res. 105, 9589–9607 (2000).
[CrossRef]

Bandiera, N.

P. R. Christensen, D. L. Anderson, S. C. Chase, R. N. Clark, H. H. Kieffer, M. C. Malin, J. C. Pearl, J. Carpenter, N. Bandiera, F. G. Brown, S. Silverman, “Thermal emission spectrometer experiment: Mars Observer mission,” J. Geophys. Res. 97, 7719–7734 (1992).
[CrossRef]

Becklund, O. A.

C. S. Williams, O. A. Becklund, Optics: A Short Course for Engineers (Krieger, Malabar, Fla., 1984), pp. 58–63.

Beer, R.

R. Beer, Remote Sensing by Fourier Transform Spectrometry, Vol. 120 in Chemical Analysis (Wiley, New York, 1992), pp. 55–100.

Bongiovi, R. P.

J. A. Hackwell, D. W. Warren, R. P. Bongiovi, S. J. Hansel, T. L. Hayhurst, D. J. Mabry, M. G. Sivjee, J. W. Skinner, “LWIR/MWIR Imaging Hyperspectral Sensor for airborne and ground-based remote sensing,” in Imaging Spectrometry II, M. Descour, J. Mooney, eds., Proc. SPIE2819, 102–107 (1996).
[CrossRef]

Bowman, J. D.

J. D. Bowman, E. A. Guiness, S. Slavney, R. E. Arvidson, “Mars Global Surveyor Thermal Emission Spectrometer time sequential data record standard product,” Planetary Data System archive of TES data (NASA Planetary Data System Geosciences Node, Washington University, St. Louis, Mo., 1999).

Brown, F. G.

P. R. Christensen, D. L. Anderson, S. C. Chase, R. N. Clark, H. H. Kieffer, M. C. Malin, J. C. Pearl, J. Carpenter, N. Bandiera, F. G. Brown, S. Silverman, “Thermal emission spectrometer experiment: Mars Observer mission,” J. Geophys. Res. 97, 7719–7734 (1992).
[CrossRef]

Carpenter, J.

P. R. Christensen, D. L. Anderson, S. C. Chase, R. N. Clark, H. H. Kieffer, M. C. Malin, J. C. Pearl, J. Carpenter, N. Bandiera, F. G. Brown, S. Silverman, “Thermal emission spectrometer experiment: Mars Observer mission,” J. Geophys. Res. 97, 7719–7734 (1992).
[CrossRef]

Chase, S. C.

See, for example, P. R. Christensen, D. L. Anderson, S. C. Chase, R. T. Clancy, R. N. Clark, B. J. Conrath, H. H. Kieffer, R. O. Kuzmin, M. C. Malin, J. C. Pearl, T. L. Roush, M. D. Smith, “Results from the Mars Global Surveyor Thermal Emission Spectrometer,” Science 279, 1692–1698 (1998).
[CrossRef] [PubMed]

P. R. Christensen, D. L. Anderson, S. C. Chase, R. N. Clark, H. H. Kieffer, M. C. Malin, J. C. Pearl, J. Carpenter, N. Bandiera, F. G. Brown, S. Silverman, “Thermal emission spectrometer experiment: Mars Observer mission,” J. Geophys. Res. 97, 7719–7734 (1992).
[CrossRef]

Christensen, P. R.

See, for example, P. R. Christensen, J. L. Bandfield, M. D. Smith, V. E. Hamilton, R. N. Clark, “Identification of a basaltic component on the Martian surface from Thermal Emission Spectrometer data,” J. Geophys. Res. 105, 9609–9621 (2000).
[CrossRef]

M. D. Smith, J. L. Bandfield, P. R. Christensen, “Separation of atmospheric and surface spectral features in Mars Global Surveyor Thermal Emission Spectrometer (TES) studies,” J. Geophys. Res. 105, 9589–9607 (2000).
[CrossRef]

Smith et al. used 7.6–7.8 µm. See M. D. Smith, J. L. Bandfield, P. R. Christensen, “Separation of atmospheric and surface spectral features in Mars Global Surveyor Thermal Emission Spectrometer (TES) studies,” J. Geophys. Res. 105, 9589–9607 (2000).
[CrossRef]

See, for example, P. R. Christensen, D. L. Anderson, S. C. Chase, R. T. Clancy, R. N. Clark, B. J. Conrath, H. H. Kieffer, R. O. Kuzmin, M. C. Malin, J. C. Pearl, T. L. Roush, M. D. Smith, “Results from the Mars Global Surveyor Thermal Emission Spectrometer,” Science 279, 1692–1698 (1998).
[CrossRef] [PubMed]

P. R. Christensen, D. L. Anderson, S. C. Chase, R. N. Clark, H. H. Kieffer, M. C. Malin, J. C. Pearl, J. Carpenter, N. Bandiera, F. G. Brown, S. Silverman, “Thermal emission spectrometer experiment: Mars Observer mission,” J. Geophys. Res. 97, 7719–7734 (1992).
[CrossRef]

P. R. Christensen, “Calibration report for the Thermal Emission Spectrometer (TES) for the Mars Global Surveyor mission,” (Jet Propulsion Laboratory, Pasadena, Calif., 1998).

Clancy, R. T.

See, for example, P. R. Christensen, D. L. Anderson, S. C. Chase, R. T. Clancy, R. N. Clark, B. J. Conrath, H. H. Kieffer, R. O. Kuzmin, M. C. Malin, J. C. Pearl, T. L. Roush, M. D. Smith, “Results from the Mars Global Surveyor Thermal Emission Spectrometer,” Science 279, 1692–1698 (1998).
[CrossRef] [PubMed]

Clark, R. N.

