Abstract

An aerosol microphysics dataset was used to model backscatter in the 0.35–11-µm wavelength range, with the results validated by comparison with measured cw and pulsed lidar backscatter obtained during two NASA-sponsored airborne field experiments. Different atmospheric features were encountered, with aerosol backscatter ranging over 4 orders of magnitude. Modeled conversion functions were used to convert existing lidar backscatter datasets to 2.1 µm. Resulting statistical distribution shows the midtropospheric aerosol backscatter background mode of β2.1 to be between ∼3.0 × 10-10 and ∼1.3 × 10-9 m-1 sr-1, ∼10–20 times higher than that for β9.1; and a β2.1 boundary layer mode of ∼1.0 × 10-7 to ∼1.3 × 10-6 m-1 sr-1, ∼3–5 times higher than β9.1.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. J. Kavaya, G. D. Emmitt, “The space readiness coherent lidar experiment (SPARCLE) space shuttle mission,” in Laser Radar Technology and Applications III, G. W. Kamerman, ed., Proc. SPIE3380, 2–11 (1998).
    [CrossRef]
  2. W. E. Baker, G. D. Emmitt, P. Robertson, R. M. Atlas, J. E. Molinari, D. A. Bowdle, J. Paegle, R. M. Hardesty, R. T. Menzies, T. N. Krishnamurti, R. A. Brown, M. J. Post, J. R. Anderson, A. C. Lorenc, T. L. Miller, J. McElroy, “Lidar measured winds from space: an essential component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
    [CrossRef]
  3. J. M. Prospero, R. J. Charlson, V. Mohnen, R. Jaenicke, A. C. Delany, J. Moyers, W. Zoller, K. Rahn, “The atmospheric aerosol system: an overview,” Rev. Geophys. Space Phys. 21, 1607–1629 (1983).
    [CrossRef]
  4. J. Rothermel, D. A. Bowdle, J. M. Vaughan, M. J. Post, “Evidence of a tropospheric aerosol backscatter background mode,” Appl. Opt. 28, 1040–1042 (1989).
    [CrossRef] [PubMed]
  5. J. Rothermel, D. A. Bowdle, V. Srivastava, “Mid-tropospheric aerosol backscatter background mode over the Pacific Ocean at 9.1 µm wavelength,” Geophys. Res. Lett. 23, 281–284 (1996).
    [CrossRef]
  6. V. Srivastava, A. D. Clarke, M. A. Jarzembski, J. Rothermel, “Comparison of modeled backscatter using measured aerosol microphysics with focused CW lidar data over Pacific,” J. Geophys. Res. 102, 16605–16617 (1997).
    [CrossRef]
  7. D. M. Tratt, R. T. Menzies, “Recent climatological trends in atmospheric aerosol backscatter derived from the Jet Propulsion Laboratory multiyear backscatter profile database,” Appl. Opt. 33, 424–430 (1994).
    [CrossRef] [PubMed]
  8. M. J. Post, “Aerosol backscattering profiles at CO2 wavelengths: the NOAA data base,” Appl. Opt. 23, 2507–2509 (1984).
    [CrossRef]
  9. J. D. Spinhirne, S. Chudamani, J. F. Cavanaugh, J. L. Bufton, “Aerosol and cloud backscatter at 1.06, 1.54, and 0.53 µm by airborne hard-target-calibrated Nd:YAG/methane Raman lidar,” Appl. Opt. 36, 3475–3490 (1997).
    [CrossRef] [PubMed]
  10. M. A. Jarzembski, V. Srivastava, J. Rothermel, “Vertical aerosol variability from an airborne focused continuous wave CO2 lidar,” Appl. Opt. 38, 908–915 (1999).
    [CrossRef]
  11. S. M. Hannon, H. R. Bailey, D. C. Soreide, R. K. Bogne, L. J. Ehernberger, D. A. Bowdle, “Airborne turbulence detection and warning: ACLAIM flight test results,” in Proceedings of the Tenth Biennial Coherent Laser Radar: Technology and Applications, (Universities Space Research Association, Huntsville, Ala., 1999), pp. 20–23.
  12. S. C. Cha, K. P. Chan, D. K. Kellinger, “Tunable 2.1 µm Ho lidar for simultaneous range-resolved measurements of atmospheric water vapor and aerosol backscatter profiles,” Appl. Opt. 30, 3938–3943 (1991).
    [CrossRef] [PubMed]
  13. R. T. Menzies, D. M. Tratt, “Airborne lidar observations of tropospheric aerosols during the Global Backscatter Experiment (GLOBE) Pacific circumnavigation missions of 1989 and 1990,” J. Geophys. Res. 102, 3701–3714 (1997).
    [CrossRef]
  14. D. A. Bowdle, D. E. Fitzjarrald, “The GLObal Backscatter Experiment (GLOBE) program,” in Coherent Laser Radar: Technology and Applications, Vol. 16 of 1987 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1987) pp. 108–111.
  15. A. D. Clarke, J. Porter, “Aerosol size distributions, composition, and CO2 backscatter at Mauna Loa Observatory,” J. Geophys. Res. 96, 5237–5247 (1991).
    [CrossRef]
  16. A. D. Clarke, “Atmospheric nuclei in the Pacific midtroposphere: their nature, concentration, and evolution,” J. Geophys. Res. 98, 20633–20647 (1993).
    [CrossRef]
  17. D. R. Cutten, P. F. Pueschel, V. Srivastava, D. A. Bowdle, A. D. Clarke, J. Rothermel, R. T. Menzies, J. D. Spinhirne, “Multi-wavelength comparison of modeled and measured remote tropospheric aerosol backscatter over Pacific Ocean,” J. Geophys. Res. 101, 9357–9389 (1996).
    [CrossRef]
  18. D. R. Cutten, J. D. Spinhirne, R. T. Menzies, D. A. Bowdle, V. Srivastava, R. F. Pueschel, A. D. Clarke, J. Rothermel, “Intercomparison of pulsed lidar data with flight level CW lidar data and modeled backscatter from measured aerosol microphysics near Japan and Hawaii,” J. Geophys. Res. 103, 19649–19661 (1998).
    [CrossRef]
  19. J. Rothermel, D. M. Chambers, M. A. Jarzembski, V. Srivastava, D. A. Bowdle, W. D. Jones, “Signal processing and calibration of continuous-wave focused CO2 Doppler lidars for atmospheric backscatter measurement,” Appl. Opt. 35, 2083–2095 (1996).
    [CrossRef] [PubMed]
  20. M. A. Jarzembski, V. Srivastava, D. M. Chambers, “Lidar calibration technique using laboratory-generated aerosols,” Appl. Opt. 35, 2096–2108 (1996).
    [CrossRef] [PubMed]
  21. V. Srivastava, M. A. Jarzembski, D. A. Bowdle, “Comparison of calculated aerosol backscatter at 9.1 and 2.1 wavelengths,” Appl. Opt. 31, 1904–1906 (1992).
    [CrossRef] [PubMed]
  22. V. Srivastava, D. A. Bowdle, M. A. Jarzembski, J. Rothermel, D. M. Chambers, D. R. Cutten, “High resolution remote sensing of sulfate aerosols from CO2 lidar backscatter,” Geophys. Res. Lett. 22, 2373–2376 (1995).
    [CrossRef]
  23. S. Chudamani, J. D. Spinhirne, A. D. Clarke, “Lidar aerosol backscatter cross sections in the 2.1 µm near infrared wavelength region,” Appl. Opt. 35, 4812–4819 (1996).
    [CrossRef] [PubMed]

