Abstract

We show that a double-random encryption technique can improve the storage capacity of an angular-multiplexed holographic memory system. In the holographic memory system, input binary images are encrypted into white-noise-like images by use of two random phase masks located at the input and the Fourier planes. These encrypted images are stored as holograms in a photorefractive medium by use of angular multiplexing. All the images are encrypted by different sets of random phase masks. Even when the angle separation between adjacent images is small enough to cause cross talk between adjacent images, original binary data can be recovered with the correct phase mask; the other reconstructed images remain white-noise-like images because incorrect masks are used. Therefore the capacity of the proposed system can be larger than that of a conventional holographic memory system without the random phase encryption technique. Numerical evaluation and experimental results are presented to confirm that the capacity of the system with random phase masks is larger than that of the conventional memory system.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. F. Heanue, M. C. Bashaw, L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
    [CrossRef] [PubMed]
  2. H. Coufal, D. Psaltis, G. Sincerbox, Holographic Data Storage (Springer-Verlag, Berlin, 2000).
    [CrossRef]
  3. S. S. Orlov, W. Phillips, E. Bjornson, L. Hesselink, “10 gigabit/second sustained optical data transfer rate from a holographic disk digital data storage system,” presented at the Optical Society of America Annual Meeting and Exhibit 2000 and 16th Interdisciplinary Laser Science Conference, Providence, Rhode Island, 22–26 October 2000.
  4. B. Javidi, J. L. Horner, “Optical pattern recognition for validation and security verification,” Opt. Eng. 33, 1752–1756 (1994).
    [CrossRef]
  5. P. Réfrégier, B. Javidi, “Optical image encryption based on input plane and Fourier plane random encoding,” Opt. Lett. 20, 767–769 (1995).
    [CrossRef] [PubMed]
  6. O. Matoba, B. Javidi, “Encrypted optical memory system using three-dimensional keys in the Fresnel domain,” Opt. Lett. 24, 762–764 (1999).
    [CrossRef]
  7. O. Matoba, B. Javidi, “Encrypted optical storage with angular multiplexing,” Appl. Opt. 38, 7288–7293 (1999).
    [CrossRef]
  8. X. Tan, O. Matoba, T. Shimura, K. Kuroda, B. Javidi, “Secure holographic memory that uses fully phase encryption,” Appl. Opt. 39, 6689–6694 (2000).
    [CrossRef]
  9. B. Javidi, G. Zhang, J. Li, “Encrypted optical memory using double-random phase encoding,” Appl. Opt. 36, 1054–1058 (1997).
    [CrossRef] [PubMed]
  10. P. J. van Heerden, “Theory of optical information storage in solids,” Appl. Opt. 2, 393–400 (1963).
    [CrossRef]
  11. B. Javidi, N. Towghi, N. Maghzi, S. Verrall, “Error-reduction techniques and error analysis for fully phase and amplitude-based encryption,” Appl. Opt. 39, 4117–4130 (2000).
    [CrossRef]
  12. N. Towghi, B. Javidi, Z. Luo, “Fully phase encrypted image processor,” J. Opt. Soc. Am. A 16, 1915–1927 (1999).
    [CrossRef]
  13. Q. Gao, R. Kostuk, “Improvement to holographic digital data-storage systems with random and pseudorandom phase masks,” Appl. Opt. 36, 4853–4861 (1997).
    [CrossRef] [PubMed]
  14. J. Yang, L. M. Bernardo, Y-S. Bae, “Improving holographic data storage by use of an optimized phase mask,” Appl. Opt. 38, 5641–5645 (1999).
    [CrossRef]
  15. H. W. Kogelnik, “Coupled wave theory for think hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
    [CrossRef]
  16. C. Gu, J. Hong, I. McMichael, R. Saxena, F. H. Mok, “Cross-talk-limited storage capacity of volume holographic memory,” J. Opt. Soc. Am. A 9, 1978–1983 (1992).
    [CrossRef]
  17. Y. Taketomi, J. E. Ford, H. Sasaki, J. Ma, Y. Fainman, S. H. Lee, “Incremental recording for photorefractive hologram multiplexing,” Opt. Lett. 16, 1774–1776 (1991).
    [CrossRef] [PubMed]

2000 (2)

1999 (4)

1997 (2)

1995 (1)

1994 (2)

J. F. Heanue, M. C. Bashaw, L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
[CrossRef] [PubMed]

B. Javidi, J. L. Horner, “Optical pattern recognition for validation and security verification,” Opt. Eng. 33, 1752–1756 (1994).
[CrossRef]

1992 (1)

1991 (1)

1969 (1)

H. W. Kogelnik, “Coupled wave theory for think hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

1963 (1)

Bae, Y-S.

Bashaw, M. C.

J. F. Heanue, M. C. Bashaw, L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
[CrossRef] [PubMed]

Bernardo, L. M.

Bjornson, E.

S. S. Orlov, W. Phillips, E. Bjornson, L. Hesselink, “10 gigabit/second sustained optical data transfer rate from a holographic disk digital data storage system,” presented at the Optical Society of America Annual Meeting and Exhibit 2000 and 16th Interdisciplinary Laser Science Conference, Providence, Rhode Island, 22–26 October 2000.

Coufal, H.

H. Coufal, D. Psaltis, G. Sincerbox, Holographic Data Storage (Springer-Verlag, Berlin, 2000).
[CrossRef]

Fainman, Y.

Ford, J. E.

Gao, Q.

Gu, C.

Heanue, J. F.