See, for example, P. R. Christensen, J. L. Bandfield, M. D. Smith, V. E. Hamilton, R. N. Clark, “Identification of a basaltic component on the Martian surface from Thermal Emission Spectrometer data,” J. Geophys. Res. 105, 9609–9621 (2000).
[CrossRef]

See, for example, P. R. Christensen, D. L. Anderson, S. C. Chase, R. T. Clancy, R. N. Clark, B. J. Conrath, H. H. Kieffer, R. O. Kuzmin, M. C. Malin, J. C. Pearl, T. L. Roush, M. D. Smith, “Results from the Mars Global Surveyor Thermal Emission Spectrometer,” Science 279, 1692–1698 (1998).
[CrossRef] [PubMed]

P. R. Christensen, D. L. Anderson, S. C. Chase, R. N. Clark, H. H. Kieffer, M. C. Malin, J. C. Pearl, J. Carpenter, N. Bandiera, F. G. Brown, S. Silverman, “Thermal emission spectrometer experiment: Mars Observer mission,” J. Geophys. Res. 97, 7719–7734 (1992).
[CrossRef]

R. N. Clark, T. D. Roush, “Reflectance spectroscopy: quantitative analysis techniques for remote sensing applications,” J. Geophys. Res. 89, 6329–6340 (1984).
[CrossRef]

Conrath, B. J.

See, for example, P. R. Christensen, D. L. Anderson, S. C. Chase, R. T. Clancy, R. N. Clark, B. J. Conrath, H. H. Kieffer, R. O. Kuzmin, M. C. Malin, J. C. Pearl, T. L. Roush, M. D. Smith, “Results from the Mars Global Surveyor Thermal Emission Spectrometer,” Science 279, 1692–1698 (1998).
[CrossRef] [PubMed]

R. A. Hanel, B. J. Conrath, D. E. Jennings, R. E. Samuelson, Exploration of the Solar System by Infrared Remote Sensing (Cambridge U. Press, New York, 1992), pp. 256–274.

Hanel et al. used 7.81 µm. See R. A. Hanel, B. J. Conrath, D. E. Jennings, R. E. Samuelson, Exploration of the Solar System by Infrared Remote Sensing (Cambridge U. Press, New York, 1992), p. 345.

Crouch, S. T.

J. D. Ingle, S. T. Crouch, Spectrochemical Analysis (Prentice-Hall, Englewood Cliffs, N.J., 1988), pp. 172–174.

D’Aria, D. M.

J. W. Salisbury, A. Wald, D. M. D’Aria, “Thermal-infrared remote sensing and Kirchhoff’s law. 1. Laboratory measurements,” J. Geophys. Res. 99, 11897–11911 (1994).
[CrossRef]

J. W. Salisbury, D. M. D’Aria, “Emissivity of terrestrial materials in the 8-14 µm window,” Remote Sens. Environ. 42, 83–106 (1992).
[CrossRef]

de Haseth, J. A.

P. R. Griffiths, J. A. de Haseth, Fourier Transform Infrared Spectrometry (Wiley, New York, 1986).

Emslie, A. G.

J. R. Aronson, A. G. Emslie, R. V. Allen, H. G. McLinden, “Studies of the middle- and far-infrared spectra of mineral surfaces for application in remote compositional mapping of the moon and planets,” J. Geophys. Res. 72, 687–703 (1967).
[CrossRef]

Farrand, W. H.

W. H. Farrand, J. C. Harsanyi, “Discrimination of poorly exposed lithologies in imaging spectrometer data,” J. Geophys. Res. 100, 1565–1578 (1995).
[CrossRef]

Flanigan, D. F.

A review of references is given in D. F. Flanigan, “A short history of remote sensing of chemical agents,” in Electro-Optical Technology for Remote Chemical Detection and Identification, M. Fallahi, E. Howden, eds., Proc. SPIE2763, 2–17 (1996).
[CrossRef]

Fraden, J.

J. Fraden, AIP Handbook of Modern Sensors (American Institute of Physics, New York, 1993), p. 136.

Gillespie, A. R.

A. R. Gillespie, “Spectral mixture analysis of multispectral thermal infrared images,” Remote Sens. Environ. 42, 137–145 (1992).
[CrossRef]

A. R. Gillespie, “Spectral mixture analysis of multispectral thermal infrared images,” Remote Sens. Environ. 42, 137–145 (1992).
[CrossRef]

A. R. Gillespie, A. B. Kahle, R. E. Walker, “Color enhancement of highly correlated images. I. Decorrelation stretch,” Remote Sens. Environ. 20, 209–235 (1986).
[CrossRef]

See, for example, J. B. Adams, M. O. Smith, A. R. Gillespie, “Imaging spectroscopy: interpretation based on spectral mixture analysis,” in Remote Geochemical Analysis: Elemental and Mineralogical Composition, C. Pieters, P. Englert eds. (Cambridge U. Press, New York, 1993), Chap. 7.

Griffiths, P. R.

P. R. Griffiths, J. A. de Haseth, Fourier Transform Infrared Spectrometry (Wiley, New York, 1986).

Guiness, E. A.

J. D. Bowman, E. A. Guiness, S. Slavney, R. E. Arvidson, “Mars Global Surveyor Thermal Emission Spectrometer time sequential data record standard product,” Planetary Data System archive of TES data (NASA Planetary Data System Geosciences Node, Washington University, St. Louis, Mo., 1999).

Hackwell, J. A.

L. E. Kirkland, K. C. Herr, E. R. Keim, J. W. Salisbury, J. A. Hackwell, “A field study of thermal infrared spectra of carbonates, with implications for studies of Mars,” in the 31st Lunar and Planetary Science Conference (Lunar and Planetary Institute, Houston, Tex., 2000), abstract 1876.

J. A. Hackwell, D. W. Warren, R. P. Bongiovi, S. J. Hansel, T. L. Hayhurst, D. J. Mabry, M. G. Sivjee, J. W. Skinner, “LWIR/MWIR Imaging Hyperspectral Sensor for airborne and ground-based remote sensing,” in Imaging Spectrometry II, M. Descour, J. Mooney, eds., Proc. SPIE2819, 102–107 (1996).
[CrossRef]

Hall, J. L.

Hamilton, V. E.