1999 (1)

1998 (1)

D. R. Cutten, J. D. Spinhirne, R. T. Menzies, D. A. Bowdle, V. Srivastava, R. F. Pueschel, A. D. Clarke, J. Rothermel, “Intercomparison of pulsed lidar data with flight level CW lidar data and modeled backscatter from measured aerosol microphysics near Japan and Hawaii,” J. Geophys. Res. 103, 19649–19661 (1998).
[CrossRef]

1997 (3)

R. T. Menzies, D. M. Tratt, “Airborne lidar observations of tropospheric aerosols during the Global Backscatter Experiment (GLOBE) Pacific circumnavigation missions of 1989 and 1990,” J. Geophys. Res. 102, 3701–3714 (1997).
[CrossRef]

J. D. Spinhirne, S. Chudamani, J. F. Cavanaugh, J. L. Bufton, “Aerosol and cloud backscatter at 1.06, 1.54, and 0.53 µm by airborne hard-target-calibrated Nd:YAG/methane Raman lidar,” Appl. Opt. 36, 3475–3490 (1997).
[CrossRef] [PubMed]

V. Srivastava, A. D. Clarke, M. A. Jarzembski, J. Rothermel, “Comparison of modeled backscatter using measured aerosol microphysics with focused CW lidar data over Pacific,” J. Geophys. Res. 102, 16605–16617 (1997).
[CrossRef]

1996 (5)

J. Rothermel, D. A. Bowdle, V. Srivastava, “Mid-tropospheric aerosol backscatter background mode over the Pacific Ocean at 9.1 µm wavelength,” Geophys. Res. Lett. 23, 281–284 (1996).
[CrossRef]

J. Rothermel, D. M. Chambers, M. A. Jarzembski, V. Srivastava, D. A. Bowdle, W. D. Jones, “Signal processing and calibration of continuous-wave focused CO2 Doppler lidars for atmospheric backscatter measurement,” Appl. Opt. 35, 2083–2095 (1996).
[CrossRef] [PubMed]

M. A. Jarzembski, V. Srivastava, D. M. Chambers, “Lidar calibration technique using laboratory-generated aerosols,” Appl. Opt. 35, 2096–2108 (1996).
[CrossRef] [PubMed]

D. R. Cutten, P. F. Pueschel, V. Srivastava, D. A. Bowdle, A. D. Clarke, J. Rothermel, R. T. Menzies, J. D. Spinhirne, “Multi-wavelength comparison of modeled and measured remote tropospheric aerosol backscatter over Pacific Ocean,” J. Geophys. Res. 101, 9357–9389 (1996).
[CrossRef]

S. Chudamani, J. D. Spinhirne, A. D. Clarke, “Lidar aerosol backscatter cross sections in the 2.1 µm near infrared wavelength region,” Appl. Opt. 35, 4812–4819 (1996).
[CrossRef] [PubMed]

1995 (2)

V. Srivastava, D. A. Bowdle, M. A. Jarzembski, J. Rothermel, D. M. Chambers, D. R. Cutten, “High resolution remote sensing of sulfate aerosols from CO2 lidar backscatter,” Geophys. Res. Lett. 22, 2373–2376 (1995).
[CrossRef]

W. E. Baker, G. D. Emmitt, P. Robertson, R. M. Atlas, J. E. Molinari, D. A. Bowdle, J. Paegle, R. M. Hardesty, R. T. Menzies, T. N. Krishnamurti, R. A. Brown, M. J. Post, J. R. Anderson, A. C. Lorenc, T. L. Miller, J. McElroy, “Lidar measured winds from space: an essential component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
[CrossRef]

1994 (1)

1993 (1)

A. D. Clarke, “Atmospheric nuclei in the Pacific midtroposphere: their nature, concentration, and evolution,” J. Geophys. Res. 98, 20633–20647 (1993).
[CrossRef]

1992 (1)

1991 (2)

1989 (1)

1984 (1)

1983 (1)

J. M. Prospero, R. J. Charlson, V. Mohnen, R. Jaenicke, A. C. Delany, J. Moyers, W. Zoller, K. Rahn, “The atmospheric aerosol system: an overview,” Rev. Geophys. Space Phys. 21, 1607–1629 (1983).
[CrossRef]

Anderson, J. R.

W. E. Baker, G. D. Emmitt, P. Robertson, R. M. Atlas, J. E. Molinari, D. A. Bowdle, J. Paegle, R. M. Hardesty, R. T. Menzies, T. N. Krishnamurti, R. A. Brown, M. J. Post, J. R. Anderson, A. C. Lorenc, T. L. Miller, J. McElroy, “Lidar measured winds from space: an essential component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
[CrossRef]

Atlas, R. M.

W. E. Baker, G. D. Emmitt, P. Robertson, R. M. Atlas, J. E. Molinari, D. A. Bowdle, J. Paegle, R. M. Hardesty, R. T. Menzies, T. N. Krishnamurti, R. A. Brown, M. J. Post, J. R. Anderson, A. C. Lorenc, T. L. Miller, J. McElroy, “Lidar measured winds from space: an essential component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
[CrossRef]

Bailey, H. R.

