Abstract

Coded apertures for imaging problems are typically based on arrays having perfect cross-correlation properties. These arrays, however, guarantee a perfect point-spread function in far-field applications only. When these arrays are used in the near-field, artifacts arise. We present a mathematical derivation capable of predicting the shape of such artifacts. The theory shows that methods used in the past to compensate for the effects of background nonuniformities in far-field problems are also effective in reducing near-field artifacts. The case study of a nuclear medicine problem is presented to show good agreement of simulation and experimental results with mathematical predictions.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Caroli, J. B. Stephen, G. Di Cocco, L. Natalucci, A. Spizzichino, “Coded aperture imaging in x- and gamma-ray astronomy,” Space Sci. Rev. 45, 349–403 (1987).
    [CrossRef]
  2. G. K. Skinner, “Imaging with coded-aperture masks,” Nucl. Instrum. Methods Phys. Res. A 221, 33–40 (1984).
    [CrossRef]
  3. R. H. Dicke, “Scatter-hole cameras for X-rays and gamma rays,” Astrophys. J. 153, L101–L106 (1968).
    [CrossRef]
  4. J. G. Ables, “Fourier transform photography: a new method for X-ray astronomy,” Proc. Astron. Soc. Aust. 1, 172–173 (1968).
  5. E. E. Fenimore, T. M. Cannon, D. B. Van Hulsteyn, P. Lee, “Uniformly redundant array imaging of laser driven compressions: preliminary results,” Appl. Opt. 18, 945–947 (1979).
    [CrossRef] [PubMed]
  6. Y. W. Chen, M. Yamanaka, N. Miyanaga, T. Yamanaka, S. Nakai, C. Yamanaka, S. Tamura, “Three-dimensional reconstruction of laser-irradiated targets using URA coded aperture cameras,” Opt. Commun. 71, 249–255 (1989).
    [CrossRef]
  7. K. F. Koral, J. E. Freitas, W. L. Rogers, J. W. Keyes, “Thyroid scintigraphy with time-coded aperture,” J. Nucl. Med. 20, 345–349 (1979).
    [PubMed]
  8. W. L. Rogers, K. F. Koral, R. Mayans, P. F. Leonard, J. H. Thrall, T. J. Brady, J. W. Keyes, “Coded-aperture imaging of the heart,” J. Nucl. Med. 21, 371–378 (1980).
    [PubMed]
  9. H. H. Barrett, “Fresnel zone plate imaging in nuclear medicine,” J. Nucl. Med. 13, 382–385 (1972).
    [PubMed]
  10. E. E. Fenimore, T. M. Cannon, “Coded aperture imaging with uniformly redundant arrays,” Appl. Opt. 17, 337–347 (1978).
    [CrossRef] [PubMed]
  11. E. E. Fenimore, T. M. Cannon, “Uniformly redundant arrays: digital reconstruction methods,” Appl. Opt. 20, 1858–1864 (1981).
    [CrossRef] [PubMed]
  12. Y. H. Liu, A. Rangarajan, D. Gagnon, M. Therrien, A. J. Sinusas, F. J. Th. Wackers, I. G. Zubal, “A novel geometry for SPECT imaging associated with the EM-type blind deconvolution method,” IEEE Trans. Nucl. Sci. 45, 2095–2101 (1998).
    [CrossRef]
  13. K. F. Koral, W. L. Rogers, “Application of ART to time-coded emission tomography,” Phys. Med. Biol. 24, 879–894 (1979).
    [CrossRef] [PubMed]
  14. J. S. Fleming, B. A. Goddard, “An evaluation of techniques for stationary coded aperture three-dimensional imaging in nuclear medicine,” Nucl. Instrum. Methods Phys. Res. A 221, 242–246 (1984).
    [CrossRef]
  15. M. L. McConnell, D. J. Forrest, E. L. Chupp, P. P. Dunphy, “A coded aperture gamma ray telescope,” IEEE Trans. Nucl. Sci. NS-29, 155–159 (1982).
    [CrossRef]
  16. P. P. Dunphy, M. L. McConnell, A. Owens, E. L. Chupp, D. J. Forrest, “A balloon-borne coded aperture telescope for low-energy gamma-ray astronomy,” Nucl. Instrum. Methods Phys. Res. A 274, 362–379 (1989).
    [CrossRef]
  17. U. B. Jayanthi, J. Braga, “Physical implementation of an antimask in URA based coded mask systems,” Nucl. Instrum. Methods Phys. Res. A 310, 685–689 (1991).
    [CrossRef]
  18. R. Accorsi, F. Gasparini, R. C. Lanza, “An improved method for radiation imaging using coded apertures,” U.S. patent application 60/236, 878 (29September2000).
  19. T. M. Cannon, E. E. Fenimore, “Tomographical imaging using uniformly redundant arrays,” Appl. Opt. 18, 1052–1057 (1979).
    [CrossRef] [PubMed]
  20. S. R. Gottesman, E. E. Fenimore, “New family of binary arrays for coded aperture imaging,” Appl. Opt. 28, 4344–4352 (1989).
    [CrossRef] [PubMed]
  21. S. R. Gottesman, E. J. Schneid, “PNP—a new class of coded aperture arrays,” IEEE Trans. Nucl. Sci. NS-33, 745–749 (1986).
    [CrossRef]
  22. K. Byard, “Synthesis of binary arrays with perfect correlation properties—coded aperture imaging,” Nucl. Instrum. Methods Phys. Res. A 336, 262–268 (1993).
    [CrossRef]
  23. E. E. Fenimore, “Large symmetric π transformations for Hadamard transforms,” Appl. Opt. 22, 826–829 (1983).
    [CrossRef]