See, for example, P. R. Christensen, J. L. Bandfield, M. D. Smith, V. E. Hamilton, R. N. Clark, “Identification of a basaltic component on the Martian surface from Thermal Emission Spectrometer data,” J. Geophys. Res. 105, 9609–9621 (2000).
[CrossRef]

Hanel, R. A.

Hanel et al. used 7.81 µm. See R. A. Hanel, B. J. Conrath, D. E. Jennings, R. E. Samuelson, Exploration of the Solar System by Infrared Remote Sensing (Cambridge U. Press, New York, 1992), p. 345.

R. A. Hanel, B. J. Conrath, D. E. Jennings, R. E. Samuelson, Exploration of the Solar System by Infrared Remote Sensing (Cambridge U. Press, New York, 1992), pp. 256–274.

Hansel, S. J.

J. A. Hackwell, D. W. Warren, R. P. Bongiovi, S. J. Hansel, T. L. Hayhurst, D. J. Mabry, M. G. Sivjee, J. W. Skinner, “LWIR/MWIR Imaging Hyperspectral Sensor for airborne and ground-based remote sensing,” in Imaging Spectrometry II, M. Descour, J. Mooney, eds., Proc. SPIE2819, 102–107 (1996).
[CrossRef]

Hapke, B.

B. Hapke, Theory of Reflectance and Emittance Spectroscopy (Cambridge U. Press, New York, 1993).
[CrossRef]

Harsanyi, J. C.

W. H. Farrand, J. C. Harsanyi, “Discrimination of poorly exposed lithologies in imaging spectrometer data,” J. Geophys. Res. 100, 1565–1578 (1995).
[CrossRef]

Hayhurst, T. L.

J. A. Hackwell, D. W. Warren, R. P. Bongiovi, S. J. Hansel, T. L. Hayhurst, D. J. Mabry, M. G. Sivjee, J. W. Skinner, “LWIR/MWIR Imaging Hyperspectral Sensor for airborne and ground-based remote sensing,” in Imaging Spectrometry II, M. Descour, J. Mooney, eds., Proc. SPIE2819, 102–107 (1996).
[CrossRef]

Herr, K. C.

Kirkland and Herr used 7.75 µm. See L. E. Kirkland, K. C. Herr, “Spectral anomalies in the 11 and 12 µm region from the Mariner Mars 7 Infrared Spectrometer,” J. Geophys. Res. 105, 22507–22515 (2000).
[CrossRef]

A review of references is given in M. L. Polak, J. L. Hall, K. C. Herr, “Passive Fourier-transform infrared spectroscopy of chemical plumes: an algorithm for quantitative interpretation and real-time background removal,” Appl. Opt. 34, 5406–5412 (1995).
[CrossRef] [PubMed]

L. E. Kirkland, K. C. Herr, P. M. Adams, J. W. Salisbury, A. Treiman, “A laboratory study of weathered carbonates, with implications for the infrared remote sensing of carbonates on Mars,” in the 31st Lunar and Planetary Science Conference (Lunar and Planetary Institute, Houston, Tex., 2000), abstract 1915.

L. E. Kirkland, K. C. Herr, E. R. Keim, J. W. Salisbury, J. A. Hackwell, “A field study of thermal infrared spectra of carbonates, with implications for studies of Mars,” in the 31st Lunar and Planetary Science Conference (Lunar and Planetary Institute, Houston, Tex., 2000), abstract 1876.

Hunt, G. R.

Ingle, J. D.

J. D. Ingle, S. T. Crouch, Spectrochemical Analysis (Prentice-Hall, Englewood Cliffs, N.J., 1988), pp. 172–174.

Jennings, D. E.

R. A. Hanel, B. J. Conrath, D. E. Jennings, R. E. Samuelson, Exploration of the Solar System by Infrared Remote Sensing (Cambridge U. Press, New York, 1992), pp. 256–274.

Hanel et al. used 7.81 µm. See R. A. Hanel, B. J. Conrath, D. E. Jennings, R. E. Samuelson, Exploration of the Solar System by Infrared Remote Sensing (Cambridge U. Press, New York, 1992), p. 345.

Johnson, P. E.

See, for example, P. E. Johnson, M. O. Smith, J. B. Adams, “Simple algorithms for remote determination of mineral abundances and particle sizes from reflectance spectra,” J. Geophys. Res. 97, 2649–2657 (1992).
[CrossRef]

Kahle, A. B.

A. R. Gillespie, A. B. Kahle, R. E. Walker, “Color enhancement of highly correlated images. I. Decorrelation stretch,” Remote Sens. Environ. 20, 209–235 (1986).
[CrossRef]

Keim, E. R.

L. E. Kirkland, K. C. Herr, E. R. Keim, J. W. Salisbury, J. A. Hackwell, “A field study of thermal infrared spectra of carbonates, with implications for studies of Mars,” in the 31st Lunar and Planetary Science Conference (Lunar and Planetary Institute, Houston, Tex., 2000), abstract 1876.

Kieffer, H. H.

See, for example, P. R. Christensen, D. L. Anderson, S. C. Chase, R. T. Clancy, R. N. Clark, B. J. Conrath, H. H. Kieffer, R. O. Kuzmin, M. C. Malin, J. C. Pearl, T. L. Roush, M. D. Smith, “Results from the Mars Global Surveyor Thermal Emission Spectrometer,” Science 279, 1692–1698 (1998).
[CrossRef] [PubMed]

P. R. Christensen, D. L. Anderson, S. C. Chase, R. N. Clark, H. H. Kieffer, M. C. Malin, J. C. Pearl, J. Carpenter, N. Bandiera, F. G. Brown, S. Silverman, “Thermal emission spectrometer experiment: Mars Observer mission,” J. Geophys. Res. 97, 7719–7734 (1992).
[CrossRef]

Kirkland, L. E.