S. M. Hannon, H. R. Bailey, D. C. Soreide, R. K. Bogne, L. J. Ehernberger, D. A. Bowdle, “Airborne turbulence detection and warning: ACLAIM flight test results,” in Proceedings of the Tenth Biennial Coherent Laser Radar: Technology and Applications, (Universities Space Research Association, Huntsville, Ala., 1999), pp. 20–23.

Baker, W. E.

W. E. Baker, G. D. Emmitt, P. Robertson, R. M. Atlas, J. E. Molinari, D. A. Bowdle, J. Paegle, R. M. Hardesty, R. T. Menzies, T. N. Krishnamurti, R. A. Brown, M. J. Post, J. R. Anderson, A. C. Lorenc, T. L. Miller, J. McElroy, “Lidar measured winds from space: an essential component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
[CrossRef]

Bogne, R. K.

S. M. Hannon, H. R. Bailey, D. C. Soreide, R. K. Bogne, L. J. Ehernberger, D. A. Bowdle, “Airborne turbulence detection and warning: ACLAIM flight test results,” in Proceedings of the Tenth Biennial Coherent Laser Radar: Technology and Applications, (Universities Space Research Association, Huntsville, Ala., 1999), pp. 20–23.

Bowdle, D. A.

D. R. Cutten, J. D. Spinhirne, R. T. Menzies, D. A. Bowdle, V. Srivastava, R. F. Pueschel, A. D. Clarke, J. Rothermel, “Intercomparison of pulsed lidar data with flight level CW lidar data and modeled backscatter from measured aerosol microphysics near Japan and Hawaii,” J. Geophys. Res. 103, 19649–19661 (1998).
[CrossRef]

J. Rothermel, D. M. Chambers, M. A. Jarzembski, V. Srivastava, D. A. Bowdle, W. D. Jones, “Signal processing and calibration of continuous-wave focused CO2 Doppler lidars for atmospheric backscatter measurement,” Appl. Opt. 35, 2083–2095 (1996).
[CrossRef] [PubMed]

D. R. Cutten, P. F. Pueschel, V. Srivastava, D. A. Bowdle, A. D. Clarke, J. Rothermel, R. T. Menzies, J. D. Spinhirne, “Multi-wavelength comparison of modeled and measured remote tropospheric aerosol backscatter over Pacific Ocean,” J. Geophys. Res. 101, 9357–9389 (1996).
[CrossRef]

J. Rothermel, D. A. Bowdle, V. Srivastava, “Mid-tropospheric aerosol backscatter background mode over the Pacific Ocean at 9.1 µm wavelength,” Geophys. Res. Lett. 23, 281–284 (1996).
[CrossRef]

W. E. Baker, G. D. Emmitt, P. Robertson, R. M. Atlas, J. E. Molinari, D. A. Bowdle, J. Paegle, R. M. Hardesty, R. T. Menzies, T. N. Krishnamurti, R. A. Brown, M. J. Post, J. R. Anderson, A. C. Lorenc, T. L. Miller, J. McElroy, “Lidar measured winds from space: an essential component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
[CrossRef]

V. Srivastava, D. A. Bowdle, M. A. Jarzembski, J. Rothermel, D. M. Chambers, D. R. Cutten, “High resolution remote sensing of sulfate aerosols from CO2 lidar backscatter,” Geophys. Res. Lett. 22, 2373–2376 (1995).
[CrossRef]

V. Srivastava, M. A. Jarzembski, D. A. Bowdle, “Comparison of calculated aerosol backscatter at 9.1 and 2.1 wavelengths,” Appl. Opt. 31, 1904–1906 (1992).
[CrossRef] [PubMed]

J. Rothermel, D. A. Bowdle, J. M. Vaughan, M. J. Post, “Evidence of a tropospheric aerosol backscatter background mode,” Appl. Opt. 28, 1040–1042 (1989).
[CrossRef] [PubMed]

S. M. Hannon, H. R. Bailey, D. C. Soreide, R. K. Bogne, L. J. Ehernberger, D. A. Bowdle, “Airborne turbulence detection and warning: ACLAIM flight test results,” in Proceedings of the Tenth Biennial Coherent Laser Radar: Technology and Applications, (Universities Space Research Association, Huntsville, Ala., 1999), pp. 20–23.

D. A. Bowdle, D. E. Fitzjarrald, “The GLObal Backscatter Experiment (GLOBE) program,” in Coherent Laser Radar: Technology and Applications, Vol. 16 of 1987 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1987) pp. 108–111.

Brown, R. A.

W. E. Baker, G. D. Emmitt, P. Robertson, R. M. Atlas, J. E. Molinari, D. A. Bowdle, J. Paegle, R. M. Hardesty, R. T. Menzies, T. N. Krishnamurti, R. A. Brown, M. J. Post, J. R. Anderson, A. C. Lorenc, T. L. Miller, J. McElroy, “Lidar measured winds from space: an essential component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
[CrossRef]

Bufton, J. L.

Cavanaugh, J. F.

Cha, S. C.

Chambers, D. M.

Chan, K. P.

Charlson, R. J.

J. M. Prospero, R. J. Charlson, V. Mohnen, R. Jaenicke, A. C. Delany, J. Moyers, W. Zoller, K. Rahn, “The atmospheric aerosol system: an overview,” Rev. Geophys. Space Phys. 21, 1607–1629 (1983).
[CrossRef]

Chudamani, S.

Clarke, A. D.

D. R. Cutten, J. D. Spinhirne, R. T. Menzies, D. A. Bowdle, V. Srivastava, R. F. Pueschel, A. D. Clarke, J. Rothermel, “Intercomparison of pulsed lidar data with flight level CW lidar data and modeled backscatter from measured aerosol microphysics near Japan and Hawaii,” J. Geophys. Res. 103, 19649–19661 (1998).
[CrossRef]

V. Srivastava, A. D. Clarke, M. A. Jarzembski, J. Rothermel, “Comparison of modeled backscatter using measured aerosol microphysics with focused CW lidar data over Pacific,” J. Geophys. Res. 102, 16605–16617 (1997).
[CrossRef]

D. R. Cutten, P. F. Pueschel, V. Srivastava, D. A. Bowdle, A. D. Clarke, J. Rothermel, R. T. Menzies, J. D. Spinhirne, “Multi-wavelength comparison of modeled and measured remote tropospheric aerosol backscatter over Pacific Ocean,” J. Geophys. Res. 101, 9357–9389 (1996).
[CrossRef]

S. Chudamani, J. D. Spinhirne, A. D. Clarke, “Lidar aerosol backscatter cross sections in the 2.1 µm near infrared wavelength region,” Appl. Opt. 35, 4812–4819 (1996).
[CrossRef] [PubMed]

A. D. Clarke, “Atmospheric nuclei in the Pacific midtroposphere: their nature, concentration, and evolution,” J. Geophys. Res. 98, 20633–20647 (1993).
[CrossRef]

A. D. Clarke, J. Porter, “Aerosol size distributions, composition, and CO2 backscatter at Mauna Loa Observatory,” J. Geophys. Res. 96, 5237–5247 (1991).
[CrossRef]

Cutten, D. R.