J. F. Heanue, M. C. Bashaw, L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
[CrossRef] [PubMed]

Hesselink, L.

J. F. Heanue, M. C. Bashaw, L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
[CrossRef] [PubMed]

S. S. Orlov, W. Phillips, E. Bjornson, L. Hesselink, “10 gigabit/second sustained optical data transfer rate from a holographic disk digital data storage system,” presented at the Optical Society of America Annual Meeting and Exhibit 2000 and 16th Interdisciplinary Laser Science Conference, Providence, Rhode Island, 22–26 October 2000.

Hong, J.

Horner, J. L.

B. Javidi, J. L. Horner, “Optical pattern recognition for validation and security verification,” Opt. Eng. 33, 1752–1756 (1994).
[CrossRef]

Javidi, B.

Kogelnik, H. W.

H. W. Kogelnik, “Coupled wave theory for think hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

Kostuk, R.

Kuroda, K.

Lee, S. H.

Li, J.

Luo, Z.

Ma, J.

Maghzi, N.

Matoba, O.

McMichael, I.

Mok, F. H.

Orlov, S. S.

S. S. Orlov, W. Phillips, E. Bjornson, L. Hesselink, “10 gigabit/second sustained optical data transfer rate from a holographic disk digital data storage system,” presented at the Optical Society of America Annual Meeting and Exhibit 2000 and 16th Interdisciplinary Laser Science Conference, Providence, Rhode Island, 22–26 October 2000.

Phillips, W.

S. S. Orlov, W. Phillips, E. Bjornson, L. Hesselink, “10 gigabit/second sustained optical data transfer rate from a holographic disk digital data storage system,” presented at the Optical Society of America Annual Meeting and Exhibit 2000 and 16th Interdisciplinary Laser Science Conference, Providence, Rhode Island, 22–26 October 2000.

Psaltis, D.

H. Coufal, D. Psaltis, G. Sincerbox, Holographic Data Storage (Springer-Verlag, Berlin, 2000).
[CrossRef]

Réfrégier, P.

Sasaki, H.

Saxena, R.

Shimura, T.

Sincerbox, G.

H. Coufal, D. Psaltis, G. Sincerbox, Holographic Data Storage (Springer-Verlag, Berlin, 2000).
[CrossRef]

Taketomi, Y.

Tan, X.

Towghi, N.

van Heerden, P. J.

Verrall, S.

Yang, J.

Zhang, G.

Appl. Opt. (7)

Bell Syst. Tech. J. (1)

H. W. Kogelnik, “Coupled wave theory for think hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

J. Opt. Soc. Am. A (2)

Opt. Eng. (1)

B. Javidi, J. L. Horner, “Optical pattern recognition for validation and security verification,” Opt. Eng. 33, 1752–1756 (1994).
[CrossRef]

Opt. Lett. (3)

Science (1)

J. F. Heanue, M. C. Bashaw, L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
[CrossRef] [PubMed]

Other (2)

H. Coufal, D. Psaltis, G. Sincerbox, Holographic Data Storage (Springer-Verlag, Berlin, 2000).
[CrossRef]

S. S. Orlov, W. Phillips, E. Bjornson, L. Hesselink, “10 gigabit/second sustained optical data transfer rate from a holographic disk digital data storage system,” presented at the Optical Society of America Annual Meeting and Exhibit 2000 and 16th Interdisciplinary Laser Science Conference, Providence, Rhode Island, 22–26 October 2000.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic diagram of a secure holographic memory system that uses double-random phase encryption.

Fig. 2
Fig. 2

Concept to improve the storage capacity in the holographic memory system by use of double-random phase encryption. (a) Conventional holographic memory and (b) the secure holographic memory that uses double-random phase encryption.

Fig. 3
Fig. 3

Bit error rate with and without double-random phase encryption as a function of the angle separation between adjacent images.

Fig. 4
Fig. 4

Rate of increase in the storage capacity as a function of the pixel size when (a) the pixel size of the input phase mask is 1 and (b) the same as that of the input data.

Fig. 5
Fig. 5

Experimental setup: BS, beamsplitter; L, lenses; M, mirror; S, shutter; CCD, CCD camera; Mask, random phase mask; SLM, special light modulator.

Fig. 6
Fig. 6

Three original binary images.

Fig. 7
Fig. 7

Encrypted images.

Fig. 8
Fig. 8

Reconstruction of three images with an angle separation of Δθ = 0.25° in a conventional holographic memory without double-random phase encryption.

Fig. 9
Fig. 9

Reconstructed images with an angle separation of (a) Δθ = 0.005° and (b) Δθ = 0.25° in a conventional holographic memory without double-random phase encryption.

Fig. 10
Fig. 10

Reconstructed images by use of double-random phase encryption when the angle separation Δθ = 0.005°.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

eix, y=oix, ymix, yFMiξ, η,
Ψiξ, η=Foix, ymix, yMiξ, η.
Iiξ, η=|Ψiξ, η+Riξ, η|2.
nξ, η=no+n1Ψi*ξ, ηRiξ, η+Ψiξ, ηRi*ξ, η,
ϕξ, η=Ψi*ξ, η+jiN Ψj*ξ, ηRjξ, ηRi*ξ, η.
ψix, y=oi*x, ymi*x, y+jiN FρjiΨj*ξ, ηMiξ, η,
ψ=νsinν2+ξ2ν2+ξ2,
ν=πn1dλcRcS,
ξ=ΔθKd sinϕ-θ02cS.

Metrics