1998 (1)

Y. H. Liu, A. Rangarajan, D. Gagnon, M. Therrien, A. J. Sinusas, F. J. Th. Wackers, I. G. Zubal, “A novel geometry for SPECT imaging associated with the EM-type blind deconvolution method,” IEEE Trans. Nucl. Sci. 45, 2095–2101 (1998).
[CrossRef]

1993 (1)

K. Byard, “Synthesis of binary arrays with perfect correlation properties—coded aperture imaging,” Nucl. Instrum. Methods Phys. Res. A 336, 262–268 (1993).
[CrossRef]

1991 (1)

U. B. Jayanthi, J. Braga, “Physical implementation of an antimask in URA based coded mask systems,” Nucl. Instrum. Methods Phys. Res. A 310, 685–689 (1991).
[CrossRef]

1989 (3)

Y. W. Chen, M. Yamanaka, N. Miyanaga, T. Yamanaka, S. Nakai, C. Yamanaka, S. Tamura, “Three-dimensional reconstruction of laser-irradiated targets using URA coded aperture cameras,” Opt. Commun. 71, 249–255 (1989).
[CrossRef]

P. P. Dunphy, M. L. McConnell, A. Owens, E. L. Chupp, D. J. Forrest, “A balloon-borne coded aperture telescope for low-energy gamma-ray astronomy,” Nucl. Instrum. Methods Phys. Res. A 274, 362–379 (1989).
[CrossRef]

S. R. Gottesman, E. E. Fenimore, “New family of binary arrays for coded aperture imaging,” Appl. Opt. 28, 4344–4352 (1989).
[CrossRef] [PubMed]

1987 (1)

E. Caroli, J. B. Stephen, G. Di Cocco, L. Natalucci, A. Spizzichino, “Coded aperture imaging in x- and gamma-ray astronomy,” Space Sci. Rev. 45, 349–403 (1987).
[CrossRef]

1986 (1)

S. R. Gottesman, E. J. Schneid, “PNP—a new class of coded aperture arrays,” IEEE Trans. Nucl. Sci. NS-33, 745–749 (1986).
[CrossRef]

1984 (2)

J. S. Fleming, B. A. Goddard, “An evaluation of techniques for stationary coded aperture three-dimensional imaging in nuclear medicine,” Nucl. Instrum. Methods Phys. Res. A 221, 242–246 (1984).
[CrossRef]

G. K. Skinner, “Imaging with coded-aperture masks,” Nucl. Instrum. Methods Phys. Res. A 221, 33–40 (1984).
[CrossRef]

1983 (1)

1982 (1)

M. L. McConnell, D. J. Forrest, E. L. Chupp, P. P. Dunphy, “A coded aperture gamma ray telescope,” IEEE Trans. Nucl. Sci. NS-29, 155–159 (1982).
[CrossRef]

1981 (1)

1980 (1)

W. L. Rogers, K. F. Koral, R. Mayans, P. F. Leonard, J. H. Thrall, T. J. Brady, J. W. Keyes, “Coded-aperture imaging of the heart,” J. Nucl. Med. 21, 371–378 (1980).
[PubMed]