D. R. Cutten, J. D. Spinhirne, R. T. Menzies, D. A. Bowdle, V. Srivastava, R. F. Pueschel, A. D. Clarke, J. Rothermel, “Intercomparison of pulsed lidar data with flight level CW lidar data and modeled backscatter from measured aerosol microphysics near Japan and Hawaii,” J. Geophys. Res. 103, 19649–19661 (1998).
[CrossRef]

D. R. Cutten, P. F. Pueschel, V. Srivastava, D. A. Bowdle, A. D. Clarke, J. Rothermel, R. T. Menzies, J. D. Spinhirne, “Multi-wavelength comparison of modeled and measured remote tropospheric aerosol backscatter over Pacific Ocean,” J. Geophys. Res. 101, 9357–9389 (1996).
[CrossRef]

V. Srivastava, D. A. Bowdle, M. A. Jarzembski, J. Rothermel, D. M. Chambers, D. R. Cutten, “High resolution remote sensing of sulfate aerosols from CO2 lidar backscatter,” Geophys. Res. Lett. 22, 2373–2376 (1995).
[CrossRef]

Delany, A. C.

J. M. Prospero, R. J. Charlson, V. Mohnen, R. Jaenicke, A. C. Delany, J. Moyers, W. Zoller, K. Rahn, “The atmospheric aerosol system: an overview,” Rev. Geophys. Space Phys. 21, 1607–1629 (1983).
[CrossRef]

Ehernberger, L. J.

S. M. Hannon, H. R. Bailey, D. C. Soreide, R. K. Bogne, L. J. Ehernberger, D. A. Bowdle, “Airborne turbulence detection and warning: ACLAIM flight test results,” in Proceedings of the Tenth Biennial Coherent Laser Radar: Technology and Applications, (Universities Space Research Association, Huntsville, Ala., 1999), pp. 20–23.

Emmitt, G. D.

W. E. Baker, G. D. Emmitt, P. Robertson, R. M. Atlas, J. E. Molinari, D. A. Bowdle, J. Paegle, R. M. Hardesty, R. T. Menzies, T. N. Krishnamurti, R. A. Brown, M. J. Post, J. R. Anderson, A. C. Lorenc, T. L. Miller, J. McElroy, “Lidar measured winds from space: an essential component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
[CrossRef]

M. J. Kavaya, G. D. Emmitt, “The space readiness coherent lidar experiment (SPARCLE) space shuttle mission,” in Laser Radar Technology and Applications III, G. W. Kamerman, ed., Proc. SPIE3380, 2–11 (1998).
[CrossRef]

Fitzjarrald, D. E.

D. A. Bowdle, D. E. Fitzjarrald, “The GLObal Backscatter Experiment (GLOBE) program,” in Coherent Laser Radar: Technology and Applications, Vol. 16 of 1987 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1987) pp. 108–111.

Hannon, S. M.

S. M. Hannon, H. R. Bailey, D. C. Soreide, R. K. Bogne, L. J. Ehernberger, D. A. Bowdle, “Airborne turbulence detection and warning: ACLAIM flight test results,” in Proceedings of the Tenth Biennial Coherent Laser Radar: Technology and Applications, (Universities Space Research Association, Huntsville, Ala., 1999), pp. 20–23.

Hardesty, R. M.

W. E. Baker, G. D. Emmitt, P. Robertson, R. M. Atlas, J. E. Molinari, D. A. Bowdle, J. Paegle, R. M. Hardesty, R. T. Menzies, T. N. Krishnamurti, R. A. Brown, M. J. Post, J. R. Anderson, A. C. Lorenc, T. L. Miller, J. McElroy, “Lidar measured winds from space: an essential component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
[CrossRef]

Jaenicke, R.

J. M. Prospero, R. J. Charlson, V. Mohnen, R. Jaenicke, A. C. Delany, J. Moyers, W. Zoller, K. Rahn, “The atmospheric aerosol system: an overview,” Rev. Geophys. Space Phys. 21, 1607–1629 (1983).
[CrossRef]

Jarzembski, M. A.

Jones, W. D.

Kavaya, M. J.

M. J. Kavaya, G. D. Emmitt, “The space readiness coherent lidar experiment (SPARCLE) space shuttle mission,” in Laser Radar Technology and Applications III, G. W. Kamerman, ed., Proc. SPIE3380, 2–11 (1998).
[CrossRef]

Kellinger, D. K.

Krishnamurti, T. N.

W. E. Baker, G. D. Emmitt, P. Robertson, R. M. Atlas, J. E. Molinari, D. A. Bowdle, J. Paegle, R. M. Hardesty, R. T. Menzies, T. N. Krishnamurti, R. A. Brown, M. J. Post, J. R. Anderson, A. C. Lorenc, T. L. Miller, J. McElroy, “Lidar measured winds from space: an essential component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
[CrossRef]

Lorenc, A. C.

W. E. Baker, G. D. Emmitt, P. Robertson, R. M. Atlas, J. E. Molinari, D. A. Bowdle, J. Paegle, R. M. Hardesty, R. T. Menzies, T. N. Krishnamurti, R. A. Brown, M. J. Post, J. R. Anderson, A. C. Lorenc, T. L. Miller, J. McElroy, “Lidar measured winds from space: an essential component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
[CrossRef]

McElroy, J.

W. E. Baker, G. D. Emmitt, P. Robertson, R. M. Atlas, J. E. Molinari, D. A. Bowdle, J. Paegle, R. M. Hardesty, R. T. Menzies, T. N. Krishnamurti, R. A. Brown, M. J. Post, J. R. Anderson, A. C. Lorenc, T. L. Miller, J. McElroy, “Lidar measured winds from space: an essential component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
[CrossRef]

Menzies, R. T.