Kirkland and Herr used 7.75 µm. See L. E. Kirkland, K. C. Herr, “Spectral anomalies in the 11 and 12 µm region from the Mariner Mars 7 Infrared Spectrometer,” J. Geophys. Res. 105, 22507–22515 (2000).
[CrossRef]

L. E. Kirkland, K. C. Herr, E. R. Keim, J. W. Salisbury, J. A. Hackwell, “A field study of thermal infrared spectra of carbonates, with implications for studies of Mars,” in the 31st Lunar and Planetary Science Conference (Lunar and Planetary Institute, Houston, Tex., 2000), abstract 1876.

L. E. Kirkland, K. C. Herr, P. M. Adams, J. W. Salisbury, A. Treiman, “A laboratory study of weathered carbonates, with implications for the infrared remote sensing of carbonates on Mars,” in the 31st Lunar and Planetary Science Conference (Lunar and Planetary Institute, Houston, Tex., 2000), abstract 1915.

Kruse, F. A.

F. A. Kruse, “Use of Airborne Imaging Spectrometer data to map minerals associated with hydrothermally altered rocks in the northern Grapevine Mountains, Nevada, and California,” Remote Sens. Environ. 24, 31–51 (1988).
[CrossRef]

Kuzmin, R. O.

See, for example, P. R. Christensen, D. L. Anderson, S. C. Chase, R. T. Clancy, R. N. Clark, B. J. Conrath, H. H. Kieffer, R. O. Kuzmin, M. C. Malin, J. C. Pearl, T. L. Roush, M. D. Smith, “Results from the Mars Global Surveyor Thermal Emission Spectrometer,” Science 279, 1692–1698 (1998).
[CrossRef] [PubMed]

Logan, L. M.

Mabry, D. J.

J. A. Hackwell, D. W. Warren, R. P. Bongiovi, S. J. Hansel, T. L. Hayhurst, D. J. Mabry, M. G. Sivjee, J. W. Skinner, “LWIR/MWIR Imaging Hyperspectral Sensor for airborne and ground-based remote sensing,” in Imaging Spectrometry II, M. Descour, J. Mooney, eds., Proc. SPIE2819, 102–107 (1996).
[CrossRef]

Malin, M. C.

See, for example, P. R. Christensen, D. L. Anderson, S. C. Chase, R. T. Clancy, R. N. Clark, B. J. Conrath, H. H. Kieffer, R. O. Kuzmin, M. C. Malin, J. C. Pearl, T. L. Roush, M. D. Smith, “Results from the Mars Global Surveyor Thermal Emission Spectrometer,” Science 279, 1692–1698 (1998).
[CrossRef] [PubMed]

P. R. Christensen, D. L. Anderson, S. C. Chase, R. N. Clark, H. H. Kieffer, M. C. Malin, J. C. Pearl, J. Carpenter, N. Bandiera, F. G. Brown, S. Silverman, “Thermal emission spectrometer experiment: Mars Observer mission,” J. Geophys. Res. 97, 7719–7734 (1992).
[CrossRef]

McAfee, J. M.

An application to Mars is given in J. M. McAfee, “Interpretation of the infrared spectra of the Martian atmosphere obtained by the Mariner 6 and 7 Infrared Spectrometers,” Ph.D. dissertation (University of California, Berkeley, Berkeley, Calif., 1974).

McLinden, H. G.

J. R. Aronson, A. G. Emslie, R. V. Allen, H. G. McLinden, “Studies of the middle- and far-infrared spectra of mineral surfaces for application in remote compositional mapping of the moon and planets,” J. Geophys. Res. 72, 687–703 (1967).
[CrossRef]

Mustard, J. F.

J. F. Mustard, J. M. Sunshine, “Spectral analysis for Earth science: investigations using remote sensing data,” in Remote Sensing for the Earth Sciences: Manual of Remote Sensing, 3rd ed., A. N. Rencz, ed. (Wiley, New York, 1999), Vol. 3, Chap. 5.

Pearl, J. C.

See, for example, P. R. Christensen, D. L. Anderson, S. C. Chase, R. T. Clancy, R. N. Clark, B. J. Conrath, H. H. Kieffer, R. O. Kuzmin, M. C. Malin, J. C. Pearl, T. L. Roush, M. D. Smith, “Results from the Mars Global Surveyor Thermal Emission Spectrometer,” Science 279, 1692–1698 (1998).
[CrossRef] [PubMed]

P. R. Christensen, D. L. Anderson, S. C. Chase, R. N. Clark, H. H. Kieffer, M. C. Malin, J. C. Pearl, J. Carpenter, N. Bandiera, F. G. Brown, S. Silverman, “Thermal emission spectrometer experiment: Mars Observer mission,” J. Geophys. Res. 97, 7719–7734 (1992).
[CrossRef]

Polak, M. L.

Pratt, W. K.

W. K. Pratt, Digital Imaging Processing (Wiley, New York, 1978), Chap. 19.

Roush, T. D.

R. N. Clark, T. D. Roush, “Reflectance spectroscopy: quantitative analysis techniques for remote sensing applications,” J. Geophys. Res. 89, 6329–6340 (1984).
[CrossRef]

Roush, T. L.

See, for example, P. R. Christensen, D. L. Anderson, S. C. Chase, R. T. Clancy, R. N. Clark, B. J. Conrath, H. H. Kieffer, R. O. Kuzmin, M. C. Malin, J. C. Pearl, T. L. Roush, M. D. Smith, “Results from the Mars Global Surveyor Thermal Emission Spectrometer,” Science 279, 1692–1698 (1998).
[CrossRef] [PubMed]

Rubin, T. D.

T. D. Rubin, “Spectral mapping with imaging spectrometers,” Photogramm. Eng. Remote Sens. 59, 215–220 (1993).

Sabol, D. E.

See, for example, D. E. Sabol, J. B. Adams, M. O. Smith, “Quantitative subpixel detection of targets in multispectral images,” J. Geophys. Res. 97, 2659–2672 (1992).
[CrossRef]

Salisbury, J. W.