1979 (4)

K. F. Koral, J. E. Freitas, W. L. Rogers, J. W. Keyes, “Thyroid scintigraphy with time-coded aperture,” J. Nucl. Med. 20, 345–349 (1979).
[PubMed]

K. F. Koral, W. L. Rogers, “Application of ART to time-coded emission tomography,” Phys. Med. Biol. 24, 879–894 (1979).
[CrossRef] [PubMed]

T. M. Cannon, E. E. Fenimore, “Tomographical imaging using uniformly redundant arrays,” Appl. Opt. 18, 1052–1057 (1979).
[CrossRef] [PubMed]

E. E. Fenimore, T. M. Cannon, D. B. Van Hulsteyn, P. Lee, “Uniformly redundant array imaging of laser driven compressions: preliminary results,” Appl. Opt. 18, 945–947 (1979).
[CrossRef] [PubMed]

1978 (1)

1972 (1)

H. H. Barrett, “Fresnel zone plate imaging in nuclear medicine,” J. Nucl. Med. 13, 382–385 (1972).
[PubMed]

1968 (2)

R. H. Dicke, “Scatter-hole cameras for X-rays and gamma rays,” Astrophys. J. 153, L101–L106 (1968).
[CrossRef]

J. G. Ables, “Fourier transform photography: a new method for X-ray astronomy,” Proc. Astron. Soc. Aust. 1, 172–173 (1968).

Ables, J. G.

J. G. Ables, “Fourier transform photography: a new method for X-ray astronomy,” Proc. Astron. Soc. Aust. 1, 172–173 (1968).

Accorsi, R.

R. Accorsi, F. Gasparini, R. C. Lanza, “An improved method for radiation imaging using coded apertures,” U.S. patent application 60/236, 878 (29September2000).

Barrett, H. H.

H. H. Barrett, “Fresnel zone plate imaging in nuclear medicine,” J. Nucl. Med. 13, 382–385 (1972).
[PubMed]

Brady, T. J.

W. L. Rogers, K. F. Koral, R. Mayans, P. F. Leonard, J. H. Thrall, T. J. Brady, J. W. Keyes, “Coded-aperture imaging of the heart,” J. Nucl. Med. 21, 371–378 (1980).
[PubMed]

Braga, J.

U. B. Jayanthi, J. Braga, “Physical implementation of an antimask in URA based coded mask systems,” Nucl. Instrum. Methods Phys. Res. A 310, 685–689 (1991).
[CrossRef]

Byard, K.

K. Byard, “Synthesis of binary arrays with perfect correlation properties—coded aperture imaging,” Nucl. Instrum. Methods Phys. Res. A 336, 262–268 (1993).
[CrossRef]

Cannon, T. M.

Caroli, E.

E. Caroli, J. B. Stephen, G. Di Cocco, L. Natalucci, A. Spizzichino, “Coded aperture imaging in x- and gamma-ray astronomy,” Space Sci. Rev. 45, 349–403 (1987).
[CrossRef]

Chen, Y. W.

Y. W. Chen, M. Yamanaka, N. Miyanaga, T. Yamanaka, S. Nakai, C. Yamanaka, S. Tamura, “Three-dimensional reconstruction of laser-irradiated targets using URA coded aperture cameras,” Opt. Commun. 71, 249–255 (1989).
[CrossRef]

Chupp, E. L.

P. P. Dunphy, M. L. McConnell, A. Owens, E. L. Chupp, D. J. Forrest, “A balloon-borne coded aperture telescope for low-energy gamma-ray astronomy,” Nucl. Instrum. Methods Phys. Res. A 274, 362–379 (1989).
[CrossRef]

M. L. McConnell, D. J. Forrest, E. L. Chupp, P. P. Dunphy, “A coded aperture gamma ray telescope,” IEEE Trans. Nucl. Sci. NS-29, 155–159 (1982).
[CrossRef]

Di Cocco, G.

E. Caroli, J. B. Stephen, G. Di Cocco, L. Natalucci, A. Spizzichino, “Coded aperture imaging in x- and gamma-ray astronomy,” Space Sci. Rev. 45, 349–403 (1987).
[CrossRef]

Dicke, R. H.