D. R. Cutten, J. D. Spinhirne, R. T. Menzies, D. A. Bowdle, V. Srivastava, R. F. Pueschel, A. D. Clarke, J. Rothermel, “Intercomparison of pulsed lidar data with flight level CW lidar data and modeled backscatter from measured aerosol microphysics near Japan and Hawaii,” J. Geophys. Res. 103, 19649–19661 (1998).
[CrossRef]

R. T. Menzies, D. M. Tratt, “Airborne lidar observations of tropospheric aerosols during the Global Backscatter Experiment (GLOBE) Pacific circumnavigation missions of 1989 and 1990,” J. Geophys. Res. 102, 3701–3714 (1997).
[CrossRef]

D. R. Cutten, P. F. Pueschel, V. Srivastava, D. A. Bowdle, A. D. Clarke, J. Rothermel, R. T. Menzies, J. D. Spinhirne, “Multi-wavelength comparison of modeled and measured remote tropospheric aerosol backscatter over Pacific Ocean,” J. Geophys. Res. 101, 9357–9389 (1996).
[CrossRef]

W. E. Baker, G. D. Emmitt, P. Robertson, R. M. Atlas, J. E. Molinari, D. A. Bowdle, J. Paegle, R. M. Hardesty, R. T. Menzies, T. N. Krishnamurti, R. A. Brown, M. J. Post, J. R. Anderson, A. C. Lorenc, T. L. Miller, J. McElroy, “Lidar measured winds from space: an essential component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
[CrossRef]

D. M. Tratt, R. T. Menzies, “Recent climatological trends in atmospheric aerosol backscatter derived from the Jet Propulsion Laboratory multiyear backscatter profile database,” Appl. Opt. 33, 424–430 (1994).
[CrossRef] [PubMed]

Miller, T. L.

W. E. Baker, G. D. Emmitt, P. Robertson, R. M. Atlas, J. E. Molinari, D. A. Bowdle, J. Paegle, R. M. Hardesty, R. T. Menzies, T. N. Krishnamurti, R. A. Brown, M. J. Post, J. R. Anderson, A. C. Lorenc, T. L. Miller, J. McElroy, “Lidar measured winds from space: an essential component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
[CrossRef]

Mohnen, V.

J. M. Prospero, R. J. Charlson, V. Mohnen, R. Jaenicke, A. C. Delany, J. Moyers, W. Zoller, K. Rahn, “The atmospheric aerosol system: an overview,” Rev. Geophys. Space Phys. 21, 1607–1629 (1983).
[CrossRef]

Molinari, J. E.

W. E. Baker, G. D. Emmitt, P. Robertson, R. M. Atlas, J. E. Molinari, D. A. Bowdle, J. Paegle, R. M. Hardesty, R. T. Menzies, T. N. Krishnamurti, R. A. Brown, M. J. Post, J. R. Anderson, A. C. Lorenc, T. L. Miller, J. McElroy, “Lidar measured winds from space: an essential component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
[CrossRef]

Moyers, J.

J. M. Prospero, R. J. Charlson, V. Mohnen, R. Jaenicke, A. C. Delany, J. Moyers, W. Zoller, K. Rahn, “The atmospheric aerosol system: an overview,” Rev. Geophys. Space Phys. 21, 1607–1629 (1983).
[CrossRef]

Paegle, J.

W. E. Baker, G. D. Emmitt, P. Robertson, R. M. Atlas, J. E. Molinari, D. A. Bowdle, J. Paegle, R. M. Hardesty, R. T. Menzies, T. N. Krishnamurti, R. A. Brown, M. J. Post, J. R. Anderson, A. C. Lorenc, T. L. Miller, J. McElroy, “Lidar measured winds from space: an essential component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
[CrossRef]

Porter, J.

A. D. Clarke, J. Porter, “Aerosol size distributions, composition, and CO2 backscatter at Mauna Loa Observatory,” J. Geophys. Res. 96, 5237–5247 (1991).
[CrossRef]

Post, M. J.

W. E. Baker, G. D. Emmitt, P. Robertson, R. M. Atlas, J. E. Molinari, D. A. Bowdle, J. Paegle, R. M. Hardesty, R. T. Menzies, T. N. Krishnamurti, R. A. Brown, M. J. Post, J. R. Anderson, A. C. Lorenc, T. L. Miller, J. McElroy, “Lidar measured winds from space: an essential component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
[CrossRef]

J. Rothermel, D. A. Bowdle, J. M. Vaughan, M. J. Post, “Evidence of a tropospheric aerosol backscatter background mode,” Appl. Opt. 28, 1040–1042 (1989).
[CrossRef] [PubMed]

M. J. Post, “Aerosol backscattering profiles at CO2 wavelengths: the NOAA data base,” Appl. Opt. 23, 2507–2509 (1984).
[CrossRef]

Prospero, J. M.

J. M. Prospero, R. J. Charlson, V. Mohnen, R. Jaenicke, A. C. Delany, J. Moyers, W. Zoller, K. Rahn, “The atmospheric aerosol system: an overview,” Rev. Geophys. Space Phys. 21, 1607–1629 (1983).
[CrossRef]

Pueschel, P. F.

D. R. Cutten, P. F. Pueschel, V. Srivastava, D. A. Bowdle, A. D. Clarke, J. Rothermel, R. T. Menzies, J. D. Spinhirne, “Multi-wavelength comparison of modeled and measured remote tropospheric aerosol backscatter over Pacific Ocean,” J. Geophys. Res. 101, 9357–9389 (1996).
[CrossRef]

Pueschel, R. F.

D. R. Cutten, J. D. Spinhirne, R. T. Menzies, D. A. Bowdle, V. Srivastava, R. F. Pueschel, A. D. Clarke, J. Rothermel, “Intercomparison of pulsed lidar data with flight level CW lidar data and modeled backscatter from measured aerosol microphysics near Japan and Hawaii,” J. Geophys. Res. 103, 19649–19661 (1998).
[CrossRef]

Rahn, K.

J. M. Prospero, R. J. Charlson, V. Mohnen, R. Jaenicke, A. C. Delany, J. Moyers, W. Zoller, K. Rahn, “The atmospheric aerosol system: an overview,” Rev. Geophys. Space Phys. 21, 1607–1629 (1983).
[CrossRef]

Robertson, P.