J. W. Salisbury, A. Wald, D. M. D’Aria, “Thermal-infrared remote sensing and Kirchhoff’s law. 1. Laboratory measurements,” J. Geophys. Res. 99, 11897–11911 (1994).
[CrossRef]

J. L. Thomson, J. W. Salisbury, “The mid-infrared reflectance of mineral mixtures (7–14 µm),” Remote Sens. Environ. 45, 1–13 (1993).
[CrossRef]

J. W. Salisbury, D. M. D’Aria, “Emissivity of terrestrial materials in the 8-14 µm window,” Remote Sens. Environ. 42, 83–106 (1992).
[CrossRef]

J. W. Salisbury, A. Wald, “The role of volume scattering in reducing spectral contrast of reststrahlen bands in spectra of powdered minerals,” Icarus 96, 121–128 (1992).
[CrossRef]

L. E. Kirkland, K. C. Herr, P. M. Adams, J. W. Salisbury, A. Treiman, “A laboratory study of weathered carbonates, with implications for the infrared remote sensing of carbonates on Mars,” in the 31st Lunar and Planetary Science Conference (Lunar and Planetary Institute, Houston, Tex., 2000), abstract 1915.

L. E. Kirkland, K. C. Herr, E. R. Keim, J. W. Salisbury, J. A. Hackwell, “A field study of thermal infrared spectra of carbonates, with implications for studies of Mars,” in the 31st Lunar and Planetary Science Conference (Lunar and Planetary Institute, Houston, Tex., 2000), abstract 1876.

Samuelson, R. E.

Hanel et al. used 7.81 µm. See R. A. Hanel, B. J. Conrath, D. E. Jennings, R. E. Samuelson, Exploration of the Solar System by Infrared Remote Sensing (Cambridge U. Press, New York, 1992), p. 345.

R. A. Hanel, B. J. Conrath, D. E. Jennings, R. E. Samuelson, Exploration of the Solar System by Infrared Remote Sensing (Cambridge U. Press, New York, 1992), pp. 256–274.

Schott, J. R.

J. R. Schott, Remote Sensing: The Image Chain Approach (Oxford U. Press, New York, 1997), pp. 191–231.

Shipman, H.

H. Shipman, J. B. Adams, “Detectability of minerals on desert alluvial fans using reflectance spectra,” J. Geophys. Res. 92, 10391–10402 (1987).
[CrossRef]

Silverman, S.

P. R. Christensen, D. L. Anderson, S. C. Chase, R. N. Clark, H. H. Kieffer, M. C. Malin, J. C. Pearl, J. Carpenter, N. Bandiera, F. G. Brown, S. Silverman, “Thermal emission spectrometer experiment: Mars Observer mission,” J. Geophys. Res. 97, 7719–7734 (1992).
[CrossRef]

Sivjee, M. G.

J. A. Hackwell, D. W. Warren, R. P. Bongiovi, S. J. Hansel, T. L. Hayhurst, D. J. Mabry, M. G. Sivjee, J. W. Skinner, “LWIR/MWIR Imaging Hyperspectral Sensor for airborne and ground-based remote sensing,” in Imaging Spectrometry II, M. Descour, J. Mooney, eds., Proc. SPIE2819, 102–107 (1996).
[CrossRef]

Skinner, J. W.

J. A. Hackwell, D. W. Warren, R. P. Bongiovi, S. J. Hansel, T. L. Hayhurst, D. J. Mabry, M. G. Sivjee, J. W. Skinner, “LWIR/MWIR Imaging Hyperspectral Sensor for airborne and ground-based remote sensing,” in Imaging Spectrometry II, M. Descour, J. Mooney, eds., Proc. SPIE2819, 102–107 (1996).
[CrossRef]

Slavney, S.

J. D. Bowman, E. A. Guiness, S. Slavney, R. E. Arvidson, “Mars Global Surveyor Thermal Emission Spectrometer time sequential data record standard product,” Planetary Data System archive of TES data (NASA Planetary Data System Geosciences Node, Washington University, St. Louis, Mo., 1999).

Smith, M. D.

Smith et al. used 7.6–7.8 µm. See M. D. Smith, J. L. Bandfield, P. R. Christensen, “Separation of atmospheric and surface spectral features in Mars Global Surveyor Thermal Emission Spectrometer (TES) studies,” J. Geophys. Res. 105, 9589–9607 (2000).
[CrossRef]

M. D. Smith, J. L. Bandfield, P. R. Christensen, “Separation of atmospheric and surface spectral features in Mars Global Surveyor Thermal Emission Spectrometer (TES) studies,” J. Geophys. Res. 105, 9589–9607 (2000).
[CrossRef]

See, for example, P. R. Christensen, J. L. Bandfield, M. D. Smith, V. E. Hamilton, R. N. Clark, “Identification of a basaltic component on the Martian surface from Thermal Emission Spectrometer data,” J. Geophys. Res. 105, 9609–9621 (2000).
[CrossRef]

See, for example, P. R. Christensen, D. L. Anderson, S. C. Chase, R. T. Clancy, R. N. Clark, B. J. Conrath, H. H. Kieffer, R. O. Kuzmin, M. C. Malin, J. C. Pearl, T. L. Roush, M. D. Smith, “Results from the Mars Global Surveyor Thermal Emission Spectrometer,” Science 279, 1692–1698 (1998).
[CrossRef] [PubMed]

Smith, M. O.

See, for example, P. E. Johnson, M. O. Smith, J. B. Adams, “Simple algorithms for remote determination of mineral abundances and particle sizes from reflectance spectra,” J. Geophys. Res. 97, 2649–2657 (1992).
[CrossRef]

See, for example, D. E. Sabol, J. B. Adams, M. O. Smith, “Quantitative subpixel detection of targets in multispectral images,” J. Geophys. Res. 97, 2659–2672 (1992).
[CrossRef]

See, for example, J. B. Adams, M. O. Smith, A. R. Gillespie, “Imaging spectroscopy: interpretation based on spectral mixture analysis,” in Remote Geochemical Analysis: Elemental and Mineralogical Composition, C. Pieters, P. Englert eds. (Cambridge U. Press, New York, 1993), Chap. 7.