R. H. Dicke, “Scatter-hole cameras for X-rays and gamma rays,” Astrophys. J. 153, L101–L106 (1968).
[CrossRef]

Dunphy, P. P.

P. P. Dunphy, M. L. McConnell, A. Owens, E. L. Chupp, D. J. Forrest, “A balloon-borne coded aperture telescope for low-energy gamma-ray astronomy,” Nucl. Instrum. Methods Phys. Res. A 274, 362–379 (1989).
[CrossRef]

M. L. McConnell, D. J. Forrest, E. L. Chupp, P. P. Dunphy, “A coded aperture gamma ray telescope,” IEEE Trans. Nucl. Sci. NS-29, 155–159 (1982).
[CrossRef]

Fenimore, E. E.

Fleming, J. S.

J. S. Fleming, B. A. Goddard, “An evaluation of techniques for stationary coded aperture three-dimensional imaging in nuclear medicine,” Nucl. Instrum. Methods Phys. Res. A 221, 242–246 (1984).
[CrossRef]

Forrest, D. J.

P. P. Dunphy, M. L. McConnell, A. Owens, E. L. Chupp, D. J. Forrest, “A balloon-borne coded aperture telescope for low-energy gamma-ray astronomy,” Nucl. Instrum. Methods Phys. Res. A 274, 362–379 (1989).
[CrossRef]

M. L. McConnell, D. J. Forrest, E. L. Chupp, P. P. Dunphy, “A coded aperture gamma ray telescope,” IEEE Trans. Nucl. Sci. NS-29, 155–159 (1982).
[CrossRef]

Freitas, J. E.

K. F. Koral, J. E. Freitas, W. L. Rogers, J. W. Keyes, “Thyroid scintigraphy with time-coded aperture,” J. Nucl. Med. 20, 345–349 (1979).
[PubMed]

Gagnon, D.

Y. H. Liu, A. Rangarajan, D. Gagnon, M. Therrien, A. J. Sinusas, F. J. Th. Wackers, I. G. Zubal, “A novel geometry for SPECT imaging associated with the EM-type blind deconvolution method,” IEEE Trans. Nucl. Sci. 45, 2095–2101 (1998).
[CrossRef]

Gasparini, F.

R. Accorsi, F. Gasparini, R. C. Lanza, “An improved method for radiation imaging using coded apertures,” U.S. patent application 60/236, 878 (29September2000).

Goddard, B. A.

J. S. Fleming, B. A. Goddard, “An evaluation of techniques for stationary coded aperture three-dimensional imaging in nuclear medicine,” Nucl. Instrum. Methods Phys. Res. A 221, 242–246 (1984).
[CrossRef]

Gottesman, S. R.

S. R. Gottesman, E. E. Fenimore, “New family of binary arrays for coded aperture imaging,” Appl. Opt. 28, 4344–4352 (1989).
[CrossRef] [PubMed]

S. R. Gottesman, E. J. Schneid, “PNP—a new class of coded aperture arrays,” IEEE Trans. Nucl. Sci. NS-33, 745–749 (1986).
[CrossRef]

Jayanthi, U. B.

U. B. Jayanthi, J. Braga, “Physical implementation of an antimask in URA based coded mask systems,” Nucl. Instrum. Methods Phys. Res. A 310, 685–689 (1991).
[CrossRef]

Keyes, J. W.

W. L. Rogers, K. F. Koral, R. Mayans, P. F. Leonard, J. H. Thrall, T. J. Brady, J. W. Keyes, “Coded-aperture imaging of the heart,” J. Nucl. Med. 21, 371–378 (1980).
[PubMed]

K. F. Koral, J. E. Freitas, W. L. Rogers, J. W. Keyes, “Thyroid scintigraphy with time-coded aperture,” J. Nucl. Med. 20, 345–349 (1979).
[PubMed]

Koral, K. F.

W. L. Rogers, K. F. Koral, R. Mayans, P. F. Leonard, J. H. Thrall, T. J. Brady, J. W. Keyes, “Coded-aperture imaging of the heart,” J. Nucl. Med. 21, 371–378 (1980).
[PubMed]

K. F. Koral, J. E. Freitas, W. L. Rogers, J. W. Keyes, “Thyroid scintigraphy with time-coded aperture,” J. Nucl. Med. 20, 345–349 (1979).
[PubMed]

K. F. Koral, W. L. Rogers, “Application of ART to time-coded emission tomography,” Phys. Med. Biol. 24, 879–894 (1979).
[CrossRef] [PubMed]

Lanza, R. C.