W. E. Baker, G. D. Emmitt, P. Robertson, R. M. Atlas, J. E. Molinari, D. A. Bowdle, J. Paegle, R. M. Hardesty, R. T. Menzies, T. N. Krishnamurti, R. A. Brown, M. J. Post, J. R. Anderson, A. C. Lorenc, T. L. Miller, J. McElroy, “Lidar measured winds from space: an essential component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
[CrossRef]

Rothermel, J.

M. A. Jarzembski, V. Srivastava, J. Rothermel, “Vertical aerosol variability from an airborne focused continuous wave CO2 lidar,” Appl. Opt. 38, 908–915 (1999).
[CrossRef]

D. R. Cutten, J. D. Spinhirne, R. T. Menzies, D. A. Bowdle, V. Srivastava, R. F. Pueschel, A. D. Clarke, J. Rothermel, “Intercomparison of pulsed lidar data with flight level CW lidar data and modeled backscatter from measured aerosol microphysics near Japan and Hawaii,” J. Geophys. Res. 103, 19649–19661 (1998).
[CrossRef]

V. Srivastava, A. D. Clarke, M. A. Jarzembski, J. Rothermel, “Comparison of modeled backscatter using measured aerosol microphysics with focused CW lidar data over Pacific,” J. Geophys. Res. 102, 16605–16617 (1997).
[CrossRef]

J. Rothermel, D. A. Bowdle, V. Srivastava, “Mid-tropospheric aerosol backscatter background mode over the Pacific Ocean at 9.1 µm wavelength,” Geophys. Res. Lett. 23, 281–284 (1996).
[CrossRef]

D. R. Cutten, P. F. Pueschel, V. Srivastava, D. A. Bowdle, A. D. Clarke, J. Rothermel, R. T. Menzies, J. D. Spinhirne, “Multi-wavelength comparison of modeled and measured remote tropospheric aerosol backscatter over Pacific Ocean,” J. Geophys. Res. 101, 9357–9389 (1996).
[CrossRef]

J. Rothermel, D. M. Chambers, M. A. Jarzembski, V. Srivastava, D. A. Bowdle, W. D. Jones, “Signal processing and calibration of continuous-wave focused CO2 Doppler lidars for atmospheric backscatter measurement,” Appl. Opt. 35, 2083–2095 (1996).
[CrossRef] [PubMed]

V. Srivastava, D. A. Bowdle, M. A. Jarzembski, J. Rothermel, D. M. Chambers, D. R. Cutten, “High resolution remote sensing of sulfate aerosols from CO2 lidar backscatter,” Geophys. Res. Lett. 22, 2373–2376 (1995).
[CrossRef]

J. Rothermel, D. A. Bowdle, J. M. Vaughan, M. J. Post, “Evidence of a tropospheric aerosol backscatter background mode,” Appl. Opt. 28, 1040–1042 (1989).
[CrossRef] [PubMed]

Soreide, D. C.

S. M. Hannon, H. R. Bailey, D. C. Soreide, R. K. Bogne, L. J. Ehernberger, D. A. Bowdle, “Airborne turbulence detection and warning: ACLAIM flight test results,” in Proceedings of the Tenth Biennial Coherent Laser Radar: Technology and Applications, (Universities Space Research Association, Huntsville, Ala., 1999), pp. 20–23.

Spinhirne, J. D.

D. R. Cutten, J. D. Spinhirne, R. T. Menzies, D. A. Bowdle, V. Srivastava, R. F. Pueschel, A. D. Clarke, J. Rothermel, “Intercomparison of pulsed lidar data with flight level CW lidar data and modeled backscatter from measured aerosol microphysics near Japan and Hawaii,” J. Geophys. Res. 103, 19649–19661 (1998).
[CrossRef]

J. D. Spinhirne, S. Chudamani, J. F. Cavanaugh, J. L. Bufton, “Aerosol and cloud backscatter at 1.06, 1.54, and 0.53 µm by airborne hard-target-calibrated Nd:YAG/methane Raman lidar,” Appl. Opt. 36, 3475–3490 (1997).
[CrossRef] [PubMed]

D. R. Cutten, P. F. Pueschel, V. Srivastava, D. A. Bowdle, A. D. Clarke, J. Rothermel, R. T. Menzies, J. D. Spinhirne, “Multi-wavelength comparison of modeled and measured remote tropospheric aerosol backscatter over Pacific Ocean,” J. Geophys. Res. 101, 9357–9389 (1996).
[CrossRef]

S. Chudamani, J. D. Spinhirne, A. D. Clarke, “Lidar aerosol backscatter cross sections in the 2.1 µm near infrared wavelength region,” Appl. Opt. 35, 4812–4819 (1996).
[CrossRef] [PubMed]

Srivastava, V.

M. A. Jarzembski, V. Srivastava, J. Rothermel, “Vertical aerosol variability from an airborne focused continuous wave CO2 lidar,” Appl. Opt. 38, 908–915 (1999).
[CrossRef]

D. R. Cutten, J. D. Spinhirne, R. T. Menzies, D. A. Bowdle, V. Srivastava, R. F. Pueschel, A. D. Clarke, J. Rothermel, “Intercomparison of pulsed lidar data with flight level CW lidar data and modeled backscatter from measured aerosol microphysics near Japan and Hawaii,” J. Geophys. Res. 103, 19649–19661 (1998).
[CrossRef]

V. Srivastava, A. D. Clarke, M. A. Jarzembski, J. Rothermel, “Comparison of modeled backscatter using measured aerosol microphysics with focused CW lidar data over Pacific,” J. Geophys. Res. 102, 16605–16617 (1997).
[CrossRef]

J. Rothermel, D. A. Bowdle, V. Srivastava, “Mid-tropospheric aerosol backscatter background mode over the Pacific Ocean at 9.1 µm wavelength,” Geophys. Res. Lett. 23, 281–284 (1996).
[CrossRef]

D. R. Cutten, P. F. Pueschel, V. Srivastava, D. A. Bowdle, A. D. Clarke, J. Rothermel, R. T. Menzies, J. D. Spinhirne, “Multi-wavelength comparison of modeled and measured remote tropospheric aerosol backscatter over Pacific Ocean,” J. Geophys. Res. 101, 9357–9389 (1996).
[CrossRef]

J. Rothermel, D. M. Chambers, M. A. Jarzembski, V. Srivastava, D. A. Bowdle, W. D. Jones, “Signal processing and calibration of continuous-wave focused CO2 Doppler lidars for atmospheric backscatter measurement,” Appl. Opt. 35, 2083–2095 (1996).
[CrossRef] [PubMed]

M. A. Jarzembski, V. Srivastava, D. M. Chambers, “Lidar calibration technique using laboratory-generated aerosols,” Appl. Opt. 35, 2096–2108 (1996).
[CrossRef] [PubMed]

V. Srivastava, D. A. Bowdle, M. A. Jarzembski, J. Rothermel, D. M. Chambers, D. R. Cutten, “High resolution remote sensing of sulfate aerosols from CO2 lidar backscatter,” Geophys. Res. Lett. 22, 2373–2376 (1995).
[CrossRef]

V. Srivastava, M. A. Jarzembski, D. A. Bowdle, “Comparison of calculated aerosol backscatter at 9.1 and 2.1 wavelengths,” Appl. Opt. 31, 1904–1906 (1992).
[CrossRef] [PubMed]

Tratt, D. M.