Sunshine, J. M.

J. F. Mustard, J. M. Sunshine, “Spectral analysis for Earth science: investigations using remote sensing data,” in Remote Sensing for the Earth Sciences: Manual of Remote Sensing, 3rd ed., A. N. Rencz, ed. (Wiley, New York, 1999), Vol. 3, Chap. 5.

Thomson, F.

R. K. Vincent, F. Thomson, “Spectral composition imaging of silicate rocks,” J. Geophys. Res. 77, 2465–2472 (1972).
[CrossRef]

Thomson, J. L.

J. L. Thomson, J. W. Salisbury, “The mid-infrared reflectance of mineral mixtures (7–14 µm),” Remote Sens. Environ. 45, 1–13 (1993).
[CrossRef]

Treiman, A.

L. E. Kirkland, K. C. Herr, P. M. Adams, J. W. Salisbury, A. Treiman, “A laboratory study of weathered carbonates, with implications for the infrared remote sensing of carbonates on Mars,” in the 31st Lunar and Planetary Science Conference (Lunar and Planetary Institute, Houston, Tex., 2000), abstract 1915.

Vincent, R. K.

R. K. Vincent, F. Thomson, “Spectral composition imaging of silicate rocks,” J. Geophys. Res. 77, 2465–2472 (1972).
[CrossRef]

Wald, A.

J. W. Salisbury, A. Wald, D. M. D’Aria, “Thermal-infrared remote sensing and Kirchhoff’s law. 1. Laboratory measurements,” J. Geophys. Res. 99, 11897–11911 (1994).
[CrossRef]

J. W. Salisbury, A. Wald, “The role of volume scattering in reducing spectral contrast of reststrahlen bands in spectra of powdered minerals,” Icarus 96, 121–128 (1992).
[CrossRef]

Walker, R. E.

A. R. Gillespie, A. B. Kahle, R. E. Walker, “Color enhancement of highly correlated images. I. Decorrelation stretch,” Remote Sens. Environ. 20, 209–235 (1986).
[CrossRef]

Warren, D. W.

J. A. Hackwell, D. W. Warren, R. P. Bongiovi, S. J. Hansel, T. L. Hayhurst, D. J. Mabry, M. G. Sivjee, J. W. Skinner, “LWIR/MWIR Imaging Hyperspectral Sensor for airborne and ground-based remote sensing,” in Imaging Spectrometry II, M. Descour, J. Mooney, eds., Proc. SPIE2819, 102–107 (1996).
[CrossRef]

Wexler, A. S.

A. S. Wexler, “Integrated intensities of absorption bands in infrared spectroscopy,” Appl. Spectrosc. Rev. 1, 29–98 (1967).
[CrossRef]

Williams, C. S.

C. S. Williams, O. A. Becklund, Optics: A Short Course for Engineers (Krieger, Malabar, Fla., 1984), pp. 58–63.

Wyatt, C. L.

C. L. Wyatt, Radiometric System Design (Macmillan, New York, 1987), p. 145.

Appl. Opt. (2)

Appl. Spectrosc. Rev. (1)

A. S. Wexler, “Integrated intensities of absorption bands in infrared spectroscopy,” Appl. Spectrosc. Rev. 1, 29–98 (1967).
[CrossRef]

Icarus (1)

J. W. Salisbury, A. Wald, “The role of volume scattering in reducing spectral contrast of reststrahlen bands in spectra of powdered minerals,” Icarus 96, 121–128 (1992).
[CrossRef]

J. Geophys. Res. (13)

R. K. Vincent, F. Thomson, “Spectral composition imaging of silicate rocks,” J. Geophys. Res. 77, 2465–2472 (1972).
[CrossRef]

H. Shipman, J. B. Adams, “Detectability of minerals on desert alluvial fans using reflectance spectra,” J. Geophys. Res. 92, 10391–10402 (1987).
[CrossRef]

W. H. Farrand, J. C. Harsanyi, “Discrimination of poorly exposed lithologies in imaging spectrometer data,” J. Geophys. Res. 100, 1565–1578 (1995).
[CrossRef]

See, for example, D. E. Sabol, J. B. Adams, M. O. Smith, “Quantitative subpixel detection of targets in multispectral images,” J. Geophys. Res. 97, 2659–2672 (1992).
[CrossRef]

See, for example, P. E. Johnson, M. O. Smith, J. B. Adams, “Simple algorithms for remote determination of mineral abundances and particle sizes from reflectance spectra,” J. Geophys. Res. 97, 2649–2657 (1992).
[CrossRef]

J. W. Salisbury, A. Wald, D. M. D’Aria, “Thermal-infrared remote sensing and Kirchhoff’s law. 1. Laboratory measurements,” J. Geophys. Res. 99, 11897–11911 (1994).
[CrossRef]

R. N. Clark, T. D. Roush, “Reflectance spectroscopy: quantitative analysis techniques for remote sensing applications,” J. Geophys. Res. 89, 6329–6340 (1984).
[CrossRef]

P. R. Christensen, D. L. Anderson, S. C. Chase, R. N. Clark, H. H. Kieffer, M. C. Malin, J. C. Pearl, J. Carpenter, N. Bandiera, F. G. Brown, S. Silverman, “Thermal emission spectrometer experiment: Mars Observer mission,” J. Geophys. Res. 97, 7719–7734 (1992).
[CrossRef]

Kirkland and Herr used 7.75 µm. See L. E. Kirkland, K. C. Herr, “Spectral anomalies in the 11 and 12 µm region from the Mariner Mars 7 Infrared Spectrometer,” J. Geophys. Res. 105, 22507–22515 (2000).
[CrossRef]

Smith et al. used 7.6–7.8 µm. See M. D. Smith, J. L. Bandfield, P. R. Christensen, “Separation of atmospheric and surface spectral features in Mars Global Surveyor Thermal Emission Spectrometer (TES) studies,” J. Geophys. Res. 105, 9589–9607 (2000).
[CrossRef]