R. Accorsi, F. Gasparini, R. C. Lanza, “An improved method for radiation imaging using coded apertures,” U.S. patent application 60/236, 878 (29September2000).

Lee, P.

Leonard, P. F.

W. L. Rogers, K. F. Koral, R. Mayans, P. F. Leonard, J. H. Thrall, T. J. Brady, J. W. Keyes, “Coded-aperture imaging of the heart,” J. Nucl. Med. 21, 371–378 (1980).
[PubMed]

Liu, Y. H.

Y. H. Liu, A. Rangarajan, D. Gagnon, M. Therrien, A. J. Sinusas, F. J. Th. Wackers, I. G. Zubal, “A novel geometry for SPECT imaging associated with the EM-type blind deconvolution method,” IEEE Trans. Nucl. Sci. 45, 2095–2101 (1998).
[CrossRef]

Mayans, R.

W. L. Rogers, K. F. Koral, R. Mayans, P. F. Leonard, J. H. Thrall, T. J. Brady, J. W. Keyes, “Coded-aperture imaging of the heart,” J. Nucl. Med. 21, 371–378 (1980).
[PubMed]

McConnell, M. L.

P. P. Dunphy, M. L. McConnell, A. Owens, E. L. Chupp, D. J. Forrest, “A balloon-borne coded aperture telescope for low-energy gamma-ray astronomy,” Nucl. Instrum. Methods Phys. Res. A 274, 362–379 (1989).
[CrossRef]

M. L. McConnell, D. J. Forrest, E. L. Chupp, P. P. Dunphy, “A coded aperture gamma ray telescope,” IEEE Trans. Nucl. Sci. NS-29, 155–159 (1982).
[CrossRef]

Miyanaga, N.

Y. W. Chen, M. Yamanaka, N. Miyanaga, T. Yamanaka, S. Nakai, C. Yamanaka, S. Tamura, “Three-dimensional reconstruction of laser-irradiated targets using URA coded aperture cameras,” Opt. Commun. 71, 249–255 (1989).
[CrossRef]

Nakai, S.

Y. W. Chen, M. Yamanaka, N. Miyanaga, T. Yamanaka, S. Nakai, C. Yamanaka, S. Tamura, “Three-dimensional reconstruction of laser-irradiated targets using URA coded aperture cameras,” Opt. Commun. 71, 249–255 (1989).
[CrossRef]

Natalucci, L.

E. Caroli, J. B. Stephen, G. Di Cocco, L. Natalucci, A. Spizzichino, “Coded aperture imaging in x- and gamma-ray astronomy,” Space Sci. Rev. 45, 349–403 (1987).
[CrossRef]

Owens, A.

P. P. Dunphy, M. L. McConnell, A. Owens, E. L. Chupp, D. J. Forrest, “A balloon-borne coded aperture telescope for low-energy gamma-ray astronomy,” Nucl. Instrum. Methods Phys. Res. A 274, 362–379 (1989).
[CrossRef]

Rangarajan, A.

Y. H. Liu, A. Rangarajan, D. Gagnon, M. Therrien, A. J. Sinusas, F. J. Th. Wackers, I. G. Zubal, “A novel geometry for SPECT imaging associated with the EM-type blind deconvolution method,” IEEE Trans. Nucl. Sci. 45, 2095–2101 (1998).
[CrossRef]

Rogers, W. L.

W. L. Rogers, K. F. Koral, R. Mayans, P. F. Leonard, J. H. Thrall, T. J. Brady, J. W. Keyes, “Coded-aperture imaging of the heart,” J. Nucl. Med. 21, 371–378 (1980).
[PubMed]

K. F. Koral, W. L. Rogers, “Application of ART to time-coded emission tomography,” Phys. Med. Biol. 24, 879–894 (1979).
[CrossRef] [PubMed]

K. F. Koral, J. E. Freitas, W. L. Rogers, J. W. Keyes, “Thyroid scintigraphy with time-coded aperture,” J. Nucl. Med. 20, 345–349 (1979).
[PubMed]

Schneid, E. J.

S. R. Gottesman, E. J. Schneid, “PNP—a new class of coded aperture arrays,” IEEE Trans. Nucl. Sci. NS-33, 745–749 (1986).
[CrossRef]

Sinusas, A. J.