R. T. Menzies, D. M. Tratt, “Airborne lidar observations of tropospheric aerosols during the Global Backscatter Experiment (GLOBE) Pacific circumnavigation missions of 1989 and 1990,” J. Geophys. Res. 102, 3701–3714 (1997).
[CrossRef]

D. M. Tratt, R. T. Menzies, “Recent climatological trends in atmospheric aerosol backscatter derived from the Jet Propulsion Laboratory multiyear backscatter profile database,” Appl. Opt. 33, 424–430 (1994).
[CrossRef] [PubMed]

Vaughan, J. M.

Zoller, W.

J. M. Prospero, R. J. Charlson, V. Mohnen, R. Jaenicke, A. C. Delany, J. Moyers, W. Zoller, K. Rahn, “The atmospheric aerosol system: an overview,” Rev. Geophys. Space Phys. 21, 1607–1629 (1983).
[CrossRef]

Appl. Opt. (10)

J. Rothermel, D. A. Bowdle, J. M. Vaughan, M. J. Post, “Evidence of a tropospheric aerosol backscatter background mode,” Appl. Opt. 28, 1040–1042 (1989).
[CrossRef] [PubMed]

D. M. Tratt, R. T. Menzies, “Recent climatological trends in atmospheric aerosol backscatter derived from the Jet Propulsion Laboratory multiyear backscatter profile database,” Appl. Opt. 33, 424–430 (1994).
[CrossRef] [PubMed]

M. J. Post, “Aerosol backscattering profiles at CO2 wavelengths: the NOAA data base,” Appl. Opt. 23, 2507–2509 (1984).
[CrossRef]

J. D. Spinhirne, S. Chudamani, J. F. Cavanaugh, J. L. Bufton, “Aerosol and cloud backscatter at 1.06, 1.54, and 0.53 µm by airborne hard-target-calibrated Nd:YAG/methane Raman lidar,” Appl. Opt. 36, 3475–3490 (1997).
[CrossRef] [PubMed]

M. A. Jarzembski, V. Srivastava, J. Rothermel, “Vertical aerosol variability from an airborne focused continuous wave CO2 lidar,” Appl. Opt. 38, 908–915 (1999).
[CrossRef]

J. Rothermel, D. M. Chambers, M. A. Jarzembski, V. Srivastava, D. A. Bowdle, W. D. Jones, “Signal processing and calibration of continuous-wave focused CO2 Doppler lidars for atmospheric backscatter measurement,” Appl. Opt. 35, 2083–2095 (1996).
[CrossRef] [PubMed]

M. A. Jarzembski, V. Srivastava, D. M. Chambers, “Lidar calibration technique using laboratory-generated aerosols,” Appl. Opt. 35, 2096–2108 (1996).
[CrossRef] [PubMed]

V. Srivastava, M. A. Jarzembski, D. A. Bowdle, “Comparison of calculated aerosol backscatter at 9.1 and 2.1 wavelengths,” Appl. Opt. 31, 1904–1906 (1992).
[CrossRef] [PubMed]

S. C. Cha, K. P. Chan, D. K. Kellinger, “Tunable 2.1 µm Ho lidar for simultaneous range-resolved measurements of atmospheric water vapor and aerosol backscatter profiles,” Appl. Opt. 30, 3938–3943 (1991).
[CrossRef] [PubMed]

S. Chudamani, J. D. Spinhirne, A. D. Clarke, “Lidar aerosol backscatter cross sections in the 2.1 µm near infrared wavelength region,” Appl. Opt. 35, 4812–4819 (1996).
[CrossRef] [PubMed]

Bull. Am. Meteorol. Soc. (1)

W. E. Baker, G. D. Emmitt, P. Robertson, R. M. Atlas, J. E. Molinari, D. A. Bowdle, J. Paegle, R. M. Hardesty, R. T. Menzies, T. N. Krishnamurti, R. A. Brown, M. J. Post, J. R. Anderson, A. C. Lorenc, T. L. Miller, J. McElroy, “Lidar measured winds from space: an essential component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
[CrossRef]

Geophys. Res. Lett. (2)

J. Rothermel, D. A. Bowdle, V. Srivastava, “Mid-tropospheric aerosol backscatter background mode over the Pacific Ocean at 9.1 µm wavelength,” Geophys. Res. Lett. 23, 281–284 (1996).
[CrossRef]

V. Srivastava, D. A. Bowdle, M. A. Jarzembski, J. Rothermel, D. M. Chambers, D. R. Cutten, “High resolution remote sensing of sulfate aerosols from CO2 lidar backscatter,” Geophys. Res. Lett. 22, 2373–2376 (1995).
[CrossRef]

J. Geophys. Res. (6)

A. D. Clarke, J. Porter, “Aerosol size distributions, composition, and CO2 backscatter at Mauna Loa Observatory,” J. Geophys. Res. 96, 5237–5247 (1991).
[CrossRef]

A. D. Clarke, “Atmospheric nuclei in the Pacific midtroposphere: their nature, concentration, and evolution,” J. Geophys. Res. 98, 20633–20647 (1993).
[CrossRef]

D. R. Cutten, P. F. Pueschel, V. Srivastava, D. A. Bowdle, A. D. Clarke, J. Rothermel, R. T. Menzies, J. D. Spinhirne, “Multi-wavelength comparison of modeled and measured remote tropospheric aerosol backscatter over Pacific Ocean,” J. Geophys. Res. 101, 9357–9389 (1996).
[CrossRef]