J. R. Aronson, A. G. Emslie, R. V. Allen, H. G. McLinden, “Studies of the middle- and far-infrared spectra of mineral surfaces for application in remote compositional mapping of the moon and planets,” J. Geophys. Res. 72, 687–703 (1967).
[CrossRef]

M. D. Smith, J. L. Bandfield, P. R. Christensen, “Separation of atmospheric and surface spectral features in Mars Global Surveyor Thermal Emission Spectrometer (TES) studies,” J. Geophys. Res. 105, 9589–9607 (2000).
[CrossRef]

See, for example, P. R. Christensen, J. L. Bandfield, M. D. Smith, V. E. Hamilton, R. N. Clark, “Identification of a basaltic component on the Martian surface from Thermal Emission Spectrometer data,” J. Geophys. Res. 105, 9609–9621 (2000).
[CrossRef]

Photogramm. Eng. Remote Sens. (1)

T. D. Rubin, “Spectral mapping with imaging spectrometers,” Photogramm. Eng. Remote Sens. 59, 215–220 (1993).

Remote Sens. Environ. (6)

F. A. Kruse, “Use of Airborne Imaging Spectrometer data to map minerals associated with hydrothermally altered rocks in the northern Grapevine Mountains, Nevada, and California,” Remote Sens. Environ. 24, 31–51 (1988).
[CrossRef]

J. W. Salisbury, D. M. D’Aria, “Emissivity of terrestrial materials in the 8-14 µm window,” Remote Sens. Environ. 42, 83–106 (1992).
[CrossRef]

J. L. Thomson, J. W. Salisbury, “The mid-infrared reflectance of mineral mixtures (7–14 µm),” Remote Sens. Environ. 45, 1–13 (1993).
[CrossRef]

A. R. Gillespie, “Spectral mixture analysis of multispectral thermal infrared images,” Remote Sens. Environ. 42, 137–145 (1992).
[CrossRef]

A. R. Gillespie, A. B. Kahle, R. E. Walker, “Color enhancement of highly correlated images. I. Decorrelation stretch,” Remote Sens. Environ. 20, 209–235 (1986).
[CrossRef]

A. R. Gillespie, “Spectral mixture analysis of multispectral thermal infrared images,” Remote Sens. Environ. 42, 137–145 (1992).
[CrossRef]

Science (1)

See, for example, P. R. Christensen, D. L. Anderson, S. C. Chase, R. T. Clancy, R. N. Clark, B. J. Conrath, H. H. Kieffer, R. O. Kuzmin, M. C. Malin, J. C. Pearl, T. L. Roush, M. D. Smith, “Results from the Mars Global Surveyor Thermal Emission Spectrometer,” Science 279, 1692–1698 (1998).
[CrossRef] [PubMed]

Other (23)

J. D. Ingle, S. T. Crouch, Spectrochemical Analysis (Prentice-Hall, Englewood Cliffs, N.J., 1988), pp. 172–174.

J. R. Schott, Remote Sensing: The Image Chain Approach (Oxford U. Press, New York, 1997), pp. 191–231.

R. A. Hanel, B. J. Conrath, D. E. Jennings, R. E. Samuelson, Exploration of the Solar System by Infrared Remote Sensing (Cambridge U. Press, New York, 1992), pp. 256–274.

R. Beer, Remote Sensing by Fourier Transform Spectrometry, Vol. 120 in Chemical Analysis (Wiley, New York, 1992), pp. 55–100.

Ref. 41, pp. 172–180.

A review of references is given in D. F. Flanigan, “A short history of remote sensing of chemical agents,” in Electro-Optical Technology for Remote Chemical Detection and Identification, M. Fallahi, E. Howden, eds., Proc. SPIE2763, 2–17 (1996).
[CrossRef]

An application to Mars is given in J. M. McAfee, “Interpretation of the infrared spectra of the Martian atmosphere obtained by the Mariner 6 and 7 Infrared Spectrometers,” Ph.D. dissertation (University of California, Berkeley, Berkeley, Calif., 1974).

B. Hapke, Theory of Reflectance and Emittance Spectroscopy (Cambridge U. Press, New York, 1993).
[CrossRef]

J. F. Mustard, J. M. Sunshine, “Spectral analysis for Earth science: investigations using remote sensing data,” in Remote Sensing for the Earth Sciences: Manual of Remote Sensing, 3rd ed., A. N. Rencz, ed. (Wiley, New York, 1999), Vol. 3, Chap. 5.

See, for example, J. B. Adams, M. O. Smith, A. R. Gillespie, “Imaging spectroscopy: interpretation based on spectral mixture analysis,” in Remote Geochemical Analysis: Elemental and Mineralogical Composition, C. Pieters, P. Englert eds. (Cambridge U. Press, New York, 1993), Chap. 7.

W. K. Pratt, Digital Imaging Processing (Wiley, New York, 1978), Chap. 19.

C. S. Williams, O. A. Becklund, Optics: A Short Course for Engineers (Krieger, Malabar, Fla., 1984), pp. 58–63.

J. Fraden, AIP Handbook of Modern Sensors (American Institute of Physics, New York, 1993), p. 136.

P. R. Griffiths, J. A. de Haseth, Fourier Transform Infrared Spectrometry (Wiley, New York, 1986).

P. R. Christensen, “Calibration report for the Thermal Emission Spectrometer (TES) for the Mars Global Surveyor mission,” (Jet Propulsion Laboratory, Pasadena, Calif., 1998).

J. D. Bowman, E. A. Guiness, S. Slavney, R. E. Arvidson, “Mars Global Surveyor Thermal Emission Spectrometer time sequential data record standard product,” Planetary Data System archive of TES data (NASA Planetary Data System Geosciences Node, Washington University, St. Louis, Mo., 1999).