Y. H. Liu, A. Rangarajan, D. Gagnon, M. Therrien, A. J. Sinusas, F. J. Th. Wackers, I. G. Zubal, “A novel geometry for SPECT imaging associated with the EM-type blind deconvolution method,” IEEE Trans. Nucl. Sci. 45, 2095–2101 (1998).
[CrossRef]

Skinner, G. K.

G. K. Skinner, “Imaging with coded-aperture masks,” Nucl. Instrum. Methods Phys. Res. A 221, 33–40 (1984).
[CrossRef]

Spizzichino, A.

E. Caroli, J. B. Stephen, G. Di Cocco, L. Natalucci, A. Spizzichino, “Coded aperture imaging in x- and gamma-ray astronomy,” Space Sci. Rev. 45, 349–403 (1987).
[CrossRef]

Stephen, J. B.

E. Caroli, J. B. Stephen, G. Di Cocco, L. Natalucci, A. Spizzichino, “Coded aperture imaging in x- and gamma-ray astronomy,” Space Sci. Rev. 45, 349–403 (1987).
[CrossRef]

Tamura, S.

Y. W. Chen, M. Yamanaka, N. Miyanaga, T. Yamanaka, S. Nakai, C. Yamanaka, S. Tamura, “Three-dimensional reconstruction of laser-irradiated targets using URA coded aperture cameras,” Opt. Commun. 71, 249–255 (1989).
[CrossRef]

Therrien, M.

Y. H. Liu, A. Rangarajan, D. Gagnon, M. Therrien, A. J. Sinusas, F. J. Th. Wackers, I. G. Zubal, “A novel geometry for SPECT imaging associated with the EM-type blind deconvolution method,” IEEE Trans. Nucl. Sci. 45, 2095–2101 (1998).
[CrossRef]

Thrall, J. H.

W. L. Rogers, K. F. Koral, R. Mayans, P. F. Leonard, J. H. Thrall, T. J. Brady, J. W. Keyes, “Coded-aperture imaging of the heart,” J. Nucl. Med. 21, 371–378 (1980).
[PubMed]

Van Hulsteyn, D. B.

Wackers, F. J. Th.

Y. H. Liu, A. Rangarajan, D. Gagnon, M. Therrien, A. J. Sinusas, F. J. Th. Wackers, I. G. Zubal, “A novel geometry for SPECT imaging associated with the EM-type blind deconvolution method,” IEEE Trans. Nucl. Sci. 45, 2095–2101 (1998).
[CrossRef]

Yamanaka, C.

Y. W. Chen, M. Yamanaka, N. Miyanaga, T. Yamanaka, S. Nakai, C. Yamanaka, S. Tamura, “Three-dimensional reconstruction of laser-irradiated targets using URA coded aperture cameras,” Opt. Commun. 71, 249–255 (1989).
[CrossRef]

Yamanaka, M.

Y. W. Chen, M. Yamanaka, N. Miyanaga, T. Yamanaka, S. Nakai, C. Yamanaka, S. Tamura, “Three-dimensional reconstruction of laser-irradiated targets using URA coded aperture cameras,” Opt. Commun. 71, 249–255 (1989).
[CrossRef]

Yamanaka, T.

Y. W. Chen, M. Yamanaka, N. Miyanaga, T. Yamanaka, S. Nakai, C. Yamanaka, S. Tamura, “Three-dimensional reconstruction of laser-irradiated targets using URA coded aperture cameras,” Opt. Commun. 71, 249–255 (1989).
[CrossRef]

Zubal, I. G.

Y. H. Liu, A. Rangarajan, D. Gagnon, M. Therrien, A. J. Sinusas, F. J. Th. Wackers, I. G. Zubal, “A novel geometry for SPECT imaging associated with the EM-type blind deconvolution method,” IEEE Trans. Nucl. Sci. 45, 2095–2101 (1998).
[CrossRef]

Appl. Opt. (6)

Astrophys. J. (1)

R. H. Dicke, “Scatter-hole cameras for X-rays and gamma rays,” Astrophys. J. 153, L101–L106 (1968).
[CrossRef]

IEEE Trans. Nucl. Sci. (3)