D. R. Cutten, J. D. Spinhirne, R. T. Menzies, D. A. Bowdle, V. Srivastava, R. F. Pueschel, A. D. Clarke, J. Rothermel, “Intercomparison of pulsed lidar data with flight level CW lidar data and modeled backscatter from measured aerosol microphysics near Japan and Hawaii,” J. Geophys. Res. 103, 19649–19661 (1998).
[CrossRef]

V. Srivastava, A. D. Clarke, M. A. Jarzembski, J. Rothermel, “Comparison of modeled backscatter using measured aerosol microphysics with focused CW lidar data over Pacific,” J. Geophys. Res. 102, 16605–16617 (1997).
[CrossRef]

R. T. Menzies, D. M. Tratt, “Airborne lidar observations of tropospheric aerosols during the Global Backscatter Experiment (GLOBE) Pacific circumnavigation missions of 1989 and 1990,” J. Geophys. Res. 102, 3701–3714 (1997).
[CrossRef]

Rev. Geophys. Space Phys. (1)

J. M. Prospero, R. J. Charlson, V. Mohnen, R. Jaenicke, A. C. Delany, J. Moyers, W. Zoller, K. Rahn, “The atmospheric aerosol system: an overview,” Rev. Geophys. Space Phys. 21, 1607–1629 (1983).
[CrossRef]

Other (3)

S. M. Hannon, H. R. Bailey, D. C. Soreide, R. K. Bogne, L. J. Ehernberger, D. A. Bowdle, “Airborne turbulence detection and warning: ACLAIM flight test results,” in Proceedings of the Tenth Biennial Coherent Laser Radar: Technology and Applications, (Universities Space Research Association, Huntsville, Ala., 1999), pp. 20–23.

D. A. Bowdle, D. E. Fitzjarrald, “The GLObal Backscatter Experiment (GLOBE) program,” in Coherent Laser Radar: Technology and Applications, Vol. 16 of 1987 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1987) pp. 108–111.

M. J. Kavaya, G. D. Emmitt, “The space readiness coherent lidar experiment (SPARCLE) space shuttle mission,” in Laser Radar Technology and Applications III, G. W. Kamerman, ed., Proc. SPIE3380, 2–11 (1998).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Comparison of measured lidar backscatter (βλ) with modeled βλ (vertical bars connected by a solid line) derived from measured LOPC size distributions obtained during the GLOBE F12 from Darwin, Australia, to Tokyo, Japan, on 31 May 1990 for different wavelengths: (a) 1.06-µm pulsed-lidar data (open diamonds), (b) 9.1-µm cw lidar data (small crosses), and 9.25-µm pulsed-lidar data (open diamonds).

Fig. 2
Fig. 2

Scatterplot of βλ for four wavelength pairs for the GLOBE F12: (a) 0.53–1.06 µm, (b) 0.53–9.25 µm, (c) 1.06–9.25 µm, and (d) 9.1–10.6 µm. Crosses show the measured lidar data combination, whereas the open squares show the modeled βλ combination with use of the LOPC data. The diagonal line shows the 1:1 relationship between two βλ.

Fig. 3
Fig. 3

Three-dimensional false color-enhanced surface plot of modeled βλ showing the calculated wavelength dependence of βλ over a 0.35–11-µm wavelength range with use of the LOPC size-distribution data obtained during the GLOBE F12 from Darwin, Australia, to Tokyo, Japan, on 31 May 1990.

Fig. 4
Fig. 4

Several cross sections from Fig. 3, covering low, moderate, and high aerosol loading observed at different times during F12 from Darwin to Tokyo: (a) number distribution (dN) and (b) corresponding modeled wavelength dependence of β with use of the measured LOPC data.

Fig. 5
Fig. 5

Modeled relationship between βλ and β2.1 at several wavelengths with use of the measured size distribution from the LOPC data measured during selected GLOBE flights. Solid lines represent the best fit with a second-order polynomial.

Fig. 6
Fig. 6

Converted β2.1 vertical profiles obtained from 1.06-µm pulsed-lidar data taken during the GLOBE flight F12 from Darwin to Tokyo. Highest β2.1 is seen in the MBL, with cleaner conditions prevailing in the midtroposphere. Nearer Tokyo, an Asian dust plume (∼04:30 UTC) shows up as an increase in β2.1 in the midtroposphere. Only the data above the threshold for lidar β1.06 > 10-9 m-1 sr-1 was used in this converted β2.1.

Fig. 7
Fig. 7

Frequency histograms of β2.1 as functions of altitude obtained by converting measured lidar data with use of the empirical conversion functions [Eq. (1) and Table 2]: (a) converted β2.1 from 1.06-µm pulsed-lidar from the GLOBE F12 and (b) converted β2.1 from 9.1-µm cw lidar data from all 15 GLOBE flights. The color in the left-hand margin represents the percent of samples obtained within each altitude bin. Different percent scales were used to enhance the characteristic features described in the text. The black solid line shows the 1.06-µm lidar data threshold when converted to 2.1-µm backscatter.

Fig. 8
Fig. 8

Same as Fig. 7, except showing the converted β2.1 from 9.1-µm cw lidar data from the 1995 MACAWS experiment with use of the conversion functions [Eq. (1), and Table 2]: (a) over the eastern Pacific Ocean, showing shallow (∼1.5 km altitude) MBL; (b) over the western U.S., showing a much deeper (∼3-km altitude) boundary layer; (c) for the entire cw lidar data. The solid line marks β2.1 ∼ 1.3 × 10-10 m-1 sr-1, which corresponds to the threshold for Nd:YAG pulsed-lidar data β1.06 ∼ 1 × 10-9 m-1 sr-1.

Fig. 9
Fig. 9

Comparison of frequency histograms of β2.1 from different data sets: (a) directly modeled with use of the LOPC, (b) converted from the GLOBE F12 pulsed 1.06-µm lidar and all the GLOBE flight data sets of 9.1-µm cw lidar, (c) converted from the MACAWS 9.1-µm cw lidar.

Tables (2)

Tables Icon

Table 1 Some Parameters of the Different Lidars Onboard the DC-8 Aircraft that Provided Measured Aerosol βλ Data

Tables Icon

Table 2 Coefficient Values for Different Wavelengths in Eq. (1) for βλ Conversion to βλ

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

log β2.1=aλlog βλ2+bλlog βλ+cλ,

Metrics