J. A. Hackwell, D. W. Warren, R. P. Bongiovi, S. J. Hansel, T. L. Hayhurst, D. J. Mabry, M. G. Sivjee, J. W. Skinner, “LWIR/MWIR Imaging Hyperspectral Sensor for airborne and ground-based remote sensing,” in Imaging Spectrometry II, M. Descour, J. Mooney, eds., Proc. SPIE2819, 102–107 (1996).
[CrossRef]

“Thermal Emission Spectrometer (TES) software specification,” (Jet Propulsion Laboratory, Pasadena, Calif., 1991), Vol. 5.

C. L. Wyatt, Radiometric System Design (Macmillan, New York, 1987), p. 145.

Hanel et al. used 7.81 µm. See R. A. Hanel, B. J. Conrath, D. E. Jennings, R. E. Samuelson, Exploration of the Solar System by Infrared Remote Sensing (Cambridge U. Press, New York, 1992), p. 345.

P. M. Adams, The Aerospace Corporation, 2350 E. El Segundo Blvd., El Segundo, Calif. (personal communication, 2000).

L. E. Kirkland, K. C. Herr, E. R. Keim, J. W. Salisbury, J. A. Hackwell, “A field study of thermal infrared spectra of carbonates, with implications for studies of Mars,” in the 31st Lunar and Planetary Science Conference (Lunar and Planetary Institute, Houston, Tex., 2000), abstract 1876.

L. E. Kirkland, K. C. Herr, P. M. Adams, J. W. Salisbury, A. Treiman, “A laboratory study of weathered carbonates, with implications for the infrared remote sensing of carbonates on Mars,” in the 31st Lunar and Planetary Science Conference (Lunar and Planetary Institute, Houston, Tex., 2000), abstract 1915.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Example spectral feature. Shown is a typical measured TES spectrum of Mars. Transmission through the silicate aerosol dust is the main contributor to the broad, strong ∼1100-cm-1 band. The dashed line illustrates the approximate local continuum in the ∼925-cm-1 region. We desire to quantify which spectral features to accept as a detection with a desired confidence level relative to the noise and local continuum. For example, should the feature marked with the arrow at ∼925 cm-1 be accepted as a detection? From the TES spectrum 57023856 from the NASA archive of TES data.

Fig. 2
Fig. 2

Cavity effect. The effective emissivity increases with the average number of reflections of the exiting radiance. This plot illustrates the increase in effective emissivity with the number of reflections when we assume an absolute emissivity of 0.8 (solid curve) or 0.95 (dashed curve) using Eq. (1).

Fig. 3
Fig. 3

TES spectral resolution. Shown is the TES spectral resolution as modeled by the TES team. The upper curve shows the values for detector 1, which has the poorest spectral resolution of the six detectors, and the lower curve is for detector 5, which has the best spectral resolution. Optical apodization28 from the off-axis positioning of the detectors causes the difference.20 The nominal TES spectral resolution is 20 cm-1. The data shown are from the NASA Planetary Data System archive of TES data, modified from their presentation as the full width at half-maximum of the sinc function to the more standard sinc first zero crossing28 by use of a scale factor of 20 divided by 12.1 cm-1.

Fig. 4
Fig. 4

TES signal. The upper dashed curve shows an average of three spectra of the internal blackbody target at a temperature of 286.6 K, and the bottom trace shows an average of five deep space spectra. The middle trace shows the blackbody spectrum interpolated to a 270 K target. For the SNR calculation, the signal at a given wave number is the difference between the 270 K and the deep space curves. This plot shows that the TES has the highest signal in the ∼1000–350-cm-1 region. Blackbody target measurements are spectra 576023692 to 96, and the deep space measurements are spectra 575978746 to 54.

Fig. 5
Fig. 5

TES noise. Shown is the difference between the maximum and the minimum values measured at each wavelength of five TES deep space spectra (spectra 575978746 to 54). For the SNR calculation, the peak-to-peak noise is the maximum of the 143 values shown, which here is 0.375 transformed volts. The stepped appearance of the plot reflects the digitization noise, and the digitization steps are 0.0625 transformed volts for deep space spectra, which translates to a peak-to-peak noise of six digitization steps. This indicates that digitization noise does not dominate the peak-to-peak noise present in the TES spectra.

Fig. 6
Fig. 6

SNR versus wavelength. Shown are the peak-to-peak SNR values for the TES when a blackbody is measured at 270 K. Higher values represent higher quality. Detector response and the Planck radiance signal cause the broad shape of the curve, whereas instrument absorptions cause the finer detail. For reference, arrows are drawn to indicate the SNR values at 891 and 1538 cm-1 (11.2 and 6.5 µm) near two of the carbonate band centers examined.

Fig. 7
Fig. 7

Laboratory spectra. These spectra are convolved to 20-cm-1 spectral resolution and sampled at the same intervals as the TES. The continuum was removed by division to cubic spline fits. Both the limestone and the calcrete consist predominantly of calcite. A pitted, rough surface causes a cavity effect and small, angular grains cause volume scattering, both of which decrease the spectral contrast in the calcrete relative to the limestone. This shows why it is important to state the assumed band contrast for a derived detection limit for a given material, such as calcite, because the band contrast varies with properties unrelated to the composition. Spectra were measured by Paul Adams (The Aerospace Corporation) and converted to emissivity using one minus hemispherical reflectance.

Fig. 8
Fig. 8

Detection limit as a percent of the band depth versus the wave number. Shown are the results for a single TES spectrum that we computed using a confidence factor of 2, a band full width at half-maximum of 30 cm-1, and assuming a surface temperature of 270 K. This gives a detection limit of 0.8% at 890 cm-1, which is the band depth that a TES spectrum would have to exhibit at that wave number for the band to be accepted with the desired confidence level.

Tables (1)

Tables Icon

Table 1 Results for Two Example Carbonates

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

εe=1-1-εcount+1,
fch=rawch2scale,
x1, y1=rad0 K, DSvoltsλ,
x2, y2=rad286.6 K, BBvoltsλ,
DL=100×confidence factorsignalnoisePtoP/2×band FWHMsampling interval1/2,
dm=fd,
fmin=dmd=DLd,

Metrics