Y. H. Liu, A. Rangarajan, D. Gagnon, M. Therrien, A. J. Sinusas, F. J. Th. Wackers, I. G. Zubal, “A novel geometry for SPECT imaging associated with the EM-type blind deconvolution method,” IEEE Trans. Nucl. Sci. 45, 2095–2101 (1998).
[CrossRef]

M. L. McConnell, D. J. Forrest, E. L. Chupp, P. P. Dunphy, “A coded aperture gamma ray telescope,” IEEE Trans. Nucl. Sci. NS-29, 155–159 (1982).
[CrossRef]

S. R. Gottesman, E. J. Schneid, “PNP—a new class of coded aperture arrays,” IEEE Trans. Nucl. Sci. NS-33, 745–749 (1986).
[CrossRef]

J. Nucl. Med. (3)

K. F. Koral, J. E. Freitas, W. L. Rogers, J. W. Keyes, “Thyroid scintigraphy with time-coded aperture,” J. Nucl. Med. 20, 345–349 (1979).
[PubMed]

W. L. Rogers, K. F. Koral, R. Mayans, P. F. Leonard, J. H. Thrall, T. J. Brady, J. W. Keyes, “Coded-aperture imaging of the heart,” J. Nucl. Med. 21, 371–378 (1980).
[PubMed]

H. H. Barrett, “Fresnel zone plate imaging in nuclear medicine,” J. Nucl. Med. 13, 382–385 (1972).
[PubMed]

Nucl. Instrum. Methods Phys. Res. A (5)

G. K. Skinner, “Imaging with coded-aperture masks,” Nucl. Instrum. Methods Phys. Res. A 221, 33–40 (1984).
[CrossRef]

K. Byard, “Synthesis of binary arrays with perfect correlation properties—coded aperture imaging,” Nucl. Instrum. Methods Phys. Res. A 336, 262–268 (1993).
[CrossRef]

J. S. Fleming, B. A. Goddard, “An evaluation of techniques for stationary coded aperture three-dimensional imaging in nuclear medicine,” Nucl. Instrum. Methods Phys. Res. A 221, 242–246 (1984).
[CrossRef]

P. P. Dunphy, M. L. McConnell, A. Owens, E. L. Chupp, D. J. Forrest, “A balloon-borne coded aperture telescope for low-energy gamma-ray astronomy,” Nucl. Instrum. Methods Phys. Res. A 274, 362–379 (1989).
[CrossRef]

U. B. Jayanthi, J. Braga, “Physical implementation of an antimask in URA based coded mask systems,” Nucl. Instrum. Methods Phys. Res. A 310, 685–689 (1991).
[CrossRef]

Opt. Commun. (1)

Y. W. Chen, M. Yamanaka, N. Miyanaga, T. Yamanaka, S. Nakai, C. Yamanaka, S. Tamura, “Three-dimensional reconstruction of laser-irradiated targets using URA coded aperture cameras,” Opt. Commun. 71, 249–255 (1989).
[CrossRef]

Phys. Med. Biol. (1)

K. F. Koral, W. L. Rogers, “Application of ART to time-coded emission tomography,” Phys. Med. Biol. 24, 879–894 (1979).
[CrossRef] [PubMed]

Proc. Astron. Soc. Aust. (1)

J. G. Ables, “Fourier transform photography: a new method for X-ray astronomy,” Proc. Astron. Soc. Aust. 1, 172–173 (1968).

Space Sci. Rev. (1)

E. Caroli, J. B. Stephen, G. Di Cocco, L. Natalucci, A. Spizzichino, “Coded aperture imaging in x- and gamma-ray astronomy,” Space Sci. Rev. 45, 349–403 (1987).
[CrossRef]

Other (1)

R. Accorsi, F. Gasparini, R. C. Lanza, “An improved method for radiation imaging using coded apertures,” U.S. patent application 60/236, 878 (29September2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Coded aperture geometry.

Fig. 2
Fig. 2

Effect of zero-order correction. The white rims surrounding the cold spots and the right lobe of the thyroid are not artifacts but part of the simulated object.

Fig. 3
Fig. 3

Center of mass of the decoding pattern G as a function of a shift for a MURA. The expected form of the artifact is at the bottom left. Cross sections of this function are shown on its top and right. If a shift different from that in which the arrays are given by generation rules had been used, the result would have been that at the top right. This shift corresponds to solid black row and the solid white column of a MURA pattern being put at the center of the mask.

Fig. 4
Fig. 4

First-order artifacts for three different array families. Top, 31 × 33 pixel M sequence; middle, 33 × 33 pixel pseudonoise product; bottom, 34 × 34 pixel NTHT MURA. Masks and decoding arrays are shown in the shift that mitigates the artifact. Noncorrected artifacts are shown for the pattern as obtained from the generation rule found in the literature. The correction is substantial for M sequences and NTHT patterns, whereas it is of dubious effectiveness for product arrays.

Fig. 5
Fig. 5

Second-order artifacts for the arrays of Figs. 3 and 4 (after pattern centering) calculated with relation (20). Note the similarity of MURAs and NTHT MURAs. This is also true at first order. Dimensions are in pixels.

Fig. 6
Fig. 6

Simulation of first-order artifacts. The mask was a 62 × 62 pixel NTHT MURA. (a) Centering artifact for a non-pattern-centered mask. For a pattern-centered mask: (b) first-order artifact for an off-center object, and (c) if the object is centered the artifact vanishes.

Fig. 7
Fig. 7

Simulation results. Four arrays were considered: a 79 × 79 pixel MURA, a 77 × 77 pixel new system array [a product array similar to the 33 × 33 pixel pseudonoise product of Figs. 4 and 5 (Ref. 22)], a 62 × 62 pixel NTHT array based on a 31 × 31 pixel MURA, and a 63 × 65 pixel M sequence. The five columns show, for each mask, the two views, the sum and the difference picture (see Section 5), and the prediction of the artifact according to relation (20). Note the poor signal-to-noise ratio for the new system mask and especially the antimask.

Fig. 8
Fig. 8

Hand and an emission-computed tomography cold-rod phantom. In this phantom the smallest rod diameter is 6.4 mm. From Ref. 12.

Fig. 9
Fig. 9

Simulation of two exposures of a thyroid: mask (top left) and antimask (top right). Note that the artifacts change sign. When the two images are added (bottom left), they cancel out and the signal is reinforced. If the images are subtracted, the opposite is true and the artifact is reinforced whereas the object cancels out (bottom right).

Fig. 10
Fig. 10

Experimental results for a thyroid phantom. Figure 9 provides a comparison with the simulation. To obtain a truly 2-D image, only the bottom of the phantom was filled. The spike coming out of the bottom left lobe is the injection channel. The measured resolution of this image is approximately 1.5 mm.

Equations (25)

Equations on this page are rendered with MathJax. Learn more.

Pri  ro OroAazri+bzrocos3θd2ro,
ξ=-baro,Or=O -abr,Ar=Aazr,
Pri  ξOξAri-ξ×cos3arctanri+abξzd2ξ.
Oˆ=PG,
cos3θ1.
P=O * A,
Oˆ=O * AG=O * GA=O * δ=O,
cos3arctanri+abξzcos3arctan|ri|z1-3/z21+|ri|2z2riabξ+12ab |ξ|2-5/2z21+|ri|2z2riabξ2,
abξ|ri|=|ro||ri|<1
cos3arctanri+abξzcos3arctan|ri|z,
Pri=cos3arctan|ri|z ξ OξAri-ξd2ξ.
cos3arctanri+abξzI-cos3arctan|ri|z3/z21+|ri|2z2riabξ,
Pri  riz2+|ri|2  ξξOξAri-ξd2ξ.
Oˆ  O  ririz2+|ri|2 Gri+ηd2ri.
Oˆ  O  ririGri+ηd2ri.
cos3arctanri+abξzIIcos3arctan|ri|z3/z21+|ri|2z2×12ab|ξ|2-5/2z21+|ri|2z2riabξ2.
Pri  1z2+|ri|2 ξ OξAri-ξ|ξ|2d2ξ.
Pri  |ri|2z2+|ri|22 ξ OξAri-ξrˆiξ2d2ξ,
Oˆ  ri|ri|2z2+|ri|22 ρIrˆiGri+ηd2ri.
Oˆ  ρI ri|ri|2z2+|ri|22 Gri+ηd2ri.
Pri  1-t ro OroAazri+bzrocos3θd2ro+t ro Orocos3θd2ro.
Pri  ξ OξAri-ξd2ξ+Bri=O*A+Bri,
Oˆ  O*AG+BriG=O+BriG.
Bri=sri+q,
Oˆ=ri BriGri+ηd2ri=s  ririGri+ηd2ri+const,

Metrics